
Approximation Algorithms for NMR Spectral Peak Assignment

Zhi-Zhong Chen ∗ Tao Jiang † Guohui Lin ‡ Jianjun Wen § Dong Xu ‖

Jinbo Xu ¶ Ying Xu ‖

February 7, 2002

Abstract

We study a constrained bipartite matching problem where the input is a weighted bipartite
graph G = (U, V,E), U is a set of vertices following a sequential order, V is another set of
vertices partitioned into a collection of disjoint subsets, each following a sequential order, and
E is a set of edges between U and V with non-negative weights. The objective is to find a
matching in G with the maximum weight that satisfies the given sequential orders on both U
and V , i.e. if ui+1 follows ui in U and if vj+1 follows vj in V , then ui is matched with vj if
and only if ui+1 is matched with vj+1. The problem has recently been formulated as a crucial
step in an algorithmic approach for interpreting NMR spectral data [16]. The interpretation
of NMR spectral data is known as a key problem in protein structure determination via NMR
spectroscopy. Unfortunately, the constrained bipartite matching problem is NP-hard [16]. We
first propose a 2-approximation algorithm for the problem, which follows directly from the recent
result of Bar-Noy et al. [2] on interval scheduling. However, our extensive experimental results
on real NMR spectral data illustrate that the algorithm performs poorly in terms of recovering
target-matching edges. We then propose another approximation algorithm that tries to take
advantage of the “density” of the sequential order information in V . Although we are only
able to prove an approximation ratio of 3 log2D for this algorithm, where D is the length of
a longest string in V , the experimental results demonstrate that this new algorithm performs
much better on real data, i.e. it is able to recover a large fraction of target-matching edges and
the weight of its output matching is often in fact close to the maximum. We also prove that the
problem is MAX SNP-hard, even if the input bipartite graph is unweighted. We further present
an approximation algorithm for a nontrivial special case that breaks the ratio 2 barrier.
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1 Introduction

The Human Genome Project [1] has led to the identification of a vast majority of protein-encoding
genes in the human genome. To facilitate a systematic study of the biological functions of these
proteins, the National Institutes of Health (NIH) has recently launched another ambitious project,
the Structural Genomics Project [12]. Its main goal is to solve about 100,000 protein structures
within the next ten years, through the development and application of significantly improved ex-
perimental and computational technologies. Along with X-ray crystallography, nuclear magnetic
resonance (NMR) spectroscopy has been one of the two main experimental methods for solving
protein structures. Among the seven pilot Structural Genomics Centers set up by NIH, one center
is devoted to protein structure determination via NMR.

Protein structure determination via NMR generally involves the following three key steps:

• NMR spectral data generation, which produces

– resonance peaks grouped into spin systems,
– certain geometric relationships (e.g. distances and angles) between the spin systems;

• NMR data interpretation, which involves relating the spin systems to the amino acids in
the target protein sequence, providing both inter- and intra- amino acid distance and angle
information;

• NMR structure calculation, which calculates the target protein structure through molecu-
lar dynamics (MD) and energy minimization (EM) under the constraints of the identified
geometric relationships.

It typically takes several months to a year to solve a single protein structure by NMR, and a
major part of that time is used for NMR data interpretation. Up until very recently, NMR data
interpretation has been done mainly using manual procedures. Though a number of computer
programs [4, 8, 10, 15, 17] have recently been developed to assist the data interpretation, most
NMR labs are still doing the peak assignments manually or semi-manually for quality reasons.
With the recent progress in NMR technologies for speeding up the data production rate, we expect
that NMR data interpretation will soon become the sole bottleneck in a high-throughput NMR
structure determination process.

Two key pieces of information form the foundation of NMR peak assignment:

• Each amino acid has a somewhat “unique” spin system 1;

• The sequential adjacency information between spin systems in a protein sequence is often
inferable from the spectral data. However, this type of information is generally incomplete,
i.e. we may often be able to obtain the adjacency relationship between some of the spin
systems but not all.

1This information alone is not sufficient for a correct assignment since a protein sequence typically contains
multiple copies of the same amino acid. Additional information is necessary in order to tell if a particular spin system
corresponds to, for example, an Alanine at a particular sequence position.
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In a recently developed computational framework [16], the NMR peak assignment problem has
been formulated as a constrained bipartite matching problem. In this framework, each amino
acid (also called residue) is represented as a vertex of U and each spin system is represented as
a vertex of V (and thus generally |U | = |V |). A pair (ui, vj) ∈ U × V of vertices that represents
a potential assignment has a non-negative weight wi,j = w(ui, vj), which scores the preference
of assigning spin system vj to amino acid ui. Let E denote the set of all potential assignments.
Clearly G = (U, V,E ⊆ U × V ) is a bipartite graph. In general, the edges in E have different
weights and G is said weighted. In the special case that the edges have equal weight, G is said
unweighted. For more detailed information about the weighting scheme, we refer the reader to [16].
The Maximum Weight Bipartite Matching [7] provides a natural framework for the study
of the NMR peak assignment problem. Nonetheless, some resonance peaks from a single NMR
experiment are known to belong to atoms from consecutive amino acids and thus their host spin
systems should be mapped to consecutive amino acids. Such spin systems that should be mapped
consecutively are said to be adjacent and their corresponding vertices in V are required to follow
a sequential order. For convenience, we number the amino acids consecutively in the order that
they appear in the protein sequence, and number the spin systems in such a way that adjacent
spin systems have consecutive indices. In this formulation, a feasible matching M in G is one such
that if vj and vj+1 are sequentially adjacent, then edge (ui, vj) ∈ M iff edge (ui+1, vj+1) ∈ M .
The Constrained Bipartite Matching (CBM) problem is to find a feasible matching in G
achieving the maximum weight.

