
Improved Approximation Algorithms for Reconstructing the

History of Tandem Repeats

Zhi-Zhong Chen∗ Lusheng Wang†

Abstract

Some genetic diseases in human beings are dominated by short sequences repeated consec-
utively called tandem repeats. Once a region containing tandem repeats is found, it is of great
interest to study the history of creating the repeats. The computational problem of reconstruct-
ing the duplication history of tandem repeats has been studied extensively in the literature.
Almost all previous studies focused on the simplest case where the size of each duplication block
is 1. Only recently we succeeded in giving the first polynomial-time approximation algorithm
with a guaranteed ratio for a more general case where the size of each duplication block is at
most 2; the algorithm achieves a ratio of 6 and runs in O(n11) time. In this paper, we present
two new polynomial-time approximation algorithms for this more general case. One of them
achieves a ratio of 5 and runs in O(n9) time while the other achieves a ratio of 2.5 + ε for any
constant ε > 0 but runs slower.

Keywords: Computational biology, approximation algorithms.

1 Introduction

The genomes of many species are dominated by short segments repeated consecutively. It is es-
timated that over 10% of the human genome consists of repeated segments. About 10-25% of all
known proteins have some form of repeated structures. Computing the duplication history of a
tandem repeated region is a very important problem in computational biology [3, 5, 9]. A number
of papers related to this problem have been published [1, 5, 6, 7, 8, 9, 12].

1.1 The Duplication Model

The model for the duplication history of tandem repeated segments was proposed by Fitch in
1977 [3] and re-proposed by Tang et al. [9] and Jaitly et al. [5]. The model captures both the evo-
lutionary history and the observed order of segments on a chromosome. Let S = s1s2 . . . sn be an
observed string consisting of n segments of the same length m. Let titi+1 . . . ti+k−1 be k consecutive
segments in an ancestor string of S in the evolutionary history. A duplication event generates 2k
consecutive segments lc(ti)lc(ti+1) . . . lc(ti+k−1)rc(ti)rc(ti+1) . . . rc(ti+k−1) by (approximately) copy-
ing the k segments titi+1 . . . ti+k−1 twice, where both lc(ti+j) and rc(ti+j) are approximate copies

∗Department of Mathematical Sciences, Tokyo Denki University, Hatoyama, Saitama 350-0394, Japan. Email:

chen@r.dendai.ac.jp.
†Department of Computer Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong.

1

t t ... t

l (t) l (t) ... l (t)i c i+1c i+k-1c

i i+1 i+k-1

r (t) r (t) ... r (t)i c i+1c i+k-1c

Figure 1: A k-duplication, where both lc(ti+j) and rc(ti+j) are approximate copies of ti+j .

of ti+j (see Figure 1). Assume that the n segments s1, s2, . . . sn were formed from a locus by tan-
dem duplications. Then, the locus had grown from a single copy through a series of duplications.
A duplication replaces a stretch of DNA consisting of several segments with two (approximately)
identical and adjacent copies of itself. If the stretch contains k segments, the duplication is called
a k-duplication.

Recall that in a rooted binary tree T , each vertex may have at most one parent and either zero
or two children. There is only one vertex, called the root of T , that has no parent. Those vertices
with no children are called the leaves of T while the others are called the nonleaves of T . The
two children of each nonleaf v in T are distinguished as the left child and the right child of v in T ,
respectively. If a vertex v1 appears on the path from the root to another vertex v2 in T , then v1 is
an ancestor of v2 in T while v2 is a descendant of v1 in T . For convenience, we view each vertex
as a descendant and ancestor of itself. Two vertices are incomparable in T if neither of them is an
ancestor or descendant of the other in T . Moreover, the edge between a nonleaf u and a child v of
u is denoted by (u, v).

Let S = 〈s1, s2, . . . , sn〉 be a list of strings of the same length m. A duplication model for S is a
rooted binary tree M embedded in the plane and armed with a partition B of the set of nonleaves
of M into disjoint lists such that the following conditions are satisfied (cf. Figure 2):

1. Each vertex of M is a point in the plane while each edge of M is a straight-line segment in
the plane.

2. The root of M appears at the top while the leaves of M appear at the bottom (at the same
height).

3. The left child of each nonleaf v in M appears below and on the left of v, while the right child
appears below and on the right of v.

4. Each vertex of M is labeled by a string of length m. In particular, the leaves of M are labeled,
from left to right, by s1, s2, . . . , sn, respectively.

5. For every list 〈v1, . . . , vk〉 ∈ B with k ≥ 2, the following hold:

(a) v1, v2, . . . , vk are pairwise incomparable in M .

(b) If we draw a line segment ` from v1 to vk in the plane, then ` is horizontal, v1, v2, . . . ,
vk appear on ` from left to right in this order, and no other vertices of M appear on `.

(c) For every two integers i and j with 1 ≤ i < j ≤ k, the edge from vi to its right child
crosses the edge from vj to its left child in the plane.

6. Two edges of M cross each other only if the crossing is specified in Condition 5c.

2

s1 s2 s3 s4 s5 s6 s7
s8

s9 s10 s11s12
s13 s14

s15 s16 s17 s18

t15

t3 t4

t1

t2

t5 t6

t7
t8

t9 t10 t11
t12

t13 t14

t16

t17

Figure 2: A duplication model M .

t

s

1

t2

t3
t4

t5

t6

t7

t8

t9

t10

t11

t12

t13

t14
t15

t16

t17

1 s2 s4 s3 s5 s7 s10 s12 s14 s16
s6 s8 s9

s11s13 s15s17s18

Figure 3: The associated phylogeny of M in Figure 2.

We call each list in B a block of M . The size of a block B is the number of vertices in B and
is denoted by |B|. For each integer k ≥ 1, a k-block is a block of size k. When we depict M via a
figure, we show each block B of M with |B| ≥ 2 by drawing a rectangle to enclose the vertices of
B. Hence, if a vertex is not enclosed by a rectangle in the figure, then it alone forms a block of M .

Each edge of M carries a cost which is simply the hamming distance between the two segments
associated with the two endpoints of the edge. The cost of M , denoted by c(M), is the total cost of
edges of M . We remark that all our results apply to other distance measures satisfying the triangle
inequality.

Since M is a tree, we can re-embed it in the plane without edge crossings and without violating
the first three conditions above. The new embedded tree TM is called the associated phylogeny for
M (see Figure 3 for an example). Clearly, TM is unique, its vertices one-to-one correspond to those
of M , and its cost equals that of M .

Obviously, if every block in M is of size 1, then TM and M are identical. However, if one or
more blocks in M are of size larger than 1, then the left-to-right order of the labels of the leaves of
TM is not s1, s2, . . . , sn.

1.2 The Problem, Previous Results, and Our Results

Now, we are ready to state the problem considered in the paper:

Duplication History Reconstruction (DHR):
• Input: A list S = 〈s1, s2, . . . , sn〉 of strings of the same length m.
• Output: A duplication model for S with the smallest cost.

For each integer k ≥ 1, let k-DHR denote the special case of DHR where the size of each
duplication block is at most k. 1-DHR and its variants have been studied extensively in the
literature [1, 2, 5, 9, 10, 11]. In particular, Jaitly et al. proved the NP-hardness of 1-DHR and

3

designed a PTAS for it. At present, the best PTAS for 1-DHR was given in [2]. Benson and
Dong [1] and Tang et al. [9] designed exact algorithms for 1-DHR that run in time exponential in
m but polynomial in n.

Unlike 1-DHR, k-DHR with k ≥ 2 is much harder to approximate. Indeed, as observed in [4],
we can design a trivial 2-approximation algorithm for 1-DHR as follows: Given 〈s1, s2, . . . , sn〉, first
construct a rooted path P with n vertices, next label the vertices of P with s1, s2, . . . , sn in this
order from bottom to top, and finally add a new child with label si to the vertex of P with label
si for every i ∈ {2, 3, . . . , n}. However, this simple algorithm does not work for 2-DHR. To see
this, consider the case where n is even, s1 = s3 = · · · = sn−1 = 0, and s2 = s4 = · · · = sn = 1.
In this case, the cost of the optimal duplication model for 〈s1, s2, . . . , sn〉 is 1 while the cost of the
duplication model constructed by the simple algorithm is n − 1. Not only this simple algorithm
but also the other known algorithms for 1-DHR do not work for 2-DHR. In fact, it had been
elusive for a while to design a polynomial-time approximation algorithm for 2-DHR that achieves
a guaranteed ratio. Only very recently, Chen et al. [2] succeeded in designing the first polynomial-
time approximation algorithm with a guaranteed ratio for 2-DHR; it runs in O(n11 + n2m) time
and achieves a ratio of 6 1. The main ideas behind the algorithm can be summarized as follows:

1. Each duplication model M for S = 〈s1, s2, . . . , sn〉 can be decomposed into smaller compo-
nents which can be organized into a tree called the component tree of M .

2. The component tree of M can be transformed into a new model M ′ for S in O(nm) time
with c(M ′) ≤ 3 · c(M).

3. We can find the best component tree of a lifted model for S in O(n11 +n2m) time via dynamic
programming, where a lifted model for S is a model whose vertices are assigned strings in S.

In this paper, we design two better approximation algorithms for 2-DHR. One of our algorithms
runs in O(n9 +n2m) time and achieves a ratio of 5. The other runs in polynomial time and achieves
a ratio of 2.5 + ε for any constant ε > 0. Our algorithms are of purely theoretical interest because
of their high complexity. Besides the above old ideas used in [2], our algorithms have two new
important ideas. The main new idea is to show the existence of a 0.75-separator in a duplication
model M , which is a set P of edge-disjoint paths such that the total weight of edges in paths in P is
at most 0.75 · c(M) and the paths in P can be used to decompose M into smaller components that
can be organized into a tree (still called the component tree of M as before). The other new idea
is to look at r-lifted models which are less restricted than lifted models. Basically, r-lifted models
are similar to r-lifted phylogenies in [11]. We believe that the two new ideas will eventually lead
to a PTAS for 2-DHR.

Throughout the remainder of this paper, a duplication model means one in which each block is
of size at most 2.

1.3 Organization of the Paper

The rest of this paper is organized as follows. In Section 2, we give several definitions and prove
several lemmas for duplication models. In Section 3, we generalize duplication models to multiroot

1In the conference version of [2], the authors wrongly claimed a ratio-2 polynomial-time approximation algorithm.

4

models and define splitting vertices for them. In Section 4, we show how to use splitting vertices
to split multiroot models to smaller multiroot models; we also define separators and show their
relations to splitting vertices. In Section 5, we prove our main lemma that every multiroot model
has a 0.75-separator. In Section 6, we use a 0.75-separator Γ of a multiroot model M to split M
into smaller multiroot models and organize them into a tree D(M,Γ) called the component tree of
M associated with Γ. In Section 7, we show how to construct a new model M ′ from D(M,Γ) with
c(M ′) ≤ 2.5 · c(M). In Section 8, we define abstract component trees for a list L of strings in such
a way that the component tree of each multiroot model for L is always an abstract component
tree for L. The crucial point is that the best abstract component tree for L can be computed in
polynomial time via dynamic programming (cf. Section 9). The best abstract component tree for
L can then be used to construct a real multiroot model for L whose cost is close to optimal. The
ratio-5 and the ratio-(2.5 + ε) approximation algorithms are summarized in Sections 10 and 11,
respectively. Section 12 concludes the paper with several remarks.

Throughout the remainder of this paper, let S = 〈s1, s2, . . . , sn〉 be a list of strings of the same
length m. Our goal is to show how to construct a good duplication model for this list.

