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Abstract

Protein NMR peak assignment refers to the process of assigning a group of “spin systems”
obtained experimentally to a protein sequence of amino acids. The automation of this process
is still an unsolved and challenging problem in NMR protein structure determination. Recently,
protein backbone NMR peak assignment has been formulated as an interval scheduling problem,
where a protein sequence P of amino acids is viewed as a discrete time interval I (the amino
acids on P one-to-one correspond to the time units of I), each subset S of spin systems that are
known to originate from consecutive amino acids of P is viewed as a “job” jS , the preference
of assigning S to a subsequence P of consecutive amino acids on P is viewed as the profit of
executing job jS in the subinterval of I corresponding to P , and the goal is to maximize the total
profit of executing the jobs (on a single machine) during I. The interval scheduling problem is
Max SNP-hard in general. Typically the jobs that require one or two consecutive time units are
the most difficult to assign/schedule. To solve these most difficult assignments, we present an
efficient 13

7 -approximation algorithm. Combining this algorithm with a greedy filtering strategy
for handling long jobs (i.e. jobs that need more than two consecutive time units), we obtained
a new efficient heuristic for protein NMR peak assignment. Our study using experimental data
shows that the new heuristic produces the best peak assignment in most of the cases, compared
with the NMR peak assignment algorithms in the literature. The 13

7 -approximation algorithm
is also the first approximation algorithm for a nontrivial case of the classical (weighted) interval
scheduling problem that breaks the ratio 2 barrier.

Keywords: structural genomics, computational biology, protein NMR peak assignment, approxi-
mation algorithm, interval scheduling, constrained bipartite matching.

1 Introduction
The NMR (nuclear magnetic resonance) technique is a major method to determine protein struc-
tures. A time-consuming bottleneck of this technique is the NMR peak assignment, which usually
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takes weeks or sometimes even months of manual work to produce a nearly complete assignment.
A protein NMR peak assignment is to establish a one-to-one mapping between two sets of data:
(1) a group of “spin systems” obtained experimentally, each corresponding to a number of spectra
related to the same amino acid; (2) a known protein sequence of amino acids. The automation
of the assignment process is still an unsolved and challenging problem in NMR protein structure
determination.

Two key pieces of information form the foundation of NMR peak assignment and the starting
point of our work:

• The likelihood (or weight) of the matching between a spin system and an amino acid on the
protein sequence. The weight can be derived from the statistical distribution of spin systems
in different amino acid types and predicted secondary structures [9].

• The sequential adjacency (i.e., consecutivity) information of some subsets of spin systems
(i.e., each such subset of spin systems should correspond to a subsequence of consecutive
amino acids on the protein sequence). Each maximal such subset is called a segment of spin
systems. It is worth noting that each segment usually consists of at most 10 spin systems.
The adjacency information can be obtained from experiments.

In a recently developed computational framework [9], the NMR peak assignment problem has been
formulated as a (weighted) interval scheduling problem1 as follows. A protein sequence P of amino
acids is viewed as a discrete time interval I (the amino acids on P one-to-one correspond to the
time units of I). Each segment S of spin systems is viewed as a job jS . Each job jS requires
|S| consecutive time units of I (this corresponds to the requirement that the spin systems in S
should be assigned to |S| consecutive amino acids on P). For each time unit t of I, the profit
w(jS , t) of starting job jS at time unit t and finishing at time unit t + |S| − 1 of I corresponds to
the preference (or total weight) of assigning the spin systems in S to those |S| consecutive amino
acids on P that correspond to the time units t, t + 1, . . . , t + |S| − 1. Given I, the jobs jS , and the
profits w(jS , t), our goal is to maximize the total profit of the executed jobs (i.e., we want to find
a maximum-likelihood assignment of the given spin systems to the amino acids on P).

Unfortunately, the interval scheduling problem is Max SNP-hard [3, 4]. Indeed, for every integer
k ≥ 2, the special case of the interval scheduling problem (called the k-interval scheduling problem
or k-ISP for short), where each job requires at most k consecutive time units, is Max SNP-hard. On
the other hand, several 2-approximation algorithms for the interval scheduling problem have been
developed [1, 2, 3, 4]. Although these algorithms are theoretically sound, applying them to protein
NMR peak assignment produces unsatisfactory assignments as demonstrated in [3]. A major reason
why these algorithms do not have good performance in protein NMR peak assignment is that they
ignore the following important observation:

• In protein NMR peak assignment, long segments of spin systems are typically easier to assign
than shorter ones. Indeed, many long segments have obvious matches based on the total
matching weights, while assignments of isolated spin systems or segments consisting of only
two spin systems are ambiguous.

The above observation suggests the following heuristic framework for protein NMR peak assign-
ment: first try to assign segments consisting of at least k + 1 spin systems for some small integer
k (say, k = 2), and then solve an instance of k-ISP. In [7], we have presented such a heuristic and
have shown that it is very effective for protein NMR peak assignment. A major drawback of the
heuristic in [7] is that it uses an inefficient branch-and-bound algorithm for k-ISP.

In order to improve the efficiency of the heuristic in [7], we present a new approximation
algorithm for 2-ISP in this paper. This algorithm achieves an approximation ratio of 13

7 and is the
first approximation algorithm for a nontrivial case of the classical interval scheduling problem that

1In [9] it was called the constrained bipartite matching problem.
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breaks the ratio 2 barrier.2 Our algorithm is combinatorial and quite nontrivial – it consists of
four separate algorithms and outputs the best solution returned by them. The main tool used in
the algorithm design is maximum-weight bipartite matching and careful manipulation of the input
instance. Substituting the new algorithm for the branch-and-bound algorithm in the heuristic
in [7], we obtain a new heuristic for protein NMR peak assignment.3 We have performed extensive
experiments on 70 instances of NMR data derived from 14 proteins to evaluate the performance
of our new heuristic in terms of (i) the weight of the assignment and (ii) the number of correctly
assigned resonance peaks. The experimental results show that not only does the new heuristic run
very fast, it also produces the best peak assignment on most of the instances, compared with the
protein NMR peak assignment algorithms in the recent literature [3, 4, 7, 9].

The rest of the paper is organized as follows. The 13
7 -approximation algorithm for 2-ISP is

presented in Section 2. In Section 3, we consider an interesting special profit function in interval
scheduling where the profit of executing a job at each specific time interval is either 0 or proportional
to the length of the job,4 and we present a (1.5 + ε)-approximation algorithm for 2-ISP under this
special profit function for any ε > 0,5 which improves an approximation result in [4]. In Section 4,
we describe our new heuristic for protein NMR peak assignment based on the 13

7 -approximation
algorithm for 2-ISP, and give the experimental results. We end this paper with a short discussion
in Section 5.

2 A new approximation algorithm for 2-ISP
Let I be the given discrete time interval. Without loss of generality, we may assume that I =
[0, I]. Let J1 = {v1, v2, . . . , vn1} be the given set of jobs requiring one time unit of I. Let J2 =
{vn1+1, vn1+3, . . . , vn1+2n2−1} be the given set of jobs requiring two contiguous time units of I. Note
that n1 + n2 is the total number of given jobs. For each 1 ≤ i ≤ I, let ui denote the time unit
[i−1, i] of I. Let U = {ui | 1 ≤ i ≤ I}. Let J ′

2 = {vn1+2, vn1+4, . . . , vn1+2n2}. Let V = J1∪J2∪J ′
2.

We construct an edge-weighted bipartite graph G with color classes U and V as follows: For every
vj ∈ J1 and every ui ∈ U such that the profit of executing job vj in time unit ui is positive, (ui, vj)
is an edge of G and its weight is the profit. Similarly, for every vj ∈ J2 and every ui ∈ U such that
the profit of executing job vj in the two time units ui, ui+1 is positive, both (ui, vj) and (ui+1, vj+1)
are edges of G and the weight of each of them is half the profit. Figure 1 shows an example of G.

u1 u3 u4u2 u5 u6 u8 u9u7 u10 u11 u12 u13 u14 u15 u16 u17 u18

v1 v6 v2v5 v4v7 v9 v10v8 v11 v12 v13 v14 v3 v15 v16

u19 u20 u21 u22 u23 u24

v17 v18 v20 v21 v22 v23 v24v19

Figure 1: An example of G. The three bold edges (u13, v13), (u14, v14), and (u14, v3) each have
weight 3, and the other edges each have weight 1. Also, for each vj ∈ J2, vj and vj+1 are underlined
together. In other words, n1 = 4.