We call a maximal set of vertices in V that are consecutively adjacent a string. The CBM

problem in which the maximum length of strings in V is D is called the D-String CBM problem.
Without loss of generality, assume D > 1. In the practice of NMR peak assignment, D is usually
between 4 and 10. One may notice that the standard Maximum Weight Bipartite Matching

problem is simply the 1-String CBM problem, and it is known to be solvable in polynomial
time [7]. Unfortunately, the D-String CBM problem is intractable even when it is unweighted
and D = 2.

Theorem 1.1 [16] The unweighted 2-String CBM is NP-hard.

A two-layer algorithm for D-String CBM has been proposed in [16] that attempts to fix likely
assignments and filter out unlikely assignments for long strings in the first layer of computation. In
the second layer, it tries all possible combinations of assignments for long strings (i.e. at least 3 spin
systems) and extends them to perfect matchings (recall that |U | = |V |) by exhaustive enumeration.
A perfect matching with the maximum weight generated in this way is output as the result. The
current implementation of the algorithm runs efficiently for cases where the number of long strings
is relatively small and most of the long strings consist of at least 4 or 5 spin systems. Its running
time goes up quickly (i.e. exponentially) when the instance has many short strings consisting of 1
or 2 spin systems.

In this paper, we first propose a simple 2-approximation algorithm for D-String CBM that
directly follows from the recent result of Bar-Noy et al. [2] on interval scheduling. However, our
experimental results on 126 instances of NMR spectral data derived from 14 proteins illustrate that
the algorithm performs poorly in terms of recovering target-matching edges. One explanation is
that the algorithm looks for matching edges by scanning U from left to right, hence giving preference
to edges close to the beginning of U . Consequently, it may miss many target-matching edges. We
thus propose a second approximation algorithm that attempts to take advantage of the “density” of
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the spin system adjacency information in V . Although we are only able to prove an approximation
ratio of 3 log2D for this algorithm, the experimental results demonstrate that this new algorithm
performs much better than the 2-approximation algorithm on real data. In fact, it often recovers
as many target-matching edges as the (exhaustive) two-layer algorithm in [16] and the weight of its
output matching is often close to the maximum. We then prove that unweighted 2-String CBM is
MAX SNP-hard, implying that the problem has no polynomial-time approximation scheme (PTAS)
unless P = NP . The proof extends to all constants D ≥ 2. Although ratio 2 seems to be a barrier
to polynomial-time approximation algorithms for D-String CBM, we show that this barrier can
be broken for unweighted 2-String CBM, by presenting a 1.7778-approximation algorithm. We
remark that unweighted D-String CBM could be interesting because it is simpler and is useful
in NMR peak assignment when the edge weights fall into a small range. Moreover, since long
strings in V are usually associated with good quality spectral data, algorithms that attempt to
solve unweighted D-String CBM could yield reasonably good NMR peak assignment since they
tend to favor long strings. We expect that the techniques developed in this work, in conjunction
with the work of [16], will lead to a significantly improved capability for NMR data interpretation,
providing a highly effective tool for high-throughput protein structure determination.

The paper is organized as follows. Section 2 describes the 2-approximation and the 3 log2D-
approximation algorithms for D-String CBM, and compares their performances (as well as that
of the two-layer algorithm) on 126 real NMR spectral data derived from 14 proteins. It also gives
a proof of the MAX SNP-hardness of unweighted 2-String CBM. Section 3 presents an improved
approximation algorithm for unweighted 2-String CBM. Section 4 concludes the paper with some
future research directions.