2 Preliminaries

Fix two integers i and j with 1 ≤ i ≤ j ≤ n. Let M be a duplication model for 〈si, si+1, . . . , sj〉.
Note that two strings in 〈si, si+1, . . . , sj〉 may be identical. So, for clarity, we use `h to denote the
(h− i+ 1)st leftmost leaf in M for every integer h ∈ {i, i+ 1, . . . , j}. Obviously, the label of `h in
M is sh.

An edge in M is planar if it is not crossed by another edge in M . A path in M is planar if it
traverses planar edges only.

Lemma 2.1 For each vertex u of M , there is a planar path P in M from u down to a leaf.

Proof. Suppose that we start at a vertex u and go down to a leaf based on the following rule:
Assume that we are now at a nonleaf v. If the edge from v to its left child v1 is planar, then we
next move to v1; otherwise, we move to its right child v2. Since M is a duplication model, at least
one of (v, v1) and (v, v2) is planar. So, we can always go down to a leaf by traversing planar edges
only. 2

Lemma 2.2 Consider an arbitrary nonleaf u of M . Let v1 and v2 be the left and the right child
of v in M , respectively. Then, all descendants of v2 in M appear on the right of each planar path
from v1 to a leaf in M . Similarly, all descendants of v1 in M appear on the left of each planar path
from v2 to a leaf in M .

Proof. Since v1 appears on the left of v while v2 appears on the right of v in M , the lemma
follows from the planarity of planar paths immediately. 2

A left (respectively, right) edge in M is an edge between a nonleaf and its left (respectively,
right) child in M . A left (respectively, right) path in M is a path in M that traverses only left
(respectively, right) edges.

5

Lemma 2.3 If two edges cross each other in M , then one of them is a left edge and the other is
a right edge.

Proof. Suppose that two edges (u1, u2) and (v1, v2) cross each other in M . Then, u1 and v1

together form a 2-block B. Moreover, either (u1, u2) is a right edge and (v1, v2) is a left edge, or
(u1, u2) is a left edge and (v1, v2) is a right edge. Thus, the lemma holds. 2

Consider a 2-block B = 〈u1, u2〉 in M . We call u1 the left vertex in B and call u2 the right vertex
in B. Note that the edge between u1 and its left child in M is planar, while the edge between u1

and its right child in M is not. Similarly, the edge between u2 and its right child in M is planar,
while the edge between u2 and its left child in M is not.

For each nonleaf u of M , we use IM (u) (respectively, JM (u)) to denote the smallest (respectively,
largest) integer h such that `h is a leaf descendant of u in M . The following lemma follows from
Lemmas 2.1 and 2.2 immediately:

Lemma 2.4 Let u be a nonleaf of M . Then, the path from u to `IM (u) in M is a left path and the
path from u to `JM (u) in M is a right path. Moreover, the two paths do not cross each other.

Two nonleaves u and v are unrelated in M if JM (u) < IM (v) or JM (v) < IM (u). A nonleaf u
crosses another nonleaf v in M if IM (u) < IM (v) < JM (u) < JM (v). Note that if u crosses v in
M , then v does not cross u in M . A nonleaf u covers another nonleaf v in M if IM (u) ≤ IM (v) <
JM (v) ≤ JM (u). Note that if u is an ancestor of v in M , then u covers v in M . However, a nonleaf
may cover another nonleaf in M even if they are incomparable in M . Two nonleaves of M are
unnested if neither of them covers the other in M . A nonleaf u is on the left of another vertex v in
M if u and v are unnested and IM (u) < IM (v) (or equivalently, JM (u) < JM (v)).

The next lemma helps the reader understand how a nonleaf covers another in M or how two
nonleaves become unrelated in M .

Lemma 2.5 Let u and v be two nonleaves in M . Let Pu (respectively, Qu) be the path from u to
`IM (u) (respectively, `JM (u)). Let Pv (respectively, Qv) be the path from v to `IM (v) (respectively,
`JM (v)). Suppose that u covers v in M or u and v are unrelated in M . Then, neither Pu nor Qu
crosses Pv or Qv in M .

Proof. Without loss of generality, we may assume that IM (u) < IM (v). By Lemmas 2.3 and 2.4,
Pu and Pv do not cross each other and neither do Qu and Qv. Consequently, Pu and Qv cannot
cross each other, because Pu appears on the left of Pv while Qv appears on the right of Pv. For a
similar reason, Qu and Pv cannot cross each other if u covers v in M . If u and v are unrelated in
M , then Qu and Pv cannot cross each other either, because `JM (u) is on the left of `IM (v) and Qu
starts at `JM (u) and goes up all the way to the left while Pv starts at `IM (v) and goes up all the
way to the right. 2

The next lemma helps the reader understand how a nonleaf crosses another in M .

Lemma 2.6 Suppose that a nonleaf u crosses another v in M . Then, the path Qu from u to `JM (u)

in M and the path Pv from v to `IM (v) in M cross each other exactly once and hence there is exactly
one 2-block Bu,v in M whose left vertex is on Qu and whose right vertex is on Pv.

6

left

left
right

right

s1 s2 s3 s4 s5 s6 s7
s8 s9

s10 s11s12
s13 s14

s15 s16 s17 s18

t8

t3

t1 t2

t4 t5 t6

t9 t10 t11 t12
t13 t14

t7

s19 s20 s21

t15

t16

Figure 4: A 4-root model M for 〈s1, s2, . . . , s21〉 whose roots are marked left or right.

Proof. Let Pu (respectively, Qv) be the path from u (respectively, v) to `IM (u) (respectively,
`JM (v)) in M . Since IM (u) < IM (v) < JM (u) < JM (v), at least one of Pu and Qu has to cross
at least one of Pv and Qv in M . By Lemmas 2.3 and 2.4, Pu and Pv do not cross each other and
neither do Qu and Qv. Thus, Qu and Pv cross each other or Pu and Qv cross each other. As in the
proof of Lemma 2.5, we can show that Pu and Qv do not cross each other. Hence, Qu and Pv cross
each other. We also know that they can cross each other at most once because Qu goes down all
the way to the right while Pv goes down all the way to the left. Thus, they cross each other exactly
once. 2

We call the block Bu,v in Lemma 2.6 the witness block for the (u, v)-crossing in M .
The following two lemmas help the reader understand the relations between unnested nonleaves

in M and have been proved in [2]:

Lemma 2.7 There do not exist three pairwise unnested nonleaves x, y, and z in M such that both
x and z cross y in M .

Lemma 2.8 Suppose that x, y, and z are three pairwise unnested nonleaves in M such that x
crosses y in M and y crosses z in M . Then, IM (y) < JM (x) < IM (z) < JM (y) and hence x does
not cross z in M .

3 Multiroot Models and Splitting Vertices

For technical reasons, we generalize duplication models to multiroot models. Fix two integers i and
j with 1 ≤ i ≤ j ≤ n. For convenience, we also call a duplication model for 〈si, si+1, . . . , sj〉 a 1-root
model for 〈si, si+1, . . . , sj〉. For an integer k ≥ 2, a k-root model for 〈si, si+1, . . . , sj〉 is obtained
from a duplication model M for 〈si, si+1, . . . , sj〉 by deleting a subtree T with exactly k−1 vertices
such that

• T contains the root of M but contains no leaf of M .

• For every 2-block B in M , T contains either both or neither of the vertices in B.

Figure 4 depicts a 4-root model.
For convenience, we define a multiroot model for 〈si, si+1, . . . , sj〉 to be a k-root model for

〈si, si+1, . . . , sj〉 with k ≥ 1. Obviously, all definitions, notations, and lemmas for (1-root) models
given in Section 2 still make sense for multiroot models. Besides, we have the following lemma:

Lemma 3.1 Every two roots in a multiroot model M for 〈si, si+1, . . . , sj〉 are unnested.

7

Proof. The lemma is trivially true when M has only one root. So, suppose that M has two
or more roots. Then, M is obtained from a (1-root) model M ′ for 〈si, si+1, . . . , sj〉 by deleting the
root x and possibly some other nonleaves.

Suppose that u1 and u2 are two roots in M . Toward a contradiction, assume that u1 covers u2.
Then, by Lemma 2.5, u2 appears below u1 in M (and hence appears below u1 in M ′, too). On the
other hand, x appears above u1 in M ′. Thus, the path from x to u2 in M ′ has to cross the path
from u1 to `IM (u1) or the path from u1 to `JM (u1). In either case, some edge (y1, y2) in M ′ but not
in M is crossed by some edge (z1, z2) of M in M ′. Obviously, y1 and z1 together form a 2-block in
M ′. Moreover, z1 is in M but y1 is not. However, when we obtained M from M ′, we would have
deleted either both or none of y1 and z1 because they together form a 2-block. 2

For a multiroot model M for 〈si, si+1, . . . , sj〉, the left (respectively, right) boundary of M is the
path that starts at the leftmost (respectively, rightmost) leaf of M and then repeats moving up
to the parent of the current vertex until a root is reached. By Lemma 2.4, the left (respectively,
right) boundary of M is a left (respectively, right) path in M . For example, the left boundary of
the multiroot model in Figure 4 is the path: s1, t8, t3, while the right boundary is the path: s21,
t15.

A multiroot model for 〈si, si+1, . . . , sj〉 is root-marked if each root u of M is marked either left
or right such that the following hold:

• If u is the left vertex of a 2-block in M , or u is on the left boundary of M but is not on the
right boundary of M , then u is marked left.

• If u is the right vertex of a 2-block in M , or u is on the right boundary of M but is not on
the left boundary of M , then u is marked right.

Throughout the remainder of this section, letM be a root-marked multiroot model for 〈si, si+1, . . . , sj〉.
Let V be the vertex set of M . We define five functions PM , LM , RM , UM , DM : V → V ∪ {⊥} as
follows:

• For each v ∈ V , PM (v) is the parent of v in M if v is not a root of M ; otherwise, PM (v) = ⊥.

• For each v ∈ V , LM (v) is the left child of v in M if v is not a leaf of M ; otherwise, LM (v) = ⊥.

• For each v ∈ V , RM (v) is the right child of v in M if v is not a leaf of M ; otherwise,
RM (v) = ⊥.

• For each v ∈ V ,

– DM (v) = ⊥ if v is a leaf of M ;

– DM (v) = LM (v) if (1) v is a root marked left, (2) v is the left child of its parent in M

and (v, LM (v)) is not crossed in M , or (3) the edge (v,RM (v)) is crossed in M ;

– DM (v) = RM (v) otherwise.

• For each v ∈ V , UM (v) = ⊥ if there is no u ∈ V with DM (u) = v; otherwise, UM (v) = PM (v).

Intuitively speaking, function DM tells us the direction when we move down from a vertex in
tree M , while function UM tells us to stop or continue when we move up from a vertex in tree M .
As the following fact shows, UM is simply the reverse function of DM and vice versa.

8

Fact 3.2 If u is a vertex of M with UM (u) 6= ⊥, then DM (UM (u)) = u. Similarly, if v is a vertex
of M with DM (v) 6= ⊥, then UM (DM (v)) = v.

Proof. Obvious from the definitions of functions UM and DM . 2

For each vertex v of M , consider the planar path that starts at v and then repeats moving down
to DM (u) from the current vertex u until a leaf of M is reached. We denote this path by −−→DM (v).
As an example, for the duplication model M in Figure 4, −−→DM (t1), . . . , −−→DM (t3), −−→DM (t5), −−→DM (t6),
−−→
DM (t11), −−→DM (t12), −−→DM (t14), . . . , −−→DM (t16) are the bold paths in the figure. The following fact is
clear from the definition of DM :

Fact 3.3 If u and v are incomparable nonleaves of M , then −−→DM (u) and −−→DM (v) are vertex-disjoint
paths.