A constrained matching of G is a matching M of G such that for every ui ∈ U and every
vj ∈ J2, (ui, vj) ∈ M if and only if (ui+1, vj+1) ∈ M . The objective of 2-ISP is equivalent to finding
a maximum-weight constrained matching in G. For each edge (ui, vj) of G, let w(ui, vj) denote
the weight of the edge. For convenience, let w(ui, vj) = 0 for all (ui, vj) 6∈ E. For a (constrained
or unconstrained) matching M of G, let w1(M) (respectively, w2(M)) denote the total weight of
edges (ui, vj) ∈ M with vj ∈ J1 (respectively, vj ∈ J2 ∪ J ′

2); let w(M) = w1(M) + w2(M).

2For unweighted ISP where the profit of executing a job at each specific time interval is either 0 or 1 (independent
of the job’s length), Chuzhoy et al. [5] gave a 1.582-approximation algorithm. In this paper, our interest is in the
weighted problem.

3The program is available to the public upon request to the authors.
4This corresponds to a simplified situation in NMR peak assignment, where each spin system has a few equally

preferred matching segments of amino acids.
5A simple modification of this algorithm leads to a (1.5 + ε)-approximation algorithm for unweighted 2-ISP.
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Let M∗ be a maximum-weight constrained matching in G. In Sections 2.1, 2.3 through 2.5, we
will design four algorithms each outputting a constrained matching in G. We will try to find a
large constant ε such that the heaviest one among the four output matchings is of weight at least
(1
2 + ε)w(M∗). It will turn out that ε = 1

26 . So, fix ε = 1
26 for the discussions in the rest of this

section.

2.1 Algorithm 1

This algorithm will output a constrained matching of large weight when w2(M∗) is relatively large
compared with w1(M∗). We first explain the idea behind the algorithm. Suppose that we partition
the time interval I into shorter intervals, called basic intervals, in such a way that each basic
interval, except possibly the first and the last (which may possibly consist of 1 or 2 time units),
consists of 3 time units. There are exactly three such partitions of I (see Figure 2). Denote them
by P0, P1, and P2, respectively. With respect to each Ph with 0 ≤ h ≤ 2, consider the problem
Qh of finding a constrained scheduling which maximizes the total profit of the executed jobs, but
subject to the constraint that each basic interval in Ph can be assigned to at most one job and each
executed job should be completed within a single basic interval in Ph. It is not so hard to see that
each problem Qh requires the computation of a maximum-weight (unconstrained) matching in a
suitably constructed bipartite graph, and hence can be solved in polynomial time.

u1 u3 u4u2 u5 u6 u8 u9u7 u10Interval 

Partition 0

u11 u12 u13 u14 u15 u16 u17 u18 u19 u20 u21 u22 u23 u24

u1 u3 u4u2 u5 u6 u8 u9u7 u10 u11 u12 u13 u14 u15 u16 u17 u18 u19 u20 u21 u22 u23 u24

Partition 1 u1 u3 u4u2 u5 u6 u8 u9u7 u10 u11 u12 u13 u14 u15 u16 u17 u18 u19 u20 u21 u22 u23 u24

Partition 2 u1 u3 u4u2 u5 u6 u8 u9u7 u10 u11 u12 u13 u14 u15 u16 u17 u18 u19 u20 u21 u22 u23 u24

Figure 2: An example of interval I and its partitions.

We claim that among the three problems Qh, the best one gives a scheduling by which the
executed jobs achieve at least a total profit of 1

3w1(M∗) + 2
3w2(M∗). This claim is actually easier

to see, if we refer to a more constrained scheduling problem Q′
h than Qh by adding the following

constraint:

• For each job vj ∈ J1 and for each basic interval b in Ph, only the primary time unit of b can
be assigned to vj , where the primary time unit of b, is ui if b consists of three time units
ui−1uiui+1, is u1 if b consists of the first two time units u1u2 of I, is uI if b consists of the
last two time units uI−1uI of I, is b itself if b consists of one time unit only.

[Comment: The crux is that for each basic interval b consisting of at least two time units,
each sub-interval of b consisting of two time units must contain the primary time unit of b.
Thus, by this constraint, we are allowed to assign at most one job to each basic interval. In
turn, Q′

h is more constrained than Qh.]

Consider an optimal (unconstrained) scheduling M∗. For each job vj ∈ J2, if M∗ assigns vj to
two time units uiui+1, then this assignment of vj is also valid in exactly two problems among Q′

0,
Q′

1, and Q′
2, because there are exactly two indices h ∈ {0, 1, 2} such that some basic interval in Ph

contains both time units uiui+1. Similarly, for each job vj ∈ J1, if M∗ assigns vj to one time unit
ui, then this assignment of vj is also valid in at least one problem among Q′

0, Q′
1, and Q′

2, because
there is at least one index h ∈ {0, 1, 2} such that ui is the primary time unit of some basic interval
in Ph. Thus, by inheriting from the optimal scheduling M∗, the three problems Q′

h have more-
constrained schedulings M∗

h such that M∗
h is a sub-scheduling of M∗ and the three schedulings M∗

h
altogether achieve at least a total profit of w1(M∗) + 2w2(M∗). Hence, the best more-constrained
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scheduling among M∗
1 , M∗

2 , and M∗
3 achieves at least a total profit of 1

3w1(M∗)+ 2
3w2(M∗). Indeed,

we can prove the following better bound which is needed in later sections:

The best more-constrained scheduling among M∗
1 , M∗

2 , and M∗
3 achieves a total profit

of at least 1
3w1(M∗) + 2

3w2(M∗) + 1
3(p1 + pI), where p1 = 0 (respectively, pI = 0) if

M∗ assigns no job in J1 to u1 (respectively, uI), while p1 (respectively, pI) equals the
weight of the edge of M∗ incident to u1 (respectively, uI) otherwise.

To see why we have this better bound, first note that there are exactly two indices h ∈ {0, 1, 2}
such that u1 is the primary time unit of a basic interval in Ph. Similarly, there are exactly two
indices h ∈ {0, 1, 2} such that uI is the primary time unit of a basic interval in Ph. By these two
facts, the better bound follows.

As it should be expected, the constrained scheduling problems Qh may often lead to better
experimental results than the more-constrained scheduling problems Q′

h. However, as for general
theoretical results, we don’t know if there is a difference between the two types of problems.
Moreover, Q′

h can be solved more efficiently than Qh. Hence, for simplicity, in the following
exposition we will consider only the more-constrained scheduling problems Q′

h.
It is not hard to see that each more-constrained scheduling problemQ′

h requires the computation
of a maximum-weight (unconstrained) matching in a suitably constructed bipartite graph Gh, and
hence can be solved in polynomial time. For clarity, we detail the construction of the graphs Gh

below.
For each index h ∈ {0, 1, 2}, let Gh be the edge-weighted bipartite graph obtained from G as

follows: (See Figure 3 for an example of G2 constructed from graph G in Figure 1.)

1. For every vj ∈ J2, merge the two vertices vj and vj+1 into a single super-vertex sj,j+1 (with
all resulting multiple edges deleted).

2. For all i such that h + 1 ≤ i ≤ I − 2 and i − 1 ≡ h (mod 3), perform the following three
sub-steps:

(a) Merge ui, ui+1, and ui+2 into a single super-vertex ti,i+1,i+2 (with all resulting multiple
edges deleted).

(b) For every vj ∈ J1 that is a neighbor of ti,i+1,i+2, if edge (ui+1, vj) is not in the original
input graph, then delete the edge between ti,i+1,i+2 and vj ; otherwise, assign a weight
of w(ui+1, vj) to the edge between ti,i+1,i+2 and vj .

(c) For every vj ∈ J2 such that sj,j+1 is a neighbor of ti,i+1,i+2, if neither {(ui, vj), (ui+1, vj+1)}
nor {(ui+1, vj), (ui+2, vj+1)} is a matching in the original input graph, then delete
the edge between ti,i+1,i+2 and sj,j+1; otherwise, assign a weight of max{w(ui, vj) +
w(ui+1, vj+1), w(ui+1, vj) + w(ui+2, vj+1)} to the edge between ti,i+1,i+2 and sj,j+1.

3. If neither u1 nor u2 was merged in Step 2a, then perform the following three sub-steps:

(a) Merge u1 and u2 into a single super-vertex t1,2 (with all resulting multiple edges deleted).
(b) For every vj ∈ J1 that is a neighbor of t1,2, if edge (u1, vj) is not in the original input

graph, then delete the edge between t1,2 and vj ; otherwise, assign a weight of w(u1, vj)
to the edge between t1,2 and vj .