Since the left boundary of M is a left path and the right boundary of M is a right path, the
following fact holds:

Fact 3.4 The following statements hold:

1. For every nonroot vertex u on the left (respectively, right) boundary of M , −−→DM (u) is a subpath
of the left (respectively, right) boundary of M .

2. If M has at least two roots, then for the root x on the left (respectively, right) boundary of
M , −−→DM (x) is the left (respectively, right) boundary of M .

3. If M has only one root, then for the root x of M , −−→DM (x) is either the left or the right boundary
of M .

For each leaf v of M , consider the planar path that starts at v and then repeats moving up to
UM (u) from the current vertex u until a vertex u with UM (u) = ⊥ is reached. We denote this path
by ←−UM (v). Since DM is a function, the following fact is clear from Fact 3.2:

Fact 3.5 If u and v are distinct leaves of M , then ←−UM (u) and ←−UM (v) are vertex-disjoint paths.

By Lemma 3.1, there exists an obvious left-to-right order of the roots in M , namely, a root x
is on the left of another y in M if IM (x) < IM (y) (or equivalently, JM (x) < JM (y)). Two roots in
M are consecutive if they appear consecutively in this order among the roots.

Let the left-to-right order of the roots in M be x1, . . . , xk. A splitting vertex of M is a vertex
v 6∈ {x1, . . . , xk} such that for some integer h ∈ {1, . . . , k−1}, xh crosses xh+1 in M and the witness
block for the (xh, xh+1)-crossing in M contains v. For example, the multiroot model in Figure 4
has exactly one splitting vertex, namely, t4.

Lemma 3.6 Suppose that k ≥ 3 and for some integer h with 1 < h < k, xh−1 crosses xh and xh
crosses xh+1 in M . Then, the right vertex in the witness block for the (xh−1, xh)-crossing in M or
the left vertex in the witness block for the (xh, xh+1)-crossing in M is a splitting vertex of M .

9

Proof. If the right vertex y in the witness block for the (xh−1, xh)-crossing in M is not a
splitting vertex of M , then y = xh and so xh cannot be the left vertex z in the witness block for
the (xh, xh+1)-crossing in M , implying z is a splitting vertex of M . 2

Lemma 3.7 For every splitting vertex v of M , no vertex of −−→DM (v) appears on the left or right
boundary of M .

Proof. Let xh be the root in M that is also an ancestor of v. We assume that v is the left
vertex in a 2-block; the case where v is the right vertex in a 2-block is similar. Then, DM (v) is the
left child of v in M . So, by Lemmas 2.1 and 2.2, −−→DM (v) appears on the left of the path from v to
`JM (v) in M . Consequently, −−→DM (v) cannot pass a vertex on the right boundary of M .

By Lemma 2.6, v is a descendant of the right child of xh in M . So, by Lemma 2.2, −−→DM (v)
appears on the right of the path from v to `IM (xh) in M . Consequently, −−→DM (v) cannot pass a vertex
on the left boundary of M . 2

4 Splitting Multiroot Models

Throughout this section, let i and j be two integers with 1 ≤ i ≤ j ≤ n, let M be a multiroot
model for 〈si, si+1, . . . , sj〉, let v be a splitting vertex v of M , and let `b be the leaf of M at which
−−→
DM (v) ends. Let Ml be the graph obtained from M as follows (cf. Figure 5):

1. Delete every vertex that lies on the right of −−→DM (v). (Comment: If v is the right vertex in a
2-block before this step, then v becomes a new root after this step. Moreover, some nonroot
vertices may have only one child after this step.)

2. If v is the right vertex in a 2-block, then mark v right.

Note thatMl is a multiroot model for 〈si, si+1, . . . , sb〉 if no vertex inMl has only one child. However,
some vertices in Ml may have only one child. So, we call Ml the left root-marked multiroot semi-
model obtained by splitting M along −−→DM (v). Similarly, we can define Mr, the right root-marked
multiroot semi-model obtained by splitting M along −−→DM (v). In detail, Mr is obtained from M as
follows (cf. Figure 5):

1. Delete every vertex that lies on the left of −−→DM (v).

2. If v is the left vertex in a 2-block, then mark v left.

Note that Mr is a multiroot model for 〈sb, sb+1, . . . , sj〉 if no vertex in Mr has only one child.
We can obtain a root-marked multiroot model for 〈si, si+1, . . . , sb〉 (respectively, 〈sb, sb+1, . . . , sj〉)

from Ml (respectively, Mr) by repeating the following step (cf. Figure 6):

• If some vertex u has only one child in Ml (respectively, Mr), then add a new edge from the
parent of u to the child of u and further delete u together with the two edges incident to it.

We call the multiroot model obtained from Ml (respectively, Mr) as above the left (respectively,
right) root-marked multiroot model obtained by splitting M along −−→DM (v), and use M̃l (respectively,
M̃r) to denote it.

10

Ml Mr

left

s1 s2 s3 s4 s5

t8

t3 t4

t9

left

right

right

s5 s6 s7
s8 s9

s10 s11s12
s13 s14

s15 s16 s17 s18

t1 t2

t4 t5 t6

t9 t10 t11 t12
t13 t14

t7

s19 s20 s21

t15

t16

Figure 5: The left and the right root-marked multiroot semi-models obtained by splitting the
multiroot model M in Figure 4 along −−→DM (t4).

Ml

right

Mr

left

s1 s2 s3 s4 s5

t8

t3 t4

left

right

right

s5 s6 s7
s8 s9

s10 s11s12
s13 s14

s15 s16 s17 s18

t1 t2

t5 t6

t9 t10 t11 t12
t13 t14

t7

s19 s20 s21

t15

t16

Figure 6: The left and the right root-marked multiroot models obtained by splitting the multiroot
model M in Figure 4 along −−→DM (t4).

u1

 (u)1IM

u2 u3 u4

v1 v2

b

P (v)1M

u5

u6

P (v)2M

u8

u7

1
 (u)2IM

 (u)1JM
 (u)3IM

 (u)2JM
 (u)4IM

 (u)3JM
b2

 (u)4JM

Figure 7: A sketch of a 2-root model where the bold paths are DM (v1) and DM (v2).

Figure 7 gives a sketch of a 2-root model which may help the reader understand the proofs of
Lemmas 4.1, 4.2, and 4.3. Intuitively speaking, v1 and v2 in the figure correspond to v in the proofs,
u1 through u8 in the figure correspond to u in the proofs, and `b1 and `b2 in the figure correspond
to `b in the proofs.

Lemma 4.1 For each vertex u of M̃l that is not an ancestor of `b, DM (u) = D
M̃l

(u). Similarly,

for each vertex u of M̃r that is not an ancestor of `b, DM (u) = D
M̃r

(u).

Proof. We only prove the first assertion; the other proof is similar. Let u be a vertex of M̃l

that is not an ancestor of `b. If u is a leaf in M̃l, then clearly DM (u) = D
M̃l

(u) = ⊥. So, assume

that u is a nonleaf in M̃l. Then, since u is not an ancestor of `b, neither child of u is on −−→DM (v).
So, LM (u) = L

M̃l
(u) and RM (u) = R

M̃l
(u). Moreover, since −−→DM (v) is a planar path, (u, LM (u))

is a planar edge in M if and only if (u, L
M̃l

(u)) is a planar edge in M̃l. Similarly, (u,RM (u)) is

a planar edge in M if and only if (u,R
M̃l

(u)) is a planar edge in M̃l. Now, if u is a root in M ,
then DM (u) = D

M̃l
(u) because u is marked left (respectively, right) in M if and only u is marked

left (respectively, right) in M̃l. On the other hand, if u is not a root in M , PM (u) may appear on
−−→
DM (v) or not. An obvious but crucial point is that if PM (u) appears on −−→DM (v), then u is the left
child of PM (u) in both M and M̃l. So, no matter whether PM (u) appears on −−→DM (v) or not, one

11

can easily verify that PM (u) = P
M̃l

(u) and that u is the left (respectively, right) child of its parent

in M if and only if u is the left (respectively, right) child of its parent in M̃l. Thus, we also have
DM (u) = D

M̃l
(u) when u is not a root in M . 2

Lemma 4.2 For each vertex u of M that is also a vertex of M̃l,
−−→
DM (u) and −−→D

M̃l
(u) end at the

same leaf. Similarly, for each vertex u of M that is also a vertex of M̃r,
−−→
DM (u) and −−→D

M̃r
(u) end

at the same leaf.

Proof. We only prove the first assertion; the other proof is similar. Recall that `b is the leaf of
M at which −−→DM (v) ends. Let u be a vertex of M that is also a vertex of M̃l. If u is not an ancestor
of `b in M̃l, then by Lemma 4.1, −−→DM (u) and −−→D

M̃l
(u) are identical and hence end at the same leaf.

Moreover, if u is an ancestor of `b in M̃l and is also a descendant of v in M , then −−→DM (u) clearly
ends at `b and so does −−→D

M̃l
(u) (by Fact 3.4) because u is on the right boundary of M̃l. So, assume

that u is an ancestor of `b in M̃l and is also an ancestor of v in M . We distinguish two cases as
follows:

Case 1: v is the right vertex of a 2-block in M . In this case, v is a root in M̃l and is marked
right. Thus, u = v and in turn both −−→DM (u) and −−→D

M̃l
(u) end at `b.

Case 2: v is the left vertex of a 2-block in M . In this case, v does not appear in M̃l but PM (v)
remains in M̃l. We further distinguish three subcases as follows:

Subcase 2.1: u is not a root in M . Then, by Lemmas 2.4 and 2.6, the path from x to v in M is
a right path, where x is the root of M that is also an ancestor of u. So, −−→DM (u) passes v and hence
ends at `b. Moreover, u is not a root in M̃l and appears on the right boundary of M̃l, implying
that −−→D

M̃l
(u) ends at `b by Fact 3.4.

Subcase 2.2: u is a root marked right in M . In this case, DM (u) = RM (u) and D
M̃l

(u) =

R
M̃l

(u). Since DM (u) = RM (u), −−→DM (u) passes v by Lemmas 2.4 and 2.6, implying that −−→DM (u)
ends at `b. On the other hand, since D

M̃l
(u) = R

M̃l
(u) and R

M̃l
(u) is a nonroot vertex on the right

boundary of M̃l,
−−→
D
M̃l

(u) ends at `b by Fact 3.4.
Subcase 2.3: u is a root marked left in M . In this case, D

M̃l
(u) is the same as DM (u) and is

not an ancestor of `b in M̃l. Thus, by Lemma 4.1, −−→D
M̃l

(u) and −−→DM (u) end at the same leaf. 2

Lemma 4.3 For each vertex u of M̃l that is not an ancestor of `b, UM (u) = U
M̃l

(u). Similarly,

for each vertex u of M̃r that is not an ancestor of `b, UM (u) = U
M̃r

(u).

Proof. We only prove the first assertion; the other proof is similar. Let u be a vertex of M̃l

that is not an ancestor of `b. If P
M̃l

(u) exists and is not an ancestor of `b, then by Lemma 4.1,

UM (u) = U
M̃l

(u). Moreover, if u is a root in M̃l, then u is also a root in M (because u cannot be

v), implying that UM (u) = U
M̃l

(u) = ⊥. So, assume that u is not a root in M̃l and P
M̃l

(u) is an

ancestor of `b. Then, since u is not an ancestor of `b, u is the left child of P
M̃l

(u) in both M̃l and
M . We distinguish three cases as follows:

Case 1: P
M̃l

(u) is not a root in M̃l. In this case, P
M̃l

(u) is a nonroot vertex on the right

boundary of M̃l. Thus, −−→D
M̃l

(P
M̃l

(u)) ends at `b by Fact 3.4. So, by Lemma 4.2, −−→DM (P
M̃l

(u))

12

ends at `b, too. Now, since u is not an ancestor of `b in both M̃l and M , D
M̃l

(P
M̃l

(u)) 6= u and
DM (P

M̃l
(u)) 6= u. Consequently, U

M̃l
(u) = ⊥ and UM (u) = ⊥.

Case 2: P
M̃l

(u) is a root marked right in M̃l. In this case, clearly U
M̃l

(u) = ⊥. Moreover,

either P
M̃l

(u) = v, or −−→DM (P
M̃l

(u)) passes v by Lemmas 2.4 and 2.6. In either case, −−→DM (P
M̃l

(u))
ends at `b, implying that UM (u) = ⊥.

Case 3: P
M̃l

(u) is a root marked left in M̃l. In this case, clearly U
M̃l

(u) = P
M̃l

(u) = PM (u) =
UM (u). 2

Lemma 4.4 For every leaf `h 6∈ {`i, `b} in M̃l,
←−
UM (`h) = ←−−U

M̃l
(`h). Similarly, for every leaf

`h 6∈ {`b, `j} in M̃r,
←−
UM (`h) =←−−U

M̃r
(`h).

Proof. We only prove the first assertion; the other proof is similar. Consider a leaf `h 6∈ {`i, `b}
in M̃l. By Fact 3.2, there is a vertex u in M̃l with U

M̃l
(u) = ⊥ such that ←−−U

M̃l
(`h) = −−→D

M̃l
(u). If u

were an ancestor of `b in M̃l, then −−→D
M̃l

(u) would end at `i or `b by Fact 3.4, no matter whether

u is a root in M̃l or not. Thus, u is not an ancestor of `b in M̃l. Consequently, by Lemma 4.3,
←−
UM (`h) =←−−U

M̃l
(`h). 2

For a multiroot model N , we use c(N) to denote the total cost of edges in N . Similarly, for a
path P in N , we use c(P) to denote the total cost of edges on P . The following lemma will be very
useful:

Lemma 4.5 c(M̃l) + c(M̃r) ≤ c(M) + c(←−UM (`b)). Moreover, the hamming distance between sb and
s(v) does not exceed c(←−UM (`b)), where s(v) is the string assigned to v in M .

Proof. Recall that −−→DM (v) starts at v and ends at `b. So, by the triangle inequality, the
hamming distance between sb and s(v) does not exceed c(−−→DM (v)). Moreover, since −−→DM (v) ends at
`b,
−−→
DM (v) is a subpath of ←−UM (`b) by Fact 3.2, implying that c(−−→DM (v)) ≤ c(←−UM (`b)). Thus, the

second assertion in the lemma clearly holds.
To prove the first assertion, first note that c(Ml) + c(Mr) = c(M) + c(−−→DM (v)). Moreover, by

the triangle inequality, c(M̃l) ≤ c(Ml) and c(M̃r) ≤ c(Mr). Now, by the last inequality in the last
paragraph, the first assertion in the lemma also holds. 2

A separator of M is a set Γ of leaves such that for every 2-block in M consisting of two vertices
u1 and u2, at least one of −−→DM (u1) and −−→DM (u2) ends at a leaf in Γ. For example, for the duplication
model in Figure 2, {`2, `3, `5, `7, `9, `10, `12, `14, `15, `17} is a separator. Moreover, for the multiroot
model in Figure 4, {`1, `6, `8, `9, `11, `13, `14, `16, `18} is a separator. Note that the set of all leaves
of M is a trivial separator of M . However, what we want is a separator Γ of M such that the total
cost of the paths in {←−UM (v) | v ∈ Γ} is small.

By Lemma 4.2, we have the following corollary immediately:

Corollary 4.6 For every separator Γ of M and for every splitting vertex v of M , Γ1 (respectively,
Γ2) is a separator of the left (respectively, right) root-marked multiroot model obtained by splitting
M along −−→DM (v), where Γ1 (respectively, Γ2) is the set of those leaves in Γ that are also leaves of
M̃l (respectively, M̃r).

13

Lemma 4.7 Suppose that M has two consecutive roots x1 and x2 such that x1 crosses x2 in M and
the witness block for the (x1, x2)-crossing in M contains neither x1 nor x2. Let Γ be a separator of
M . Then, there is a splitting vertex u such that −−→DM (u) ends at a leaf in Γ.

Proof. Let u1 and u2 be the left and the right vertex in the witness block for the (x1, x2)-crossing
in M , respectively. Since Γ is a separator, at least one of −−→DM (u1) and −−→DM (u2) ends at a leaf in Γ.
If −−→DM (u1) ends at a leaf in Γ, then u1 is a desired splitting vertex. Similarly, if −−→DM (u2) ends at a
leaf in Γ, then u2 is a desired splitting vertex. 2

Lemma 4.8 Suppose that M has at least four roots and every two consecutive roots in M cross
each other. Let Γ be a separator of M . Then, there is a splitting vertex u such that −−→DM (u) ends at
a leaf in Γ.

Proof. Let x1, . . . , xk be the roots in M . Let u2 and u3 be the left and the right vertex in the
witness block for the (x2, x3)-crossing in M , respectively. Since Γ is a separator, at least one of the
following cases occurs:

Case 1: −−→DM (u2) ends at a leaf in Γ. If u2 6= x2, then u2 is a desired splitting vertex. If u2 = x2,
consider the right vertex y in the witness block for the (x1, x2)-crossing in M . Obviously, y 6= x2

and DM (x2) = LM (x2). Thus, applying Lemma 2.6 to the (x1, x2)-crossing, we see that −−→DM (x2)
must pass y by Lemma 2.4. Hence, −−→DM (y) ends at a leaf in Γ. Consequently, y is a desired splitting
vertex.

Case 2: −−→DM (u3) ends at a leaf in Γ. If u3 6= x3, then u3 is a desired splitting vertex. If u3 = x3,
consider the left vertex y in the witness block for the (x3, x4)-crossing in M . Obviously, y 6= x3 and
DM (x3) = LM (x3). Thus, applying Lemma 2.6 to the (x3, x4)-crossing, we see that −−→DM (x3) must
pass y by Lemma 2.4. Hence, −−→DM (y) ends at a leaf in Γ. Consequently, y is a desired splitting
vertex. 2

For a constant δ, a δ-separator of M is a separator Γ of M such that the total cost of the paths
in {←−UM (v) | v ∈ Γ} is at most δ · c(M).

5 The Existence of 0.75-Separators

For convenience, we represent each bijection G from a set Y to a set Z as a set consisting of all
pairs (y,G(y)) with y ∈ Y . Moreover, if x is a root but not a leaf in a root-marked multiroot model
M , then omitting x from M means the operation of modifying M as follows:

1. Delete x and the two edges incident to it from M .

2. If LM (x) is the right vertex of some 2-block in M , then mark LM (x) right; otherwise, mark
LM (x) left.

3. If RM (x) is the left vertex of some 2-block in M , then mark RM (x) left; otherwise, mark
RM (x) right.

Lemma 5.1 For every two integers i and j with 1 ≤ i ≤ j ≤ n and for every root-marked model
M for 〈si, si+1, . . . , sj〉 with one or two roots, we can compute three disjoint subsets X, Y , and Z

of {i, i+ 1, . . . , j} and a bijection G : Y → Z satisfying the following conditions:

14

1. Both i ∈ X and j ∈ X.

2. For every multiset L that can be obtained from X ∪ Y ∪ Z by adding either y or G(y) for
every y ∈ Y , if we sort L in nondecreasing order, then for every 2-block in M consisting of
two vertices v1 and v2, there are two integers b1 and b2 of different parity such that −−→DM (v1)
ends at `k1 and −−→DM (v2) ends at `k2, where k1 and k2 are the b1th and the b2th integer in L,
respectively.

Proof. By induction on the total number of vertices and edges in M . In the base case, i = j and
there is only one vertex in M ; we just let X = {i}, Y = Z = ∅, and G = ∅ which clearly satisfy
the conditions in the lemma. So, suppose that M has two or more vertices. We distinguish three
cases as follows.

Case 1: M has only one root. Let u be the root of M . Consider the root-marked 2-root model N
for 〈si, si+1, . . . , sj〉 obtained from M by omitting u. By the inductive hypothesis, we can compute
three subsets XN , YN , ZN and a bijection GN : YN → ZN for N . We let X = XN , Y = YN ,
Z = ZN , and G = GN . Obviously, X, Y , Z, and G satisfy the conditions in the lemma.

Case 2: M has two roots but they together do not form a 2-block in M . Let v1 and v2 be the
left and the right root of M , respectively. One of the following three subcases must occur:

Subcase 2.1: v1 does not cross v2 in M . In this subcase, there is an integer k ∈ {i, i+ 1, . . . , j−
1} such that `i through `k are the leaf descendants of v1 in M while `k+1 through `j are the
leaf descendants of v2 in M . Let M1 be the root-marked model for 〈si, si+1, . . . , sk〉 obtained
from M by deleting the descendants of v2 in M . Similarly, let M2 be the root-marked model for
〈sk+1, sk+2, . . . , sj〉 obtained from M by deleting the descendants of v1 in M . For each h ∈ {1, 2},
let Xh, Yh, Zh, and Gh be the subsets and the function computed for Mh. Obviously, X = X1∪X2,
Y = Y1 ∪ Y2, Z = Z1 ∪ Z2, and G = G1 ∪G2 satisfy the conditions in the lemma.

Subcase 2.2: There is a 2-block in M consisting of v1 and a vertex u2 6= v2 such that u2 is a
descendant of v2 in M . Let M1 and M2 be the left and the right root-marked multiroot model
obtained by splitting M along −−→DM (u2), respectively. For each h ∈ {1, 2}, let Xh, Yh, Zh, and Gh
be the subsets and the function computed for Mh. By Lemma 4.2, X = X1 ∪ X2, Y = Y1 ∪ Y2,
Z = Z1 ∪ Z2, and G = G1 ∪G2 satisfy the conditions in the lemma.

Subcase 2.3: v1 crosses v2 in M but no 2-block in M contains v1. Let u1 be the left vertex in
the witness block for (v1, v2)-crossing in M . Let M1 and M2 be the left and the right root-marked
multiroot model obtained by splitting M along −−→DM (u1), respectively. For each h ∈ {1, 2}, let Xh,
Yh, Zh, and Gh be the subsets and the function computed for Mh. By Lemma 4.2, X = X1 ∪X2,
Y = Y1 ∪ Y2, Z = Z1 ∪ Z2, and G = G1 ∪G2 satisfy the conditions in the lemma.