(c) For every vj ∈ J2 such that sj,j+1 is a neighbor of t1,2, if {(u1, vj), (u2, vj+1)} is not
a matching in the original input graph, then delete the edge between t1,2 and sj,j+1;
otherwise, assign a weight of w(u1, vj) + w(u2, vj+1) to the edge between t1,2 and sj,j+1.

4. If neither uI−1 nor uI was merged in Step 2a, then perform the following three sub-steps:

(a) Merge uI−1 and uI into a single super-vertex tI−1,I (with all resulting multiple edges
deleted).

(b) For every vj ∈ J1 that is a neighbor of tI−1,I , if edge (uI , vj) is not in the original input
graph, then delete the edge between tI−1,I and vj ; otherwise, assign a weight of w(uI , vj)
to the edge between tI−1,I and vj .
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(c) For every vj ∈ J2 such that sj,j+1 is a neighbor of tI−1,I , if {(uI−1, vj), (uI , vj+1)} is not
a matching in the original input graph, then delete the edge between tI−1,I and sj,j+1;
otherwise, assign a weight of w(uI−1, vj) + w(uI , vj+1) to the edge between tI−1,I and
sj,j+1.

5. If u1 was merged in neither Step 2a nor Step 3a, then for every vj ∈ J2 such that sj,j+1 is a
neighbor of u1, delete the edge between u1 and sj,j+1.

6. If uI was merged in neither Step 2a nor Step 4a, then for every vj ∈ J2 such that sj,j+1 is a
neighbor of uI , delete the edge between uI and sj,j+1.

t1,2 u24

v1 v3v2 v4

t3,4,5 t6,7,8 t9,10,11 t12,13,14 t15,16,17

s5,6 s9,10 s11,12 s13,14 s15,16 s17,18

1 2
2

2

s7,8

62 2 2
2 2

t18,19,20

2

s19,20 s21,22 s23,24

t21,22,23

1
2 2 2

Figure 3: Graph G2 constructed from graph G in Figure 1. The number beside each edge is the
weight of that edge.

For each h ∈ {0, 1, 2}, let Mh be a maximum-weight matching in Gh. In our example (cf.
Figure 3), M2 may consist of the following edges: (t1,2, v1), (t3,4,5, s5,6), (t6,7,8, s7,8), (t9,10,11, s9,10),
(t12,13,14, s13,14), (t15,16,17, s15,16), (t18,19,20, s19,20), and (t21,22,23, s21,22). From each Mh, we can
obtain a constrained matching M̄h in the original input graph by performing the following steps in
turn:

• Initialize M̄h = ∅.
• For each edge (ui, vj) ∈ Mh, add (ui, vj) to M̄h.
• For each edge (ti,i+1,i+2, vj) ∈ Mh, add (ui+1, vj) to M̄h.
• For each edge (t1,2, vj) ∈ Mh, add (u1, vj) to M̄h.
• For each edge (tI−1,I , vj) ∈ Mh, add (uI , vj) to M̄h.
• For each edge (ti,i+1,i+2, sj,j+1) ∈ Mh, if w(ui, vj)+w(ui+1, vj+1) ≥ w(ui+1, vj)+w(ui+2, vj+1),

then add edges (ui, vj) and (ui+1, vj+1) to M̄h; otherwise, add edges (ui+1, vj) and (ui+2, vj+1)
to M̄h.

• For each edge (t1,2, sj,j+1) ∈ Mh, add edges (u1, vj) and (u2, vj+1) to M̄h.
• For each edge (tI−1,I , sj,j+1) ∈ Mh, add (uI−1, vj) and (uI , vj+1) to M̄h.

Note that w(M̄h) = w(Mh). In our example (cf. Figures 1 and 3), if M2 is as mentioned
above, then M̄2 consists of the following edges: (u1, v1), (u4, v5), (u5, v6), (u7, v7), (u8, v8), (u9, v9),
(u10, v10), (u13, v13), (u14, v14), (u15, v16), (u16, v17), (u19, v19), (u20, v20), (u21, v21), and (u22, v22).

In summary, we have established the following lemma:

Lemma 2.1 A constrained matching Z1 in G can be found in O(I(n1 + n2)(I + n1 + n2)) time,
whose weight is at least 1

3w1(M∗) + 2
3w2(M∗) + 1

3(p1 + pI), where p1 = 0 (respectively, pI = 0) if
u1 (respectively, uI) is not matched to a vertex of J1 by M∗, while p1 (respectively, pI) equals the
weight of the edge of M∗ incident to u1 (respectively, uI) otherwise.

Corollary 2.2 If w1(M∗) ≤ (1
2 − 3ε)w(M∗), then w(Z1) ≥ (1

2 + ε)w(M∗).

Proof. Assume w1(M∗) ≤ (1
2 −3ε)w(M∗). Then, w2(M∗) = w(M∗)−w1(M∗) ≥ (1

2 +3ε)w(M∗).
Moreover, by Lemma 2.1, w(Z1) ≥ 1

3w1(M∗) + 2
3w2(M∗) = 1

3w(M∗) + 1
3w2(M∗). Thus, w(Z1) ≥

(1
3 + 1

3(1
2 + 3ε))w(M∗) ≥ (1

2 + ε)w(M∗). 2

6



2.2 Preparing for the other three algorithms

Before running the other three algorithms, we need to compute a maximum-weight unconstrained
matching M∗

un of G. The unconstrained matching M∗
un will be an additional input to the other

three algorithms. Therefore, before proceeding to the details of the algorithms, fix a maximum-
weight unconstrained matching M∗

un of G. See Figure 4 for an example. The algorithms in Sec-

u1 u3 u4u2 u5 u6 u8 u9u7 u10 u11 u12 u13 u14 u15 u16 u17 u18

v1 v6 v2v5 v4v7 v9 v10v8 v11 v12 v13 v14 v3 v15 v16

u19 u20 u21 u22 u23 u24

v17 v18 v20 v21 v22 v23 v24v19

Figure 4: A maximum-weight unconstrained matching M∗
un of the graph G in Figure 1.

tions 2.3 through 2.5 will use M∗
un in a sophisticated way. But first, we use M∗

un to define several
subsets of U as follows.

• U0 = {ui ∈ U | ui is not matched by M∗
un}.

• U1 = {ui ∈ U | ui is matched to a vj ∈ J1 by M∗
un}.

• U2,1 = {ui ∈ U | ui is matched to a vj ∈ J2 by M∗
un}.

• U2,2 = {ui ∈ U | ui is matched to a vj ∈ J ′
2 by M∗

un}.

• W = {ui ∈ U1 | ui−1 ∈ U2,1 and ui+1 ∈ U2,2}.

• WL = {ui ∈ U | ui+1 ∈ W} and WR = {ui ∈ U | ui−1 ∈ W}.

In our example (cf. Figures 1 and 4), U0 = {u2, u10, u17}, U1 = {u1, u6, u14, u19}, U2,1 =
{u4, u5, u9, u12, u13, u18, u21, u23}, U2,2 = {u3, u7, u8, u11, u15, u16, u20, u23, u24}, W = {u6, u14, u19},
WL = {u5, u13, u18}, and WR = {u7, u15, u20}. In general, whenever ui ∈ W , we have ui−1 ∈ WL

and ui+1 ∈ WR. Moreover, since W ⊆ U1, WL ⊆ U2,1, and WR ⊆ U2,2, no two sets among W , WL

and WR can intersect.
A common idea behind the forthcoming algorithms is to divide the weights w1(M∗) and w2(M∗)

into smaller parts, based on the aforementioned subsets of U . The smaller parts are defined as
follows.

• βL is the total weight of all edges (ui, vj) ∈ M∗ such that ui ∈ WL and vj ∈ J1.

• β is the total weight of all edges (ui, vj) ∈ M∗ such that ui ∈ W and vj ∈ J1.

• βR is the total weight of all edges (ui, vj) ∈ M∗ such that ui ∈ WR and vj ∈ J1.

• β̄ = w1(M∗)− βL − β − βR.

• α0 is the total weight of all edges (ui, vj) ∈ M∗ such that either vj ∈ J2 and {ui, ui+1}∩W = ∅,
or vj ∈ J ′

2 and {ui−1, ui} ∩W = ∅.

• α1 is the total weight of all edges (ui, vj) ∈ M∗ such that either vj ∈ J2 and {ui, ui+1}∩W 6= ∅,
or vj ∈ J ′

2 and {ui−1, ui} ∩W 6= ∅.