Case 3: M has two roots and they together form a 2-block in M . Let v1 and v2 be the left and
the right root of M , respectively. Let N be the root-marked multiroot model obtained from M by
omitting both v1 and v2. Let u1 and u3 be the left and the right child of v1, respectively. Let u2

and u4 be the left and the right child of v2, respectively. One of the following five subcases must
occur:

Subcase 3.1: u2 does not cross u3 in N . In this subcase, there is an integer k such that `i,
`i+1, . . . , `k are the leaf descendants of u1 or u2 in N . Let N1 be the root-marked 2-root model for
〈si, si+1, . . . , sk〉 obtained from N by deleting all vertices that are descendants of u3 or u4 in N . Let
N2 be the root-marked 2-root model for 〈sk+1, sk+2, . . . , sj〉 obtained from N by deleting all vertices

15

that are descendants of u1 or u2 in N . For each h ∈ {1, 2}, let Xh, Yh, Zh, and Gh be the subsets and
the function computed for Nh. If

∑2
h=1(|Xh|+|Yh|∗3) is even, then let X =

⋃2
h=1Xh, Y =

⋃2
h=1 Yh,

Z =
⋃2
h=1 Zh, and G =

⋃2
h=1Gh; otherwise, let X =

⋃2
h=1Xh − {k, k + 1}, Y =

⋃2
h=1 Yh

⋃
{k},

Z =
⋃2
h=1 Zh

⋃
{k + 1}, and G =

⋃2
h=1Gh

⋃
{(k, k + 1)}. Obviously, X, Y , Z, and G satisfy the

conditions in the lemma.
Subcase 3.2: u2 crosses u3 in N , u1 does not cross u2 in N , and u3 does not cross u4 in N . In this

subcase, there are two distinct integers k1 and k2 such that the leaf descendants of u1 in N are `i,
`i+1, . . . , `k1 and the leaf descendants of u4 in N are `k2 , `k2+1, . . . , `j . Let N1 be the root-marked
model for 〈si, si+1, . . . , sk1〉 obtained from N by deleting all vertices that are not descendants of
u1 in N . Let N2 be the root-marked 2-root model for 〈sk1+1, sk1+2, . . . , sk2−1〉 obtained from N by
deleting all vertices that are descendants of u1 or u4 in N . Let N3 be the root-marked model for
〈sk2 , sk2+1, . . . , sj〉 obtained from N by deleting all vertices that are not descendants of u4 in N .
For each h ∈ {1, 2, 3}, let Xh, Yh, Zh, and Gh be the subsets and the function computed for Nh. If∑3
h=1(|Xh|+|Yh|∗3) is even, then let X =

⋃3
h=1Xh, Y =

⋃3
h=1 Yh, Z =

⋃3
h=1 Zh, and G =

⋃3
h=1Gh;

otherwise, let X =
⋃3
h=1Xh−{k1 +1, k2−1}, Y =

⋃3
h=1 Yh

⋃
{k1 +1}, Z =

⋃3
h=1 Zh

⋃
{k2−1}, and

G =
⋃3
h=1Gh

⋃
{(k1 + 1, k2 − 1)}. Obviously, X, Y , Z, and G satisfy the conditions in the lemma.

Subcase 3.3: u1 crosses u2 in N and u2 crosses u3 but u3 does not cross u4 in N . In this
subcase, there is an integer k2 such that `k2 , `k2+1, . . . , `j are the leaf descendants of u4 in N . Let
N ′ be the multiroot model for 〈si, si+1, . . . , sk2−1〉 obtained from N by deleting the descendants of
u4 in N . By Lemma 3.6, u2 has a descendant x2 in N ′ that is a splitting vertex of N ′. Let `k1 be
the leaf at which −−→DN ′(x2) ends. Let N1 and N2 be the left and the right root-marked multiroot
model obtained by splitting N ′ along −−→DN ′(x2). Moreover, let N3 be the root-marked model for
〈sk2 , sk2+1, . . . , sj〉 obtained from N by deleting all vertices that are not descendants of u4 in N .
For each h ∈ {1, 2, 3}, let Xh, Yh, Zh, and Gh be the subsets and the function computed for Nh. If∑3
h=1(|Xh|+|Yh|∗3) is even, then let X =

⋃3
h=1Xh, Y =

⋃3
h=1 Yh, Z =

⋃3
h=1 Zh, and G =

⋃3
h=1Gh;

otherwise, let X =
⋃3
h=1Xh − {k1, k2 − 1}, Y =

⋃3
h=1 Yh

⋃
{k1}, Z =

⋃3
h=1 Zh

⋃
{k2 − 1}, and

G =
⋃3
h=1Gh

⋃
{(k1, k2− 1)}. By Lemma 4.2, X, Y , Z, and G satisfy the conditions in the lemma.

Subcase 3.4: u2 crosses u3 in N and u3 crosses u4 but u1 does not cross u2 in N . This subcase
is similar to Subcase 3.3.

Subcase 3.5: For each h ∈ {1, 2, 3}, uh crosses uh+1 in N . By Lemma 3.6, u2 has a descendant x2

in N that is a splitting vertex of N . Let `k2 be the leaf at which −−→DN (x2) ends. Let N1 and N ′ be the
left and the right root-marked multiroot model obtained by splitting N along −−→DN (x2). Note that
N ′ has three roots, u3 is the middle root of N ′, and each pair of consecutive roots cross in N ′. So,
by Lemma 3.6, u3 has a descendant x3 in N ′ that is a splitting vertex of N ′. Let `k3 be the leaf at
which −−→DN ′(x3) ends. Let N2 and N3 be the left and the right root-marked multiroot model obtained
by splitting N ′ along −−→DN ′(x3). For each h ∈ {1, 2, 3}, let Xh, Yh, Zh, and Gh be the subsets and the
function computed for Nh. If

∑3
h=1(|Xh|+ |Yh| ∗ 3) is even, then let X =

⋃3
h=1Xh, Y =

⋃3
h=1 Yh,

Z =
⋃3
h=1 Zh, and G =

⋃3
h=1Gh; otherwise, let X =

⋃3
h=1Xh − {k2, k3}, Y =

⋃3
h=1 Yh

⋃
{k2},

Z =
⋃3
h=1 Zh

⋃
{k3}, and G =

⋃3
h=1Gh

⋃
{(k2, k3)}. By Lemma 4.2, X, Y , Z, and G satisfy the

conditions in the lemma. 2

For example, for the duplication model M in Figure 2, the sets X, Y , Z, and the bijection G

constructed in the proof of Lemma 5.1 are {1, 2, 5, 6, 7, 9, 11, 12, 15, . . . , 18}, {3, 8, 10}, {4, 13, 14},
and {(3, 4), (8, 14), (10, 13)}, respectively.

16

Lemma 5.2 Every duplication model M for 〈s1, s2, . . . , sn〉 has a 0.75-separator.

Proof. Consider the three subsets X, Y , Z and the bijection G obtained by applying Lemma 5.1
with i = 1, j = 1, and the root of M marked left. We construct a multiset L as follows:

1. Initialize L = X ∪ Y ∪ Z.

2. For each h ∈ Y , if c(←−UM (`h)) ≤ c(←−UM (`G(h))), then we add h to L; otherwise, we add G(h)
to L. (Comment: We call each integer added to L in this step a duplicated integer.)

By Fact 3.5, the total cost of paths in the set {←−UM (`h) | h ∈ X ∪ Y ∪ Z} does not exceed c(M).
Moreover, the total cost of paths in the set {←−UM (`h) | h is a duplicated integer} is at most half
the total cost of paths in the set {←−UM (`h) | h ∈ Y ∪ Z}. Thus, the total cost of the paths in the
multiset {←−UM (`h) | h ∈ L} is at most 1.5 · c(M).

We are now ready to construct Γ from L as follows:

1. Sort the integers in L in nondecreasing order.

2. Let L1 (respectively, L2) be the set of integers that appear in odd (respectively, even) positions
in L.

3. If the total cost of paths in the set {←−UM (`h) | h ∈ L1} does not exceed the total cost of paths
in the set {←−UM (`h) | h ∈ L2}, then set Γ = {`h | h ∈ L1}; otherwise, set Γ = {`h | h ∈ L2}.

Clearly, Γ is a 0.75-separator of M . 2

For example, if the cost of every edge is 1 in the duplication model M in Figure 2, then the
0.75-separator constructed in the proof of Lemma 5.2 is {`2, `3, `5, `7, `9, `10, `12, `14, `15, `17}.

6 The Component Tree of a Multiroot Model

For each vertex v of M , let s(v) denote the string assigned to v in M . Moreover, for a list L of
vertices in M , let s(L) denote the list of strings assigned to the vertices in L. Furthermore, for two
strings s′ and s′′, let d(s′, s′′) denote the hamming distance between them.

Let M be a root-marked multiroot model with at most five roots for 〈si, si+1, . . . , sj〉. Let
Γ be a separator of M . We will use Γ to decompose M into components. Each component N
will be a root-marked multiroot model with at most five roots for a list 〈si′ , si′+1, . . . , sj′〉 with
i ≤ i′ ≤ j′ ≤ j. We call the triple (s(L), i′, j′) the signature of N , where L is the list of roots in
N (ordered from left to right). If j′ > i′, then N will be decomposed into smaller components. In
summary, we will start with M and obtain a lot of components. These components will then be
organized into a tree D(M,Γ). Each node of D(M,Γ) corresponds to a component N , is labeled
with the signature of N , and is given a type which roughly shows how N is obtained. We call
D(M,Γ) the component tree of M associated with Γ (see Figure 8 for an example). We construct
D(M,Γ) by induction on the total number of vertices and edges in M as follows.

In the base case, j = i and M has only one vertex; we let D(M,Γ) have only one node, label
the node with the signature of M , and call it a type-0 node.

17

< >,1,18 1

< , >,1,18 3

< >,1,51 < , >,5,18 4.2.1

< , >,1,5 4.2.1

< >,1,2 1 < , , >,3,5 2

< , >,1,2 2 < , >,4,5 2

< , , , >,5,18 3

< , , >,5,144.2.2 <t13,t17>,14,18 3

< , , , , >,5,142

< , >,5,94.1.2 < , , >,10,14 2

< , , >,5,92

< , >,5,84.2.1

< , , , >,5,82

< , , >,6,82

< , >,7,82

< , >,10,13 4.2.1

< , , , >,10,132

< , , >,11,132

< , >,12,132

< , >,14,17 4.2.1

< , , , >,14,172

< , , >,15,172

< , >,16,172

< >,17,18 1

< , >,17,182

t1

s9

t2 t6

t2

t3 t4

t15

s1 s2

s1
s2

s3

s4 s5

s5

s6

s7 s8

s10

s11

s12 s13

s14

s14 s17 s18

s15

s16 s17

s3 s4 s5

s4 s5

s5 s6 s7
s8

s6 s7
s8

s7
s8

s9

s10 s11 s12 s13

s11 s12 s13

s12 s13

s14
s15 s16

s17

s15 s16

s16

s17

s17

s17 s18

t17

t5 t6

t9 t7 t8 t17

t9 t7 t8

t9 t16 t11 t12 s14

t9 t16

t9 t10

t9 t10

t11 t12

t11 t12 s14

t13 t14

Figure 8: The component tree of the duplication model M in Figure 2 associated with Γ =
{`2, `3, `5, `7, `9, `10, `12, `14, `15, `17}, where the type of each node is given near the node, the weight
of each edge is omitted, and the label (〈si〉, i, i) of each leaf is simplified to si.

Suppose that M has two or more vertices. Then, depending on how many roots are in M and
whether they cross each other in M , we distinguish four cases. In each case, we first create a root
node α for D(M,Γ) and label it with the signature of M . Then, we proceed to grow D(M,Γ) in
each case as follows:

Case 1: M has only one root. Let u be the root of M . Consider the root-marked 2-root model
N for 〈si, si+1, . . . , sj〉 obtained from M by omitting its root. We construct D(N,Γ) recursively,
then let the root of D(N,Γ) be the unique child of α, and further let the weight of the edge between
α and its child be d (s(u), s(LM (u))) + d (s(u), s(RM (u))). We also call α a type-1 node.

Case 2: M has two or more roots and there are two consecutive roots which do not cross
each other in M . Let v1, . . . , vk be the roots in M (ordered from left to right). Let h be the
smallest integer in {1, . . . , k − 1} such that vh does not cross vh+1 in M . There is an integer
b ∈ {i, i+ 1, . . . , j−1} such that `i through `b are the leaf descendants of v1 through vh in M while
`b+1 through `j are the leaf descendants of vh+1 through vk in M . Let M1 be the root-marked
multiroot model for 〈si, si+1, . . . , sb〉 obtained from M by deleting the descendants of vh+1 through
vk in M . Similarly, let M2 be the root-marked model for 〈sb+1, sb+2, . . . , sj〉 obtained from M by
deleting the descendants of v1 through vh in M . For each h ∈ {1, 2}, let Γh be the set of those
v ∈ Γ such that v is also a leaf in Mh. We construct D(M1,Γ1) and D(M2,Γ2) recursively, then let
the root of D(M1,Γ1) be the left child of α while let the root of D(M2,Γ2) be the right child of α,
and further let the weight of each edge between α and its child be 0. We also call α a type-2 node.

Case 3: M has two or more roots, every two consecutive roots in M cross each other, and there
is a splitting vertex v in M such that −−→DM (v) ends at a leaf vertex in Γ. Let v be the leftmost
splitting vertex in M such that −−→DM (v) ends at a leaf in Γ. Let `b be the leaf at which −−→DM (v)
ends. Let M̃l and M̃r be the left and the right root-marked multiroot models obtained by splitting
M along −−→DM (v), respectively. We call −−→DM (v) a splitting path. Let Γl (respectively, Γr) be the set
of those v ∈ Γ such that v is also a leaf in M̃l (respectively, M̃r). We construct D(M̃l,Γl) and

18

D(M̃r,Γr) recursively, then let the root of D(M̃l,Γl) be the left child of α while let the root of
D(M̃r,Γr) be the right child of α, and further let the weight of each edge between α and its child
be 1

2d(sb, s(v)). Note that v is either the rightmost root in M̃l or the leftmost root in M̃r. In the
former case, we call α a type-3.1 node while in the latter case, we call α a type-3.2 node.

Case 4: M has two or more roots, every two consecutive roots in M cross each other, and there
is no splitting vertex v in M such that −−→DM (v) ends at a leaf in Γ. By Lemma 4.8, M has either
two or three roots. We distinguish two subcases as follows:

Subcase 4.1: M has a root contained in no 2-block in M . In this subcase, we can use Lemma 4.7
to show that exactly one root u in M is not contained in a 2-block in M . Consider the root-marked
multiroot model N for 〈si, si+1, . . . , sj〉 obtained from M by omitting u. We construct D(N,Γ)
recursively, then let the root of D(N,Γ) be the unique child of α, and further let the weight of the
edge between α and its child be d (s(u), s(LM (u)))+d (s(u), s(RM (u))). We also call α a type-4.1.h
node if u is the hth leftmost root in M . Note that 1 ≤ h ≤ 3.

Subcase 4.2: Every root in M is contained in a 2-block in M . In this subcase, there is a unique
pair (v1, v2) of consecutive roots in M such that some 2-block in M contains both v1 and v2. Con-
sider the root-marked multiroot model N for 〈si, si+1, . . . , sj〉 obtained from M by omitting v1 and
v2. We construct D(N,Γ) recursively, then let the root of D(N,Γ) be the unique child of α, and fur-
ther let the weight of the edge between α and its child be

∑2
h=1 (d (s(vh), s(LM (vh))) + d (s(vh), s(RM (vh)))).

We also call α a type-4.2.h node if v1 is the hth leftmost root in M . Note that 1 ≤ h ≤ 2.

Fact 6.1 The component tree D(M,Γ) of M is unique.

Proof. Immediate from the construction of D(M,Γ) from M . 2

We use c(D(M,Γ)) to denote the total weight of edges in D(M,Γ).

Lemma 6.2 c(D(M,Γ)) ≤ c(M) + 2
∑
u∈Γ−{`i,`j} c(

←−
UM (u)).

Proof. By induction on the total number of vertices and edges in M . The proof is in parallel
with the construction of D(M,Γ). So, we will inherit the notations used in the construction.

The base case corresponds to the base case in the construction of D(M,Γ). In this case, the
lemma is clearly true because c(M) = 0 and c(D(M,Γ)) = 0. So, suppose that M has at least two
vertices. Then, the root α of D(M,Γ) may have one or two children.

Case I: α has only one child in D(M,Γ). This case corresponds to Case 1, 4.1, or 4.2 in the
construction of D(M,Γ). By inspecting these cases, one can easily see that c(M) = c(N) + w and
c(D(M,Γ)) = c(D(N,Γ)) +w, where w is the weight assigned to the edge between α and its unique
child in D(M,Γ). So, by the inductive hypothesis,

c(D(M,Γ)) = w+c(D(N,Γ)) ≤ w+c(N)+2 ·
∑

u∈Γ−{`i,`j}
c(←−UN (u)) = c(M)+2 ·

∑
u∈Γ−{`i,`j}

c(←−UN (u)).

For each u ∈ Γ − {`i, `j}, c(
←−
UN (u)) ≤ c(←−UM (u)) because ←−UN (u) is clearly a subpath of ←−UM (u).

Thus, c(D(M,Γ)) ≤ c(M) + 2
∑
u∈Γ−{`i,`j} c(

←−
UM (u)).

Case II: α has two children in D(M,Γ). This case corresponds to Case 2 or 3 in the construc-
tion of D(M,Γ). By inspecting Case 2, c(D(M,Γ)) = c(D(M1,Γ1)) + c(D(M2,Γ2) ≤ c(M1) +
2
∑
u∈Γ1−{`i,`b} c(

←−−
UM1(u)) + c(M2) + 2

∑
u∈Γ2−{`b+1,`j} c(

←−−
UM2(u)) ≤ c(M) + 2

∑
u∈Γ−{`i,`j} c(

←−
UM (u)),

19

s1 s2 s3 s4 s5 s6 s7
s8

s9 s10 s11 s12
s13 s14

s15 s16 s17 s18

t1

t2

t3 t4

t5 t6

t7 t8

t9 t10 t11
t12 t13 t14

t15
t16

t17

Figure 9: The new duplication model M ′ constructed from the component tree in Figure 8.

where the first inequality follows from the inductive hypothesis and the second follows from the
fact that Γ = Γ1∪Γ2, Γ1∩Γ2 = ∅, and c(←−−UMh

(u)) = c(←−UM (u)) for each h ∈ {1, 2} and each u ∈ Γh.
Next consider Case 3. Obviously, c(D(M,Γ)) = d(sb, s(v)) + c(D(M̃l,Γl)) + c(D(M̃r,Γr). So,

by the inductive hypothesis, c(D(M,Γ)) ≤ d(sb, s(v))+ c(M̃l)+2
∑
u∈Γl−{`i,`b} c(

←−−
U
M̃l

(u))+ c(M̃r)+

2
∑
u∈Γr−{`b,`j} c(

←−−
U
M̃r

(u)). Moreover, by Lemma 4.4 and the fact that `b ∈ Γ− {`i, `j}, we have∑
u∈Γl−{`i,`b}

c(←−−U
M̃l

(u)) +
∑

u∈Γr−{`b,`j}
c(←−−U

M̃r
(u)) =

∑
u∈Γ−{`i,`j}

c(←−UM (u))− c(←−UM (`b)).

Hence, by Lemma 4.5, c(D(M,Γ)) ≤ c(M) + 2
∑
u∈Γ−{`i,`j} c(

←−
UM (u)). 2

Lemma 6.2 implies the following corollary immediately:

Corollary 6.3 If Γ is a 0.75-separator of M , then c(D(M,Γ)) ≤ 2.5 · c(M).

7 Constructing Models from Component Trees

We inherit the notations in Sections 2 and 6. Recall that the label of each node β in D(M,Γ) is a
triple (S, i, j), where S is an ordered nonempty list of at most five (possibly not distinct) strings
and i and j are two integers with 1 ≤ i ≤ j ≤ n. For convenience, we call S the string list of β.

We show how to use D(M,Γ) to construct a duplication model M ′ for 〈s1, s2, . . . , sn〉 such that
c(M ′) ≤ c(D(M,Γ)) (see Figure 9 for an example). In the construction of M ′, we will only use the
label and the type of each node in D(M,Γ), i.e., we will not look at the topology of M and will
not look at Γ, either.

The construction of M ′ indeed involves constructing a multiroot model M ′(β) for each node β
of D(M,Γ). We will maintain the invariant that M ′(β) has |S| roots labeled by the strings in S,
where S is the string list of β.

We next detail the construction of M ′. We construct M ′ by processing the nodes of D(M,Γ)
in a bottom-up fashion. We first process each leaf β in D(M,Γ) by constructing M ′(β) as follows:
Create a new vertex and assign it the unique string in the string list of β.

Now, consider the processing of a nonleaf β in D(M,Γ). Let γ1, . . . , γh be the children of
β in D(M,Γ), where the ordering is from left to right. Suppose that M ′(γ1), . . . , M ′(γh) have
been constructed by processing γ1, . . . , γh. The processing of β will depend on its type. Since
the possible types of β one-to-one correspond to the cases in Section 6, we construct M ′(β) by
distinguishing several cases as follows:

20

Type 1 (cf. Case 1 in Section 6): We create a new root for M ′(β), assign it the unique string
in the string list of β, and connect it to the roots of M ′(γ1) by two new edges. Note that the total
cost of the two new edges is exactly the weight of the edge between β and γ1 in D(M,Γ).

Type 2 (cf. Case 2 in Section 6): We just put M ′(γ1) on the left of M ′(γ2).
Type 3.1 (cf. Case 3 in Section 6): Let u be the parent of the leftmost leaf in M ′(γ2). We

connect M ′(γ1) and M ′(γ2) by deleting the left child of u in M ′(γ2) and then making the rightmost
root of M ′(γ1) be the left child of u. Note that the cost of the new edge is exactly the total weight
of the edges between β and its children in D(M,Γ).

Type 3.2 (cf. Case 3 in Section 6): Let u be the parent of the rightmost leaf in M ′(γ1). We
connect M ′(γ1) and M ′(γ2) by deleting the right child of u in M ′(γ1) and then making the leftmost
root of M ′(γ2) be the right child of u. Note that the cost of the new edge is exactly the total weight
of the edges between β and its children in D(M,Γ).

Type 4.1.h (cf. Subcase 4.1 in Section 6): We create a new root for M ′(β), assign it the hth
string in the string list of β, and connect it to the hth and the (h + 1)st roots of M ′(γ1) by two
new edges. Note that the total cost of the two new edges is exactly the weight of the edge between
β and γ1 in D(M,Γ).

Type 4.2.h (cf. Subcase 4.2 in Section 6): We create two new roots v1 and v2 for M ′(β), assign
v1 the hth string in the string list of β, assign v2 the (h+ 1)st string in the string list of β, connect
v1 to the hth and the (h+ 2)nd roots of M ′(γ1) by two new edges, and connect v2 to the (h+ 1)st
and the (h+ 3)rd roots of M ′(γ1) by two new edges. Note that the total cost of the two new edges
is exactly the weight of the edge between β and γ1 in D(M,Γ).

Lemma 7.1 A new duplication model M ′ for 〈s1, s2, . . . , sn〉 can be constructed from D(M,Γ) as
above in O(n) time. Moreover, c(M ′) ≤ c(D(M,Γ)). Consequently, if Γ is a 0.75-separator of M ,
then c(M ′) ≤ 2.5 · c(M).