Lemma 2.3 α0 + α1 = w2(M∗) and βL + β + βR + β̄ = w1(M∗).

Proof. Obvious. 2

Now, we are ready to explain how the four algorithms are related. The algorithm in Section 2.3,
called Algorithm 2, will output a constrained matching of weight at least 1

3 β̄+ 2
3α0+β+ 2

3(βL+βR).
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The algorithm in Section 2.4, called Algorithm 3, will output a constrained matching of weight at
least β + β̄ + α1. Thus, if β ≥ (1

6 + 5
3ε)w(M∗), then Algorithm 2 or 3 will output a constrained

matching of weight at least (1
2 + ε)w(M∗) (see Corollary 2.6 below). On the other hand, if β <

(1
6 + 5

3ε)w(M∗), then Algorithm 1 or 4 will output a constrained matching of weight at least
(1
2 + ε)w(M∗) (see Section 2.6).

2.3 Algorithm 2

We first explain the idea behind the algorithm. The removal of the vertices in W leaves |W | + 1
blocks of U each of which consists of consecutive vertices of U . For each block b, we use the idea of
Algorithm 1 to construct three graphs Gb,0, Gb,1, Gb,2. For each h ∈ {0, 1, 2}, we consider the graph
∪bGb,h where b ranges over all blocks, and obtain a new graph G′

h from ∪bGb,h by adding the vertices
of W and the edges {ui, vj} of G such that ui ∈ W and vj ∈ J1. We then compute a maximum-
weight (unconstrained) matching in each G′

h, and further convert it to a constrained matching M̄ ′
h

of G as in Algorithm 1. The output of Algorithm 2 is the heaviest matching among M̄ ′
0, M̄

′
1, M̄

′
2. In

our example (cf. Figures 1 and 4), G′
2 is as shown in Figure 5, and M̄ ′

2 may consist of the following
edges: (u1, v1), (u4, v5), (u5, v6), (u6, v2), (u7, v7), (u8, v8), (u9, v9), (u10, v10), (u12, v11), (u13, v12),
(u14, v3), (u15, v17), (u16, v18), (u19, v4), (u22, v21), and (u23, v22).

t1,2

v1 v3v2 v4

t3,4,5 t7,8 t9,10,11 t12,13 t15,16

s5,6 s9,10 s11,12 s13,14 s15,16 s17,18

1 2
1

2

s7,8

3
2

2 2
2

t20,21

s19,20 s21,22 s23,24

t22,23,24

1 2 2

u6 u14 t17,18 u19

Figure 5: Graph G′
2 constructed from graph G in Figure 1 and matching M∗

un in Figure 4. The
number beside each edge is the weight of that edge.

We next proceed to the details of Algorithm 2. Recall that the removal of the vertices in W
leaves |W |+ 1 blocks of U each of which consists of consecutive vertices of U . For each block b, let
Gb be the subgraph of G induced by V ∪ {ui ∈ U | ui is a vertex in block b}.

1. For each block b, perform the following steps.

(a) Delete all edges {ui, vj} from Gb such that ui is the first vertex in block b and vj ∈ J ′
2;

further delete all edges {ui, vj} from Gb such that ui is the last vertex in block b and
vj ∈ J2.

(b) Construct three edge-weighted bipartite graphs Gb,0, Gb,1, Gb,2 from Gb in the same way
as Algorithm 1 constructs the graphs G0, G1, G2 from G.

2. For each h ∈ {0, 1, 2}, construct a new edge-weighted bipartite graph G′
h as follows. The

vertex set of G′
h is the union of W and the vertex sets of the graphs Gb,h where b ranges over

all blocks. Note that even if a vertex appears in two or more of the graphs Gb,h, it appears in
G′

h only once. The edges of the graphs Gb,h where b ranges over all blocks are also edges in
G′

h and inherit their weights to G′
h. Moreover, each edge (ui, vj) in G such that ui ∈ W and

vj ∈ J1 is also an edge in G′
h and inherits its weight from G to G′

h. G′
h has no other edges.

3. For each h ∈ {0, 1, 2}, compute a maximum-weight matching M ′
h in G′

h, and then compute
a constrained matching M̄ ′

h in G from M ′
h in the same way as Algorithm 1 computes the

constrained matching M̄h in G from Mh.

4. Let Z2 be the maximum-weight matching among the matchings M ′
0,M

′
1,M

′
2. Output Z2.

Lemma 2.4 w(Z2) ≥ 1
3 β̄ + 2

3α0 + β + 2
3(βL + βR).

Proof. Immediate from Lemma 2.1 and Algorithm 2. 2
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2.4 Algorithm 3

We first explain the idea behind Algorithm 3. Suppose that we partition the time interval I into
shorter intervals in such a way that each shorter interval consists of either one time unit or three
time units ui−1uiui+1 where ui ∈ W . There is only one such partition of I. Further suppose
that we want to execute at most one job in each of the shorter intervals, while maximizing the
total profit of the executed jobs. This problem can be solved in polynomial time by computing
a maximum-weight (unconstrained) matching in a suitably constructed bipartite graph. We can
prove that this matching results in a scheduling by which the executed jobs achieve at least a total
profit of β + β̄ + α1.

We next proceed to the details of Algorithm 3. Algorithm 3 computes a constrained matching
of G as follows. (See Figure 6 for an example.)

1. Construct a new edge-weighted bipartite graph G′′ from G as follows:

(a) For each ui ∈ W , merge ui−1, ui and ui+1 into a super-vertex ti−1,i,i+1 (with all resulting
multiple edges deleted).

(b) For each vj ∈ J2, merge the two vertices vj and vj+1 into a super-vertex sj,j+1 (with all
resulting multiple edges deleted).

(c) For each edge (ti−1,i,i+1, vj) such that vj ∈ J1, if (ui, vj) is not an edge in the original
input graph, then delete the edge (ti−1,i,i+1, vj); otherwise, assign a weight of w(ui, vj)
to the edge (ti−1,i,i+1, vj).

(d) For each edge (ti−1,i,i+1, sj,j+1), if neither {(ui−1, vj), (ui, vj+1)} nor {(ui, vj), (ui+1, vj+1)}
is a matching in the original input graph, then delete the edge (ti−1,i,i+1, sj,j+1); other-
wise, assign a weight of max{w(ui−1, vj) + w(ui, vj+1), w(ui, vj) + w(ui+1, vj+1)} to the
edge (ti−1,i,i+1, sj,j+1).

(e) Delete all edges (ui, sj,j+1). (Note that ui 6∈ WL ∪W ∪WR.)

2. Compute a maximum-weight unconstrained matching M ′′ in G′′.

3. Construct a constrained matching Z3 in G from M ′′ as follows.

(a) Initialize Z3 = ∅.
(b) For each edge (ui, vj) ∈ M ′′, add (ui, vj) to Z3.
(c) For each edge (ti−1,i,i+1, vj) ∈ M ′′, add (ui, vj) to Z3.
(d) For each edge (ti−1,i,i+1, sj,j+1) ∈ M ′′, if w(ui−1, vj)+w(ui, vj+1) ≥ w(ui, vj)+w(ui+1, vj+1),

then add edges (ui−1, vj) and (ui, vj+1) to Z3; otherwise, add edges (ui, vj) and (ui+1, vj+1)
to Z3.

4. Output Z3.

v1 v3v2 v4

t5,6,7 t13,14,15

s5,6 s9,10 s11,12 s13,14 s15,16 s17,18

1 1

s7,8

3
2

2
6

s19,20 s21,22 s23,24

t18,19,20

1
2

u1 u3 u4u2 u8 u9 u10 u11 u12 u16 u17 u21 u22 u23 u24

2 21
1

Figure 6: Graph G′′ constructed from graph G in Figure 1 and matching M∗
un in Figure 4. The

number beside each edge is the weight of that edge.

In our example (cf. Figures 1 and 6), M ′′ may consist of the following edges: (u1, v1), (t5,6,7, s7,8),
(u9, v2), (t13,14,15, s13,14), and (t18,19,20, s17,18), and in turn Z3 consists of the following edges:
(u1, v1), (u5, v7), (u6, v8), (u9, v2), (u13, v13), (u14, v14), (u18, v17), and (u19, v18).
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Lemma 2.5 w(Z3) ≥ β + β̄ + α1.

Proof. Similar to the proof of Lemma 2.1. 2

Corollary 2.6 If β ≥ (1
6 + 5

3ε)w(M∗), then max{w(Z2), w(Z3)} ≥ (1
2 + ε)w(M∗).

Proof. It suffices to show that if max{w(Z2), w(Z3)} < (1
2 + ε)w(M∗), then β < (1

6 + 5
3ε)w(M∗).

So, assume that max{w(Z2), w(Z3)} < (1
2 +ε)w(M∗). Then, we have the following two inequalities:

w(Z2) < (
1
2

+ ε)w(M∗). (2.1)

w(Z3) < (
1
2

+ ε)w(M∗). (2.2)

Combining Inequality 2.1 and the inequality in Lemma 2.4, we obtain a new inequality, and further
multiply it by a factor 3

2 to obtain:

α0 +
3
2
β +

1
2
β̄ + βL + βR <

(
3
4

+
3
2
ε

)
w(M∗) (2.3)

Moreover, combining Inequality 2.2 and the inequality in Lemma 2.5, we obtain:

α1 + β + β̄ <

(
1
2

+ ε

)
w(M∗). (2.4)

Now, adding Inequalities 2.3 and 2.4, we obtain

α0 + α1 +
5
2
β +

3
2
β̄ + βL + βR <

(
5
4

+
5
2
ε

)
w(M∗).

In turn, by Lemma 2.3, we have

w1(M∗) + w2(M∗) +
3
2
β +

1
2
β̄ <

(
5
4

+
5
2
ε

)
w(M∗).

Using the fact that w1(M∗) + w2(M∗) = w(M∗) and β̄ ≥ 0, we finally obtain

3
2
β <

(
1
4

+
5
2
ε

)
w(M∗), or equivalently, β <

(
1
6

+
5
3
ε

)
w(M∗),

which completes the proof. 2

2.5 Algorithm 4

The idea behind Algorithm 4 is to convert M∗
un to a constrained matching of G. To convert M∗

un,
we partition U1 ∪U2,1 (respectively, U1 ∪U2,2) into two subsets none of which contains two vertices
ui and ui+1 such that ui ∈ U2,1 (respectively, ui+1 ∈ U2,2). The set of edges of M∗

un incident to the
vertices of each such subset can be extended to a constrained matching of G. In this way, we obtain
four constrained matchings of G. Algorithm 4 outputs the heaviest one among the four matchings.
We can prove that the weight of the output matching is at least w(M∗

un)/2.
We next proceed to the details of Algorithm 4. Algorithm 4 computes a constrained matching

in G as follows. (See Figure 7 for an example.)
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1. Starting at u1, divide U into segments each of which is in the following form:

ui−`ui−`+1 · · ·ui−1uiui+1 · · ·ui+r−1ui+r,

where uj ∈ U2,1 for all i − ` ≤ j ≤ i − 1, uj ∈ U2,2 for all i + 1 ≤ j ≤ i + r, ui−`−1 6∈ U2,1,
ui+r+1 6∈ U2,2, and ui has no restriction. Note that ` and/or r may be equal to zero. We call
ui the center of the segment. For each segment s, let c(s) denote the integer i such that ui is
the center of s; let `(s) denote the number of vertices in s that precede uc(s); let r(s) denote
the number of vertices in s that succeed uc(s).

[Comment: In our example (cf. Figure 7), U is divided into 8 segments. We name them
from left to right as s1, . . . , s8. For example, s1 consists of only u1 while s3 consists of
u4, . . . , u8. Moreover, c(s1) = 1, `(s1) = r(s1) = 0, c(s2) = 2, `(s2) = 0, r(s2) = 1, c(s3) = 6,
`(s3) = r(s3) = 2, c(s4) = 10, `(s4) = r(s4) = 1, c(s5) = 14, `(s5) = r(s5) = 2, c(s6) = 17,
`(s6) = r(s6) = 0, c(s7) = 19, `(s7) = r(s7) = 1, c(s8) = 22, `(s8) = 1, and r(s8) = 2.
Alternatively, it is also valid that c(s8) = 23, `(s8) = 2, and r(s8) = 1.

Given M∗
un (and hence the partition of U as U0 ∪ U1 ∪ U2,1 ∪ U2,2), the division of U into

segments is unique. To see this, consider two relations Rleft and Rright defined on U as follows:
For every pair (ui, uj), uiRleftuj if and only if j = i+1 and ui ∈ U2,1; uiRrightuj if and only if
j = i− 1 and ui ∈ U2,2. Then, the segments one-to-one correspond to the equivalence classes
of the symmetric and transitive closure of the relation Rleft ∪Rright.]

2. For each segment s, compute two integers xs and ys as follows:

• If uc(s) ∈ U0, then xs = c(s)− 1 and ys = c(s) + 1.

• If uc(s) ∈ U1, then xs = ys = c(s).

• If uc(s) ∈ U2,1, then xs = c(s) and ys = c(s) + 1.

• If uc(s) ∈ U2,2, then xs = c(s)− 1 and ys = c(s).

[Comment: In our example (cf. Figure 7), xs1 = ys1 = 1, xs2 = 1, ys2 = 3, xs3 = ys3 = 6,
xs4 = 9, ys4 = 11, xs5 = ys5 = 14, xs6 = 16, ys6 = 18, xs7 = ys7 = 19, xs8 = 22, and ys8 = 23.

In other words, for each segment s, uxs is the rightmost vertex in s with uxs ∈ U2,1 ∪ U1,
while uys is the leftmost vertex in s with uys ∈ U2,2 ∪ U1.]

3. Let
U e

2,1 =
⋃
s

{ui | (xs − i) mod 2 = 0, c(s)− `(s) ≤ i ≤ xs},

Uo
2,1 =

⋃
s

{ui | (xs − i) mod 2 = 1, c(s)− `(s) ≤ i ≤ xs},

U e
2,2 =

⋃
s

{ui | (i− ys) mod 2 = 0, ys ≤ i ≤ c(s) + r(s)},

Uo
2,2 =

⋃
s

{ui | (i− ys) mod 2 = 1, ys ≤ i ≤ c(s) + r(s)},

where s runs over all segments.

[Comment: In our example (cf. Figure 7), U e
2,1 = {u1, u4, u6, u9, u12, u14, u19, u22}, Uo

2,1 =
{u5, u13, u18, u21}, U e

2,2 = {u1, u3, u6, u8, u11, u14, u16, u19, u23}, and Uo
2,2 = {u7, u15, u20, u24}.

Note that if a vertex ui ∈ U belongs to more than one of the four sets U e
2,1, Uo

2,1, U e
2,2, Uo

2,2,
then ui ∈ U1, ui is the center of the segment containing ui, and ui belongs to only U e

2,1 and
U e

2,2.]

11



4. Let

M e
2,1 = {(ui, vj) ∈ M∗

un | ui ∈ U e
2,1} ∪ {(ui+1, vj+1) | ui ∈ U e

2,1 ∩ U2,1 and {ui, vj} ∈ M∗
un},

Mo
2,1 = {(ui, vj) ∈ M∗

un | ui ∈ Uo
2,1} ∪ {(ui+1, vj+1) | ui ∈ Uo

2,1 ∩ U2,1 and {ui, vj} ∈ M∗
un},

M e
2,2 = {(ui, vj) ∈ M∗

un | ui ∈ U e
2,2} ∪ {(ui−1, vj−1) | ui ∈ U e

2,2 ∩ U2,2 and {ui, vj} ∈ M∗
un},

Mo
2,2 = {(ui, vj) ∈ M∗

un | ui ∈ Uo
2,2} ∪ {(ui−1, vj−1) | ui ∈ Uo

2,2 ∩ U2,2 and {ui, vj} ∈ M∗
un}.

[Comment: M e
2,1,M

o
2,1,M

e
2,2,M

o
2,2 are constrained matchings in G (cf. Lemma 2.7). In our

example (cf. Figure 7), the edges in M e
2,1 are (u1, v1), (u4, v5), (u5, v6), (u6, v2), (u9, v9),

(u10, v10), (u12, v11), (u13, v12), (u14, v3), (u19, v4), (u22, v23), and (u23, v24); the edges in Mo
2,1

are (u5, v7), (u6, v8), (u13, v13), (u14, v14), (u18, v17), (u19, v18), (u21, v21), and (u22, v22); the
edges in M e

2,2 are (u1, v1), (u2, v5), (u3, v6), (u6, v2), (u7, v7), (u8, v8), (u10, v13), (u11, v14),
(u14, v3), (u15, v17), (u16, v18), (u19, v4), (u22, v21), and (u23, v22); the edges in Mo

2,2 are (u6, v9),
(u7, v10), (u14, v15), (u15, v16), (u19, v19), (u20, v20), (u23, v23), and (u24, v24).