Proof. Immediate from the above construction of M ′ and Lemma 6.2. 2

8 Abstract Component Trees

An obvious but very crucial property in the construction of M ′ from D(M,Γ) given in Section 7
is that the construction of M ′ only depends on the label and the type of each node in D(M,Γ).
This motivates us to define abstract component trees (independently of duplication models) for
〈s1, . . . , sn〉 in which each node will have a label and a type just like a node in D(M,Γ).

In order to define abstract component trees for 〈s1, . . . , sn〉, we need to define several other
terms first. Let S be a set of strings such that {s1, s2, . . . , sn} ⊆ S. An S-quadruple is a quadruple
(L, i, j, t), where L is a nonempty list of at most five strings in S, i and j are two integers with
1 ≤ i ≤ j ≤ n and j − i+ 1 ≥ |L|, and t satisfies the following conditions:

• t ∈ {0, 1, 2, 3.1, 3.2, 4.1.1, 4.1.2, 4.1.3, 4.2.1, 4.2.2}.

• If t = 0, then i = j and L = {si}.

• If t = 1, then |L| = 1.

21

• If t ∈ {2, 3.1, 3.2}, then 2 ≤ |L| ≤ 5.

• If t ∈ {4.1.1, 4.1.2, 4.1.3, 4.2.1, 4.2.2}, then 2 ≤ |L| ≤ 3.

We call t the type of the S-quadruple (L, i, j, t).
For a list L and an integer k ≥ 1, let L[k] denote the kth element in L. Moreover, for two

lists L1 and L2, let L1 · L2 denote the concatenation of L1 and L2. That is, L[h] = L1[h] for each
h ∈ {1, . . . , |L1|} and L[|L1|+ h] = L2[h] for each h ∈ {1, . . . , |L2|}.

We define abstract component trees for S-quadruples (L, i, j, t) by induction on |L|+ j − i. In
the base case where |L|+ j − i = 1, an abstract component tree for (L, i, j, t) is a rooted tree with
only one node (the root) which is labeled with (L, i, j) and is given a type of t.

Consider the case where |L| + j − i ≥ 2. An abstract component tree for (L, i, j, t) is a rooted
ordered tree D such that the root α is labeled with (L, i, j) and is given a type of t, and the following
conditions are satisfied:

• If t = 1, then α has only one child β in D, the subtree rooted at β in D is an abstract
component tree for some S-quadruple (L′, i, j, t′) with |L′| = 2, and the edge (α, β) is given a
weight of d(L[1],L′[1]) + d(L[1],L′[2]).

• If t = 2, then α has two children β1 and β2 in D, the subtree rooted at β1 in D is an abstract
component tree for some S-quadruple (L1, i, k, t1) with k < j, the subtree rooted at β2 in D
is an abstract component tree for some S-quadruple (L2, k + 1, j, t2), L = L1 · L2, and both
edges (α, β1) and (α, β2) are given a weight of 0.

• If t = 3.1, then α has two children β1 and β2 in D, the subtree rooted at β1 in D is an abstract
component tree for some S-quadruple (L1, i, k, t1) with i < k < j, the subtree rooted at β2

in D is an abstract component tree for some S-quadruple (L2, k, j, t2), L = L′1 · L2, and both
edges (α, β1) and (α, β2) are given a weight of 1

2d(sk,L1[|L1|]), where L′1 is obtained from L1

by deleting the last element.

• If t = 3.2, then α has two children β1 and β2 in D, the subtree rooted at β1 in D is an abstract
component tree for some S-quadruple (L1, i, k, t1) with i < k < j, the subtree rooted at β2

in D is an abstract component tree for some S-quadruple (L2, k, j, t2), L = L1 · L′2, and both
edges (α, β1) and (α, β2) are given a weight of 1

2d(sk,L2[1]), where L′2 is obtained from L2 by
deleting the first element.

• If t = 4.1.k with k ∈ {1, 2, 3}, then α has one child β1 in D, the subtree rooted at β1 in D is
an abstract component tree for some S-quadruple (L1, i, j, t1) with |L1| = |L|+1, L[b] = L1[b]
for each 1 ≤ b ≤ k− 1, L[b] = L1[b+ 1] for each k+ 1 ≤ b ≤ |L|, and the edge (α, β1) is given
a weight of d(L[k],L1[k]) + d(L[k],L1[k + 1]).

• If t = 4.2.k with k ∈ {1, 2}, then α has one child β1 in D, the subtree rooted at β1 in D is an
abstract component tree for some S-quadruple (L1, i, j, t1) with |L1| = |L| + 2, L[b] = L1[b]
for each 1 ≤ b ≤ k− 1, L[b] = L1[b+ 2] for each k+ 2 ≤ b ≤ |L|, and the edge (α, β1) is given
a weight of

∑1
h=0 (d(L[k + h],L1[k + h]) + d(L[k + h],L1[k + h+ 2])).

22

Let (L, i, j, t) be an S-quadruple, and let D be an abstract component tree for (L, i, j, t). Note
that each node inD is labeled with a triple (L′, h, k) and is given a type t′, where L′ is a nonempty list
of strings in S, h and k are integers with 1 ≤ h ≤ k ≤ n, and t ∈ {0, 1, 2, 3.1, 3.2, 4.1.1, 4.1.2, 4.1.3, 4.2.1, 4.2.2}.
Thus, we can use D to construct a multiroot model M ′D with |L| roots as described in Section 7.
We define the weight of D to be the total weight of its edges. An abstract component tree for
(L, i, j, t) is optimal if its weight is minimized over all abstract component trees for (L, i, j, t).

An S-abstract component tree for 〈s1, s2, . . . , sn〉 is an abstract component tree for some S-
quadruple (L, 1, n, 1). An S-abstract component tree for 〈s1, s2, . . . , sn〉 is optimal if its weight is
minimized over all S-abstract component trees for 〈s1, s2, . . . , sn〉.

9 Computing an Optimal S-Abstract Component Tree

We now use dynamic programming to compute an optimal abstract component tree for each S-
quadruple (L, i, j, t). For simplicity, we only explicitly give formulas for computing the minimum
weight W (L, i, j, t) of an abstract component tree for each S-quadruple (L, i, j, t) as follows.

• For each S-quadruple q = (L, i, j, t) with t = 0, W (q) = 0.

• For each S-quadruple q = (L, i, j, t) with t = 1,

W (q) = min
q′

W (q′) + d(L[1],L′[1]) + d(L[1],L′[2]),

where q′ ranges over all S-quadruples (L′, i, j, t′) with |L′| = 2.

• For each S-quadruple q = (L, i, j, t) with t = 2,

W (q) = min
i≤k<j

min
q1

min
q2

W (q1) +W (q2),

where q1 ranges over all S-quadruples (L1, i, k, t1) and q2 ranges over all S-quadruples (L2, k+
1, j, t2) such that L = L1 · L2.

• For each S-quadruple q = (L, i, j, t) with t = 3.1,

W (q) = min
i<k<j

min
q1

min
q2

W (q1) +W (q2) + d(sk,L1[|L1|]),

where q1 ranges over all S-quadruples (L1, i, k, t1) and q2 ranges over all S-quadruples (L2, k, j, t2)
such that L = L′1 · L2 and L′1 is obtained from L1 by deleting the last element.

• For each S-quadruple q = (L, i, j, t) with t = 3.2,

W (q) = min
i<k<j

min
q1

min
q2

W (q1) +W (q2) + d(sk,L2[1]),

where q1 ranges over all S-quadruples (L1, i, k, t1) and q2 ranges over all S-quadruples (L2, k, j, t2)
such that L = L1 · L′2 and L′2 is obtained from L2 by deleting the first element.

23

• For each S-quadruple q = (L, i, j, t) with t = 4.1.k and k ∈ {1, 2, 3},

W (q) = min
q1

W (q1) + d(L[k],L1[k]) + d(L[k],L1[k + 1]),

where q1 ranges over all S-quadruples (L1, i, j, t1) such that |L1| = |L| + 1, L[b] = L1[b] for
each 1 ≤ b ≤ k − 1, and L[b] = L1[b+ 1] for each k + 1 ≤ b ≤ |L|.

• For each S-quadruple q = (L, i, j, t) with t = 4.2.k for some k ∈ {1, 2},

W (q) = min
q1

W (q1) +
1∑

h=0

(d(L[k + h],L1[k + h]) + d(L[k + h],L1[k + h+ 2])) ,

where q1 ranges over all S-quadruples (L1, i, j, t1) such that |L1| = |L| + 2, L[b] = L1[b] for
each 1 ≤ b ≤ k − 1, and L[b] = L1[b+ 2] for each k + 2 ≤ b ≤ |L|.

Clearly, the weight of an optimal S-abstract component tree for 〈s1, . . . , sn〉 is minqW (q), where
q ranges over all S-quadruples (L, 1, n, 1). Moreover, the total time needed for finding an optimal
S-abstract component tree for 〈s1, s2, . . . , sn〉 is O(|S|6n3 + |S|7n2 + |S|2m). Since |S| ≥ n, the
total time needed is O(|S|7n2 + |S|2m). Thus, we have the following lemma:

Lemma 9.1 Given a set S with {s1, . . . , sn} ⊆ S, we can compute an optimal S-abstract component
tree for 〈s1, . . . , sn〉 in O(|S|7n2 + |S|2m) time.

10 A Ratio-5 Approximation Algorithm

In the remainder of this paper, let Mopt be an optimal duplication model for 〈s1, s2, . . . , sn〉.
By Lemmas 7.1 and 9.1, if we know the set S of strings assigned to the vertices of an optimal

duplication model for 〈s1, s2, . . . , sn〉, then we would have obtained an approximation algorithm for
2-DHR which achieves a ratio of 2.5 and runs in O(n9 + n2m) time.

Unfortunately, it seems difficult to know the set of strings assigned to the vertices of an optimal
duplication model for 〈s1, s2, . . . , sn〉. As suggested in [2], one idea to get around this difficulty
is to look for a restricted type of duplication models called lifted duplication models. In a lifted
duplication model, the label assigned to each nonleaf is a string in {s1, . . . , sn}. Based on a result
in [10], the following lemma has been proved in [2]:

Lemma 10.1 There is a lifted duplication model M for 〈s1, . . . , sn〉 with c(M) ≤ 2 · c(Mopt).

By Lemmas 7.1, 9.1, and 10.1, we can construct a duplication model N for 〈s1, s2, . . . , sn〉 with
c(N) ≤ 5 · c(Mopt) as follows:

1. Let S = {s1, s2, . . . , sn} (cf. Lemma 10.1).

2. Compute an optimal S-abstract component tree D for 〈s1, s2, . . . , sn〉 (cf. Lemma 9.1).

3. Use D to construct a duplication model N for 〈s1, s2, . . . , sn〉 (cf. Lemma 7.1).

Theorem 10.2 There is an approximation algorithm for 2-DHR that achieves a ratio of 5 and
runs in O(n9 + n2m) time.

24

11 A Ratio-(2.5 + ε) Approximation Algorithm

To achieve an approximation ratio better than 5, we cannot restrict our attention to lifted duplica-
tion models. In other words, we cannot require that all strings assigned to vertices of a duplication
model for 〈s1, . . . , sn〉 be a string in {s1, . . . , sn}. Instead, we just require that only a constant frac-
tion of strings assigned to vertices of a duplication model for 〈s1, . . . , sn〉 be a string in {s1, . . . , sn}.
We detail the idea below.