Note that for each edge (ui, vj) ∈ Mo
2,1 ∪ Mo

2,2, we have vj 6∈ J1. Indeed, Uo
2,1 ⊆ U2,1 and

Uo
2,2 ⊆ U2,2.]

5. For the set Ūo
2,1 of vertices of U that are not matched by Mo

2,1, compute a maximum-weight
matching No

2,1 between the vertices in Ūo
2,1 and the vertices in J1.

[Comment: Mo
2,1 ∪No

2,1 is a constrained matching in G (cf. Lemma 2.7). In our example (cf.
Figures 1 and 7), the vertices in Ūo

2,1 are u1, . . . , u4, u7, . . . , u12, u15, . . . , u17, u20, u23, and
u24; No

2,1 = {(u1, v1), (u9, v2)}.]

6. For the set Ūo
2,2 of vertices of U that are not matched by Mo

2,2, compute a maximum-weight
matching No

2,2 between the vertices in Ūo
2,2 and the vertices in J1.

[Comment: Mo
2,2 ∪No

2,2 is a constrained matching in G (cf. Lemma 2.7). In our example (cf.
Figures 1 and 7), the vertices in Ūo

2,2 are u1, . . . , u5, u8, . . . , u13, u16, . . . , u18, u21, and u22;
No

2,2 = {(u2, v1), (u9, v2)}.]

7. Let Z4 be the maximum-weight matching among M e
2,1, Mo

2,1∪No
2,1, M e

2,2, Mo
2,2∪No

2,2. Output
Z4.

u1 u3 u4u2 u5 u6 u8 u9u7 u10 u11 u12 u13 u14 u15 u16 u17 u18

v1 v6 v2v5 v4v7 v9 v10v8 v11 v12 v13 v14 v3 v15 v16

u19 u20 u21 u22 u23 u24

v17 v18 v20 v21 v22 v23 v24v19

Figure 7: The segments of U obtained from M∗
un in Figure 4. Each segment is shown by drawing

a common line above the vertices of that segment.

Lemma 2.7 M e
2,1, Mo

2,1 ∪No
2,1, M e

2,2 and Mo
2,2 ∪No

2,2 are constrained matchings in G.

Proof. Note that U e
2,1 ⊆ U − U2,2. Thus, to prove that M e

2,1 is a constrained matching in G, it
suffices to prove that for every ui ∈ U e

2,1 ∩U2,1, ui+1 6∈ U e
2,1. Consider an arbitrary ui ∈ U e

2,1 ∩U2,1.
By the definition of a segment, ui and ui+1 belong to the same segment. So, by the definition of
U e

2,1, ui+1 6∈ U e
2,1. This completes the proof that M e

2,1 is a constrained matching of G. Similarly,
we can prove that Mo

2,1, M e
2,2 and Mo

2,2 are constrained matchings in G.
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To see that Mo
2,1∪No

2,1 and Mo
2,2∪No

2,2 are constrained matchings in G, first note that Uo
2,1 ⊆ U2,1

and Uo
2,2 ⊆ U2,2. Thus, for every edge (ui, vj) ∈ Mo

2,1 ∪Mo
2,2, we have vj 6∈ J1. In turn, Mo

2,1 ∪No
2,1

is a constrained matching in G. Similarly, Mo
2,2 ∪No

2,2 is a constrained matching in G. 2

Lemma 2.8 w(M e
2,1) + w(Mo

2,1) + w(M e
2,2) + w(Mo

2,2) ≥ 2w(M∗
un).

Proof. Consider an arbitrary edge (ui, vj) ∈ M∗
un. We distinguish three cases as follows.

Case 1: ui ∈ U1 (i.e., vj ∈ J1). Then, ui must be the center of a segment and hence ui is
contained in both U e

2,1 and U e
2,2 by Step 3; consequently, edge (ui, vj) is contained in both M e

2,1 and
M e

2,2 by Step 4.
Case 2: ui ∈ U2,1 (hence, vj ∈ J2). Then, ui and ui+1 must belong to the same segment, say

s. If (ui+1, vj+1) is also in M∗
un, then either ui or ui+1 is the center of s. In either case, xs = i and

ys = i + 1, and hence (ui, vj) belongs to both M e
2,1 and M e

2,2 by Step 4 (and so does (ui+1, vj+1)).
On the other hand, if (ui+1, vj+1) is not in M∗

un, then either M e
2,1 or Mo

2,1 contains both (ui, vj) and
(ui+1, vj+1). Since (ui, vj) and (ui+1, vj+1) have the same weight, we can think of (ui+1, vj+1) as a
copy of (ui, vj).

Case 3: ui ∈ U2,2 (hence, vj ∈ J ′
2). Similar to Case 2.

By the above case-analysis, we see that for each edge (ui, vj) of M∗
un, either (ui, vj) belongs to

two of M e
2,1,M

o
2,1,M

e
2,2,M

o
2,2, or one of M e

2,1,M
o
2,1,M

e
2,2,M

o
2,2 contains both (ui, vj) and its copy.

This completes the proof of the lemma. 2

Lemma 2.9 (U − Ūo
2,1) ∩ (U − Ūo

2,2) ⊆ W .

Proof. First note that U−Ūo
2,1 (respectively, U−Ūo

2,2) is the set of vertices in U that are matched
by Mo

2,1 (respectively, Mo
2,2). Thus, U − Ūo

2,1 ⊆ {uc(s)−`(s), . . . , ux(s)−1, ux(s) | s is a segment} and
U − Ūo

2,2 ⊆ {uy(s), uy(s)+1, . . . , uc(s)+r(s) | s is a segment}. In turn, since segments are disjoint
and x(s) ≤ y(s) for every segment s, it follows that for every ui ∈ (U − Ūo

2,1) ∩ (U − Ūo
2,2), we

have i = x(s) = y(s) for some segment s. Now, by the definitions of x(s) and y(s), the fact
i = x(s) = y(s) implies ui ∈ U1. Moreover, since ui ∈ (U − Ūo

2,1) ∩ (U − Ūo
2,2), ui is matched by

Mo
2,1 and so ui−1 ∈ U2,1. For the same reason, ui is matched by Mo

2,2 and so ui+1 ∈ U2,2.
In summary, for every ui ∈ (U−Ūo

2,1)∩(U−Ūo
2,2), we have ui ∈ U1, ui−1 ∈ U2,1, and ui+1 ∈ U2,2;

hence, ui ∈ W . This completes the proof of the lemma. 2

2.6 Performance of the algorithm when β is small

For a contradiction, assume the following:

Assumption 2.10 β < (1
6 + 5

3ε)w(M∗) and max{w(Z1), w(Z4)} < (1
2 + ε)w(M∗).

We want to derive a contradiction under this assumption. First, we derive three inequalities
from this assumption and the lemmas in Section 2.5.

Lemma 2.11 w(Mo
2,1) + w(Mo

2,2) ≥ (1− 2ε)w(M∗).

Proof. Assume, on the contrary, that w(Mo
2,1) + w(Mo

2,2) < (1 − 2ε)w(M∗). By Lemma 2.8
and the fact that w(M∗

un) ≥ w(M∗), we have w(M e
2,1) + w(M e

2,2) ≥ (1 + 2ε)w(M∗). But then
max{w(M e

2,1), w(M e
2,2)} ≥ (1

2 + ε)w(M∗), contradicting Assumption 2.10. 2

Lemma 2.12 w(No
2,1) + w(No

2,2) < 4εw(M∗).
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Proof. Obviously, w(Mo
2,1 ∪No

2,1) + w(Mo
2,2 ∪No

2,2) = w(Mo
2,1) + w(Mo

2,2) + w(No
2,1) + w(No

2,2).
By Assumption 2.10, w(Mo

2,1 ∪ No
2,1) + w(Mo

2,2 ∪ No
2,2) < (1 + 2ε)w(M∗). So, by Lemma 2.11,

w(No
2,1) + w(No

2,2) < 4εw(M∗). 2

Lemma 2.13 β > w1(M∗)− 4εw(M∗).

Proof. Let γ1 be the total weight of all edges (ui, vj) ∈ M∗ such that vj ∈ J1 and ui ∈ Ūo
2,1.

Let γ2 be the total weight of all edges (ui, vj) ∈ M∗ such that vj ∈ J1 and ui ∈ Ūo
2,2. Let γ3 be

the total weight of all edges (ui, vj) ∈ M∗ such that vj ∈ J1 and ui ∈ (U − Ūo
2,1) ∩ (U − Ūo

2,2).
Clearly, γ1 + γ2 + γ3 ≥ w1(M∗). By Steps 5 and 6 in Algorithm 4, γ1 ≤ w(No

2,1) and γ2 ≤ w(No
2,2).