Suppose that T is a phylogeny for a permutation 〈si1 , si2 , . . . , sin〉 of 〈s1, s2, . . . , sn〉. A vertex
u of T is lifted if the string assigned to u in T is the same as the string assigned to some leaf
descendant of u in T . If a vertex of T is not lifted then it is free. By default, a leaf is a lifted vertex.
A lifted component of T is a maximal subtree C of T such that

• the root and the leaves of C are lifted vertices of T while the other vertices of C are free
vertices of T , and

• the root of C has one child in C.

Note that each nonleaf of a lifted component C other than the root of C has exactly two children
in C. It is also clear that no two lifted components of T share an edge. For an integer r ≥ 2, T is
r-lifted if each lifted component of T has no more than r− 1 leaves. The following lemma has been
proved in [11]:

Lemma 11.1 For every integer t ≥ 2 and every phylogeny T for a list L of strings, there is a
(2t−1 + 1)-lifted phylogeny T ′ for L such that c(T ′) ≤

(
1 + 2

t+1

)
· c(T) and the topology of T ′ is the

same as that of T .

For convenience, we define a partially labeled semi-binary tree to be a rooted tree C satisfying
the following conditions:

• The root of C has only one child while each nonleaf of C other than the root has two children
(the left and the right children).

• The root of C is assigned a string in {s1, . . . , sn} and so is every leaf of C.

• No string is assigned to a nonleaf of C other than the root.

Let C be a partially labeled semi-binary tree. Fully labeling C is the operation of assigning one
string of length m to each nonleaf of C other than the root of C. Optimally fully labeling C is
to fully label C so that the cost of the resulting tree Copt is minimized over all trees that can be
obtained by fully labeling C.

Lemma 11.2 For every constant ε > 0, we can compute a set S of O(n41/ε
) strings in O(mn41/ε

)
time such that there is a duplication model M for 〈s1, s2, . . . , sn〉 such that c(M) ≤ (1 + ε) · c(Mopt)
and each string assigned to a vertex of M is in S.

Proof. Fix a constant ε > 0. Let t = d2
ε e − 1 and r = 2t−1 + 1. Obviously, there are only O(nr)

partially labeled semi-binary trees with at most r − 1 leaves each. We compute the required set S
of strings as follows:

25

1. For each partially labeled semi-binary tree C with at most r − 1 leaves, optimally fully label
C to obtain Copt. (Comment: Copt can be obtained from C in constant time via dynamic
programming because C has only a constant number of vertices.)

2. Let S be the set of all strings assigned to vertices of the trees Copt.

Obviously, S contains O(nr) strings and can be computed in O(nr) time. It remains to show that
there is a duplication model M for 〈s1, s2, . . . , sn〉 such that c(M) ≤ (1+ε) ·c(Mopt) and each string
assigned to a vertex of M is in S.

Let T be the associated phylogeny for Mopt. Clearly, c(Mopt) = c(T). For each j ∈ {1, . . . , n}, let
sij be the string assigned to the jth leftmost leaf in T . Note that 〈si1 , si2 , . . . , sin〉 is a permutation
of 〈s1, s2, . . . , sn〉. By Lemma 11.1, there is an r-lifted phylogeny T ′ for 〈si1 , si2 , . . . , sin〉 such that
c(T ′) ≤ (1 + ε) · c(T) and the topology of T ′ is the same as that of T .

For each lifted component C of T ′, if we ignore the strings assigned to the nonleaves of C
other than the root of C, then we obtain a partially labeled semi-binary tree with at most r − 1
leaves and so we must have optimally fully labeled it to obtain a tree Copt in Step 1 above (when
computing S). The crucial point is that modifying T ′ by replacing C with Copt neither changes the
topology of T ′ nor increases the cost of T ′. Suppose that we modify T ′ by replacing every lifted
component C of T ′ with Copt. Then, c(T ′) ≤ (1 + ε) · c(T), each string assigned to a vertex of T ′ is
in S, the topology of T ′ is the same as that of T , and the jth leftmost leaf is assigned sij for each
j ∈ {1, . . . , n}. Now, since the vertices of T ′ one-to-one correspond to those of T and the vertices of
T one-to-one correspond to those of Mopt, we can obtain a new duplication model M for 〈s1, . . . , sn〉
from Mopt by simply changing the label of each vertex in Mopt to that of the corresponding vertex
in T ′. Obviously, c(M) ≤ (1 + ε) · c(Mopt) and each string assigned to a vertex of M is in S. 2

By Lemmas 7.1, 9.1, and 11.2, we can construct a duplication model N for 〈s1, s2, . . . , sn〉 with
c(N) ≤ (2.5 + ε) · c(Mopt) as follows:

1. Compute S as in Lemma 11.2.

2. Compute an optimal S-abstract component tree D for 〈s1, s2, . . . , sn〉 (cf. Lemma 9.1).

3. Use D to construct a duplication model N for 〈s1, s2, . . . , sn〉 (cf. Lemma 7.1).

Theorem 11.3 For any constant ε > 0, there is an approximation algorithm for 2-DHR that
achieves a ratio of (2.5 + ε) and runs in O(n2+7·41/ε

+mn2·41/ε
) time.

12 Concluding Remarks

The results presented in this paper are of purely theoretical interest. The ratio-5 approximation
algorithm takes O(n9) time which is too high for large n. The running time of the other algorithm
is even worse so that it is impossible to implement the algorithm even for small n. It is of interest
to reduce the time complexity of the algorithms.

We conjecture that there is a PTAS for 2-DHR. Indeed, we suspect that the ideas presented in
this paper will give some insight for finding such a PTAS.

26

Acknowledgment

Zhi-Zhong Chen is supported in part by the Grant-in-Aid for Scientific Research of the Ministry of
Education, Science, Sports and Culture of Japan, under Grant No. 20500021. Lusheng Wang is fully
supported by a grant from the Research Grants Council of the Hong Kong Special Administrative
Region, China [Project No. CityU 120905].

References

[1] G. Benson and L. Dong, ”Reconstructing the Duplication History of a Tandem Repeat,” Proc.
The 7th International Conference on Intelligent Systems for Molecular Biology (ISMB ’99), pp.
44-53, 1999.

[2] Z.-Z. Chen, L. Wang, and Z. Wang, ”Approximation Algorithms for Reconstructing the Dupli-
cation History of Tandem Repeats,” Algorithmica, to appear. A preliminary version appeared
in ”Proc. The 13th Annual International Computing and Combinatorics Conference (COCOON
’07), ” Lecture Notes in Computer Science, vol. 4598, pp. 493-503, 2007.

[3] W. Fitch, ”Phylogenies Constrained by Cross-over Process as Illustrated by Human
Hemoglobins in a Thirteen Cycle, Eleven Amino-Acid Repeat in Human Apolipoprotein A-
I,” Genetics, vol. 86, pp. 623-644, 1977.

[4] O. Gascuel, D. Bertrand, and O. Elemento, ”Reconstructing the Duplication History of
Tandemly Repeated Sequences,” in Mathematics of Evolution and Phylogeny, pp. 205-235, Ox-
ford University Press, New York, 2005.

[5] D. Jaitly, P. E. Kearney, G. Lin, and B. Ma, ”Methods for Reconstructing the History of Tandem
Repeats and Their Application to the Human Genome,” J. Comput. Syst. Sci., vol. 65 , pp.
494-507, 2002.

[6] F. Lillo, S. Basile, and R. N. Mantegna, ”Comparative Genomics Study of Inverted Repeats in
Bacteria,” Bioinformatics, vol. 18, pp. 971 - 979, 2002.

[7] J. Macas, T. Mszros, and M. Nouzov, ”PlantSat: A Specialized Database for Plant Satellite
Repeats,” Bioinformatics, vol. 18, pp. 28 - 35, 2002.

[8] H. H. Otu and K. Sayood, ”A New Sequence Distance Measure for Phylogenetic Tree Construc-
tion,” Bioinformatics, vol. 19, pp. 2122 - 2130, 2004.

[9] M. Tang, M. S. Waterman, and S. Yooseph, ”Zinc Finger Gene Clusters and Tandem Gene
Duplication,” Journal of Computational Biology, vol. 9, pp. 429-446, 2002.

[10] L. Wang, T. Jiang, and E. L. Lawler, ”Approximation Algorithms for Tree Alignment with a
Given Phylogeny,” Algorithmica, vol. 16, pp. 302-315, 1996.

[11] L. Wang, T. Jiang, and D. Gusfield, ”A More Efficient Approximation Scheme for Tree Align-
ment,” SIAM Journal on Computing, vol. 30, pp. 283-299, 2000.

27

[12] L. Zhang, B. Ma, L. Wang, and Y. Xu, ”Greedy Method for Inferring Tandem Duplication
History,” Bioinformatics, vol. 19, pp. 1497-1504, 2003.

28

13 List of Notations

• c(M): Cost of model M (cf. Page 3).
• c(P): Cost of path P in M (cf. Page 13).
• c(D(M,Γ)): Total weight of edges in component tree D(M,Γ) (cf. Page 19).
• d(s′, s′′): Hamming distance between strings s′ and s′′ (cf. Page 17).
• D(M,Γ): Component tree of model M associated with separator Γ (cf. Page 17).
• DM (u): The child of vertex u to which we move when going down from u (cf. Page 8).
• −−→DM (u): The path we trace when going down from vertex u to a leaf guided by function DM

(cf. Page 9).
• IM (u): The IM (u)-th input string sIM (u) is the leftmost leaf descendant of u in model M (cf.

Page 6).
• JM (u): The JM (u)-th input string sJM (u) is the rightmost leaf descendant of u in model M

(cf. Page 6).
• `i: The leaf of model M labeled with the ith input string si (cf. Page 5).
• LM (u): The left child of vertex u in model M (cf. Page 8).
• L[i]: The ith element in list L (cf. Page 22).
• Ml: The left root-marked multiroot semi-model obtained by splitting model M along path

−−→
DM (v) for a chosen splitting vertex v (cf. Page 10).
• M̃l: The left root-marked multiroot model obtained by splitting model M along path −−→DM (v)

for a chosen splitting vertex v (cf. Page 10).
• Mopt: An optimal duplication model for the input list of strings (cf. Page 24).
• Mr: The right root-marked multiroot semi-model obtained by splitting model M along path

−−→
DM (v) for a chosen splitting vertex v (cf. Page 10).
• M̃r: The right root-marked multiroot model obtained by splitting model M along path −−→DM (v)

for a chosen splitting vertex v (cf. Page 10).
• PM (u): The parent of vertex u in model M (cf. Page 8).
• RM (u): The right child of vertex u in model M (cf. Page 8).
• s(L): The list of strings assigned to vertices u in list L (cf. Page 17).
• s(u): The string assigned to vertex u in model M (cf. Page 17).
• UM (u): The parent v of vertex u in model M if DM (v) = u; otherwise, undefined (cf. Page 8).
• ←−UM (u): The path we trace when going up from leaf u to an ancestor guided by function UM

(cf. Page 9).

29

14 List of definitions

• associated phylogeny: Page 3.
• consecutive roots: Page 9.
• cover: Page 6.
• cross: Page 6.
• δ-separator: Page 14.
• incomparable vertices: Page 2.
• left edge: Page 5.
• left boundary: Page 8.
• left root-marked multiroot semi-model: Page 10.
• left root-marked multiroot model: Page 10.
• multi-root model: Page 7.
• right edge: Page 5.
• right boundary: Page 8.
• right root-marked multiroot semi-model: Page 10.
• right root-marked multiroot model: Page 10.
• root-marked: Page 8.
• separator: Page 13.
• splitting vertex: Page 9.
• splitting path: Page 18.
• S-quadruple: Page 21.
• unnested vertices: Page 6.
• unrelated vertices: Page 6.
• witness block for a crossing: Page 7.

30