So, by Lemma 2.12, γ1 + γ2 < 4εw(M∗). Moreover, by Lemma 2.9, β ≥ γ3. Thus, β ≥ γ3 ≥
w1(M∗)− γ1 − γ2 > w1(M∗)− 4εw(M∗). 2

Now, we are ready to get a contradiction. By Corollary 2.2 and Assumption 2.10, w1(M∗) >
(1
2−3ε)w(M∗). Thus, by Lemma 2.13, β > (1

2−7ε)w(M∗). On the other hand, by Assumption 2.10,
β < (1

6 + 5
3ε)w(M∗). Hence,

1
2
− 7ε <

1
6

+
5
3
ε,

contradicting our choice that ε = 1
26 .

Therefore, we have

Theorem 2.14 A constrained matching Z in G with w(Z) ≥ 13
7 w(M∗) can be found in O(I(n1 +

n2)(I + n1 + n2)) time.

3 2-ISP with a special profit function

In this section, we consider proportional 2-ISP, where all the positive profits of executing a job are
proportional to the lengths of the jobs. A 5

3 -approximation algorithm was recently presented in [4]
for proportional 2-ISP. Here, we present a (1.5 + ε)-approximation algorithm for it for any ε > 0.

Let U , J1, and J2 be as in Section 2. Let E be the set of those (ui, vj) ∈ U × J1 such that
the profit of executing job vj in time unit ui is positive. Let F be the set of those (ui, ui+1, vj) ∈
U × U × J2 such that the profit of executing job vj in time units ui and ui+1 is positive.

Consider the hypergraph H = (U ∪ J1 ∪ J2, E ∪ F ) on vertex set U ∪ J1 ∪ J2 and on edge set
E ∪ F . Obviously, proportional 2-ISP becomes the problem of finding a matching E′ ∪ F ′ in H
with E′ ⊆ E and F ′ ⊆ F such that |E′|+ 2|F ′| is maximized over all matchings in H. Our idea is
to reduce this problem to the problem of finding a maximum cardinality matching in a 3-uniform
hypergraph (i.e. each hyperedge consists of exactly three vertices). Since the latter problem admits
a (1.5 + ε)-approximation algorithm [6] and our reduction is approximation preserving, it follows
that proportional 2-ISP admits a (1.5 + ε)-approximation algorithm.

We now detail the approximation-preserving reduction. From H, we construct a 3-uniform
hypergraph H as follows. Let

• Û = {ûi | ui ∈ U} and U = {ui | ui ∈ U};

• Ĵ2 = {v̂j | vj ∈ J2} and J2 = {vj | vj ∈ J2};

• Ẽ = {{ûi, ui, vj} | (ui, vj) ∈ E};

• F̂ = {{ûi, ûi+1, v̂j} | (ui, ui+1, vj) ∈ F};

• F = {{ui, ui+1, vj} | (ui, ui+1, vj) ∈ F}.

14



The vertex set of H is Û ∪ U ∪ J1 ∪ Ĵ2 ∪ J2, and the edge set is Ẽ ∪ F̂ ∪ F .

Lemma 3.1 Let E′ ∪ F ′ with E′ ⊆ E and F ′ ⊆ F be a matching in H. Then, there is a matching
in H of cardinality |E′|+ 2|F ′|.

Proof. It suffices to check that Ẽ′∪F̂ ′∪F ′ is a matching in H, where Ẽ′ = {{ûi, ui, vj} | (ui, vj) ∈
E′}, F̂ ′ = {{ûi, ûi+1, v̂j} | (ui, ui+1, vj) ∈ F ′}, and F ′ = {{ui, ui+1, vj} | (ui, ui+1, vj) ∈ F ′}. 2

Lemma 3.2 Let Ẽ′ ∪ F̂ ′ ∪ F
′ be a matching in H with Ẽ′ ⊆ Ẽ, F̂ ′ ⊆ F̂ and F

′ ⊆ F . Then, we
can compute a matching E′ ∪ F ′ in H with E′ ⊆ E, F ′ ⊆ F , and |E′|+ 2|F ′| ≥ |Ẽ′|+ |F̂ ′|+ |F ′|.

Proof. Let Ẽ′∪F̂ ′∪F
′ be a matching inH as in the lemma. Consider E′ = {(ui, vj) | {ûi, ui, vj} ∈

Ẽ′}. Clearly, E′ is a matching in H, that is, no vertex in U ∪ J1 belongs to more than one pair in
E′. Moreover, if ui ∈ U is a vertex belonging to some pair in E′, then neither ûi belongs to some
triple in F̂ ′ nor ui belongs to some triple in F

′.
Now, either |F̂ ′| ≥ |F ′| or |F̂ ′| ≤ |F ′|. We assume |F̂ ′| ≥ |F ′|; the other case is similar. Consider

F ′ = {(ui, ui+1, vj) | {ûi, ûi+1, v̂j} ∈ F̂ ′}. Clearly, F ′ is a matching in H, that is, no vertex in U∪J2

belongs to more than one triple in F ′. Note that E′ ∪ F ′ is also a matching in H and

|E′|+ 2|F ′| = |Ẽ′|+ 2 max{|F̂ ′|, |F ′|} ≥ |Ẽ′|+ |F̂ ′|+ |F ′|.

2

By the above two lemmas, we have

Theorem 3.3 For every ε > 0, there is a polynomial-time (1.5 + ε)-approximation algorithm for
proportional 2-ISP.

Next, we sketch how to modify the above algorithm to obtain a (1.5+ε)-approximation algorithm
for the unweighted 2-ISP problem. Let U , J1, and J2 be as in Section 2. As in the above, consider
the hypergraph H = (U ∪ J1 ∪ J2, E ∪ F ), where E is the set of those (ui, vj) ∈ U × J1 such that
job vj can be executed in time unit ui and F be the set of those (ui, ui+1, vj) ∈ U × U × J2 such
that job vj can be executed in time units ui and ui+1. Clearly, unweighted 2-ISP is the problem
of finding a maximum cardinality matching E′ ∪ F ′ in H with E′ ⊆ E and F ′ ⊆ F . It is well
known [6] that, when the cardinality of all edges of a hypergraph H is bounded by a constant k,
then the problem of finding a maximum cardinality matching in H admits a (k

2 + ε)-approximation
algorithm. In this case, we can take k = 3, which implies a (1.5 + ε)-approximation algorithm for
the unweighted 2-ISP problem.

4 A new heuristic for protein NMR peak assignment

As mentioned in Section 1, the 13
7 -approximation algorithm for 2-ISP can be easily incorporated

into a heuristic framework for protein NMR peak assignment introduced in [7]. The heuristic first
tries to assign “long” segments of three or more spin systems that are under the consecutivity
constraint to segments of the host protein sequence, using a simple greedy strategy, and then solves
an instance of 2-ISP formed by the remaining unassigned spin systems and amino acids. The first
step of the framework is also called greedy filtering and may potentially help improve the accuracy
of the heuristic significantly in practice because we are often able to assign long segments of spin
systems with high confidence. We have tested the new heuristic based on the 13

7 -approximation
algorithm for 2-ISP and compared the results with two of the best approximation and heuristic
algorithms in [3, 4, 7], namely the 2-approximation algorithm for the interval scheduling problem
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[3, 4] and the branch-and-bound algorithm (augmented with greedy filtering) [7]6. The test data
consists of 70 (pseudo) real instances of NMR peak assignment derived from 14 proteins. For each
protein, the data of spin systems were from the experimental data in the BioMagResBank database
[10], while 5 (density) levels of consecutivity constraints were simulated, as shown in Table 1.

Note that, both the new heuristic algorithm and the 2-approximation algorithm are very fast in
general while the branch-and-bound algorithm can be much slower because it may have to explore
much of the entire search space. On a standard Linux workstation, it took seconds to hours for each
assignment by the branch-and-bound algorithm in the above experiment, while it took a few seconds
consistently using either the new heuristic algorithm or the 2-approximation algorithm. Table 1
shows the comparison of the performance of the three algorithms in terms of (i) the weight of the
assignment and (ii) the number of correctly assigned spin systems. Although measure (i) is the
objective in the interval scheduling problem, measure (ii) is what it counts in NMR peak assignment.
Clearly, the new heuristic outperformed the 2-approximation algorithm in both measures by large
margins. Furthermore, the new heuristic outperformed the branch-and-bound algorithm in measure
(ii), although the branch-and-bound algorithm did slightly better in measure (i). More precisely,
the new heuristic was able to assign the same number of or more spin systems correctly than the
branch-and-bound algorithm on 53 out of the 70 instances, among which the new heuristic algorithm
improved over the branch-and-bound algorithm on 39 instances.7 Previously, the branch-and-bound
algorithm was known to have the best assignment accuracy (among all heuristics proposed for the
interval scheduling problem) [7]. The result demonstrates that this new heuristic based on the 13

7 -
approximation algorithm for 2-ISP will be very useful in the automation of NMR peak assignment.
In particular, the good assignment accuracy and fast speed allow us to tackle some large-scale
problems in experimental NMR peak assignment within realistic computation resources. As an
example of application, the consecutivity information derived from experiments may sometimes be
ambiguous. The new heuristic algorithm makes it possible for the user to experiment with different
interpretations of consecutivity and compare the resulting assignments.

5 Discussion

The computational method, presented in this paper, provides a more accurate and more efficient
technique for NMR peak assignment, compared to our previous algorithms [3, 4, 7, 9]. We are
in the process of incorporating this algorithm into a computational pipeline for fast protein fold
recognition and structure determination, using an iterative procedure of NMR peak assignments
and protein structure prediction. The basic idea of this pipeline is briefly outlined as follows.

Recent developments in applications of residual dipolar coupling (RDC) data to protein structure
determination have indicated that RDC data alone may be adequate for accurate resolution of pro-
tein structures [12], bypassing the expensive and time-consuming step of NOE (nuclear Overhauser
effect) data collection and assignments. We have recently demonstrated (unpublished results) that
if the RDC data/peaks are accurately assigned, we can accurately identify the correct fold of a
target protein in the PDB database [11] even when the target protein has lower than 25% of se-
quence identity with the corresponding PDB protein of the same structural fold. In addition, we
have found that RDC data can be used to accurately rank sequence-fold alignments (alignment
accuracy), suggesting the possibility of protein backbone structure prediction by combining RDC
data and fold-recognition techniques like protein threading [14].

By including RDC data in our peak assignment algorithm (like [13]), we expect to achieve
two things: (a) an improved accuracy of peak assignments with the added information, and (b) an
assignment (possibly partial) of the RDC peaks. Using assigned RDC peaks and the aforementioned
strategy, we can identify the correct structural folds of a target protein in the PDB database. Then
based on the identified structural fold and a computed sequence-fold alignment, we can back-

6It is worth mentioning that other automated NMR peak assignment programs generally require more NMR
experiments, and so they cannot be compared with ours.

7It is not completely clear to us why the new heuristic did better on these 39 instances.
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W1 R1 W2 R2 W3 R3 W1 R1 W2 R2 W3 R3

bmr4027 5 1873820 40 1827498 3 1934329 33 bmr4144 5 919419 11 921816 17 997603 16
bmr4027 6 1854762 64 1818131 8 1921093 37 bmr4144 6 923546 21 897500 11 993361 11
bmr4027 7 1845477 89 1784027 44 1910897 74 bmr4144 7 954141 68 842073 2 954633 64
bmr4027 8 1900416 151 1671475 19 1894532 128 bmr4144 8 953741 69 804531 5 954585 67
bmr4027 9 1896606 156 1652859 60 1896606 156 bmr4144 9 952241 75 837519 35 952241 75
bmr4288 5 1243144 36 1169907 6 1255475 12 bmr4302 5 1275787 31 1219920 11 1331391 16
bmr4288 6 1197106 49 1179110 15 1261696 26 bmr4302 6 1282789 51 1174564 0 1324395 43
bmr4288 7 1232771 65 1112288 22 1251020 57 bmr4302 7 1310324 78 1181267 8 1323495 62
bmr4288 8 1201192 68 1133554 35 1238344 66 bmr4302 8 1308217 112 1152323 27 1308217 103
bmr4288 9 1249465 105 1051817 48 1249465 105 bmr4302 9 1250300 111 1293954 107 1298321 110
bmr4309 5 1974762 35 1954955 13 2117910 25 bmr4316 5 999920 43 890944 2 1009329 30
bmr4309 6 1960424 48 1924727 12 2110992 57 bmr4316 6 967526 59 863207 13 1022505 35
bmr4309 7 2046029 119 1885986 24 2093595 77 bmr4316 7 925817 75 882818 9 1029287 79
bmr4309 8 1962114 121 1868338 55 2067295 101 bmr4316 8 1005898 75 957378 62 1029287 89
bmr4309 9 2048987 178 1796864 95 2048987 178 bmr4316 9 1029827 89 984774 85 1029287 89
bmr4318 5 2338383 19 2355926 2 2497294 20 bmr4353 5 1468772 20 1417351 8 1532518 17
bmr4318 6 2265090 34 2312260 13 2481789 35 bmr4353 6 1428944 23 1421633 18 1524784 24
bmr4318 7 2268700 73 2259377 52 2444439 52 bmr4353 7 1461648 56 1370235 14 1516244 44
bmr4318 8 2217936 92 2214174 63 2420829 62 bmr4353 8 1443261 78 1337329 9 1472871 80
bmr4318 9 2339582 201 2158223 122 2383453 201 bmr4353 9 1474022 124 1273988 15 1483781 126
bmr4391 5 691804 10 688400 5 753046 18 bmr4393 5 1816837 49 1742954 3 1874095 41
bmr4391 6 680959 7 699066 8 745501 10 bmr4393 6 1843685 71 1772955 42 1871616 59
bmr4391 7 699199 17 684953 37 735683 26 bmr4393 7 1847874 102 1722026 22 1862221 76
bmr4391 8 688368 38 663147 30 723111 42 bmr4393 8 1832576 129 1709538 65 1853749 130
bmr4391 9 710914 66 687290 45 710914 66 bmr4393 9 1837340 142 1527885 3 1851298 152
bmr4579 5 913713 18 894084 2 967647 15 bmr4670 5 1365873 32 1309727 11 1435721 22
bmr4579 6 889118 35 911564 8 976720 32 bmr4670 6 1326082 35 1290812 13 1429449 30
bmr4579 7 903586 48 873884 17 958335 44 bmr4670 7 1353618 78 1239001 6 1402335 38
bmr4579 8 933371 72 877556 26 956115 63 bmr4670 8 1391055 116 1236726 19 1391055 116
bmr4579 9 950173 86 760356 0 950173 86 bmr4670 9 1391055 120 1237614 60 1391055 116
bmr4752 5 881020 21 796019 8 884307 21 bmr4929 5 1410017 17 1408112 4 1496460 23
bmr4752 6 877313 32 824289 6 892520 32 bmr4929 6 1391418 36 1385673 12 1496954 32
bmr4752 7 866896 43 752633 3 887292 41 bmr4929 7 1427122 69 1378166 30 1490155 56
bmr4752 8 882755 68 730276 17 882755 68 bmr4929 8 1459368 82 1281548 18 1481593 88
bmr4752 9 882755 68 812950 44 882755 68 bmr4929 9 1477704 114 1178499 20 1477704 114

Table 1: The performance of the new heuristic comprising greedy filtering and the 13
7 -approximation algo-

rithm for 2-ISP in comparison with two of the best approximation and heuristic algorithms in [3, 4, 7] on 70
instances of NMR peak assignment. The protein is represented by the entry name in the BioMagResBank
database [10], e.g., bmr4752. The number after the underscore symbol indicates the density level of consec-
utivity constraints, e.g., 6 means that 60% of the spin systems are connected to form segments. W1 and R1

represent the total assignment weight and number of spin systems correctly assigned by the new heuristic,
respectively. W2 and R2 (W3 and R3) are corresponding values for the 2-approximation algorithm for the
interval scheduling problem (the branch-and-bound algorithm augmented with greedy filtering, respectively).
The numbers in bold indicate that all the spin systems are correctly assigned. The total numbers of spin
systems in other proteins are 158 for bmr4027, 215 for bmr4318, 78 for bmr4144, 115 for bmr4302, and 156
for bmr4393.

calculate the theoretical RDC peaks of the predicted backbone structure. Through matching the
theoretical and experimental RDC peaks, we can establish an iterative procedure for NMR data
assignment and structure prediction. Such a process will iterate until most of the RDC peaks are
assigned and a structure is predicted. We expect that such a procedure will prove to be highly
effective for fast and accurate protein fold and backbone structure predictions, using NMR data
from only a small number of NMR experiments.
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