2 Weighted Constrained Bipartite Matching
We first present two approximation algorithms for D-String CBM. Consider an instance of D-

String CBM:G = (U, V,E), where U = {u1, u2, . . . , un1}, V = {v1 · · · vi1 , vi1+1 · · · vi2 , . . . , vip · · · vn2},
and E ⊆ U × V is the set of edges. Here, vij−1+1 · · · vij in V denotes a string of consecutively ad-
jacent spin systems. We may assume that for every substring vjvj+1 of a string in V , (ui, vj) ∈ E
iff (ui+1, vj+1) ∈ E, because otherwise (ui, vj) cannot be in any feasible matching and thus can be
deleted without further consideration. Based on G = (U, V,E), we construct a new edge-weighted
bipartite graph G′ = (U, V,E′) as follows: For each ui ∈ U and each string vjvj+1 · · · vk ∈ V
such that (ui, vj) ∈ E, let (ui, vj) be an edge in E′ and its weight be the total weight of edges
{(ui+x, vj+x) | 0 ≤ x ≤ k−j} in E. For convenience, we call the subset {(ui+x, vj+x) | 0 ≤ x ≤ k−j}
of E the expanded matching of edge (ui, vj) of E′.

We say that two edges of E′ are conflicting if the union of their expanded matchings is not a
feasible matching in G. Note that a set of non-conflicting edges in E′ is always a matching in G′

but the reverse is not necessarily true. A matching in G′ is feasible if it consists of non-conflicting
edges. There is an obvious one-to-one correspondence between feasible matchings in G and feasible
matchings in G′. Namely, the feasible matching M in G corresponding to a feasible matching M ′

in G′ is the union of the expanded matchings of edges in M ′. Note that the weight of M in G is
the same as that of M ′ in G′. Thus, it remains to show how to compute a feasible approximate
matching in G′.

Define an innermost edge of G′ to be an edge (ui, vj) in G′ satisfying the following condition:

• G′ has no edge (ui′ , vj′) other than (ui, vj) such that i ≤ i′ ≤ i′ + s′ − 1 ≤ i+ s− 1, where s
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(respectively, s′) is the size of the expanded matching of (ui, vj) (respectively, (ui′ , vj′)).

Note that for every ui ∈ U , G′ has at most one innermost edge incident to ui (i.e., there cannot
exist vj1 ∈ V and vj2 ∈ V with j1 6= j2 such that both (ui, vj1) and (ui, vj2) are innermost edges of
G′). Define a leading innermost edge of G′ to be an innermost edge (ui, vj) such that i is minimized.
The crucial point is that for every leading innermost edge (ui, vj) of G′ and every feasible matching
M ′ in G′, at most two edges of M ′ conflict with (ui, vj). To see this, let (ui′ , vj′) be an edge in M ′

that conflicts with (ui, vj). Let s (respectively, s′) be the size of the expanded matching of (ui, vj)
(respectively, (ui′ , vj′)). Since (ui, vj) is an innermost edge of G′, at least one of the following
conditions holds:

1. j′ = j.

2. i′ ≤ i ≤ i+ s− 1 ≤ i′ + s′ − 1.

3. i < i′ ≤ i+ s− 1 < i′ + s′ − 1.

4. i′ < i ≤ i′ + s′ − 1 < i+ s− 1.

For each of these conditions, M ′ contains at most one edge (ui′ , vj′) satisfying the condition because
M ′ is a feasible matching in G′. Moreover, if M ′ contains an edge (ui′ , vj′) satisfying Condition 2,
then it contains no edge satisfying Condition 3 or 4. Furthermore, M ′ contains no edge (ui′ , vj′)
satisfying Condition 4 or else there would be an inner most edge (ui′′ , vi′′) in G′ with i′ ≤ i′′ < i ≤
i′′ + s′′ − 1 ≤ i′ + s′ − 1 (where s′′ is the size of the expanded matching of (ui′′ , vj′′)), contradicting
the assumption that (ui, vj) is a leading innermost edge in G′. Thus, at most two edges of M ′

conflict with (ui, vj).
Using the above fact (that at most two edges of M ′ conflict with a leading innermost edge) and

the local ratio technique in [3], we can construct a recursive algorithm to find a (heavy) feasible
matching in G′ as shown in Figure 1. The algorithm in fact, as we were informed very recently,
follows directly from the recent result of Bar-Noy et al. [2] on interval scheduling.

2-Approximation on G′:
1. if (E(G′) = ∅)

output the empty set and halt;
2. find a leading innermost edge e in G′;
3. Γ = {e} ∪ {e′ | e′ ∈ E(G′), e′ conflicts with e};
4. find the minimum weight c of an edge of Γ in G′;
5. for (every edge f ∈ Γ)

subtract c from the weight of f ;
6. F = {e | e ∈ Γ, e has weight 0};
7. G′′ = G′ − F ;
8. recursively call 2-Approximation on G′′ and output M ′1;
9. find a maximal M ′2 ⊆ F s.t. M ′1 ∪M ′2 is a feasible matching in G′;

10. output M ′1 ∪M ′2 and halt.

Figure 1: A recursive algorithm for finding a feasible matching in G′.

Theorem 2.1 [2] The algorithm described in Figure 1 outputs a feasible matching of the graph
G′ = (U, V,E′) with weight at least half of the optimum.
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We have implemented the algorithm and tested it on a set of 14 proteins from BioMagRes-
Bank [14]. For each protein, we randomly generated 9 instances of spin-system adjacency by
adding links between neighboring spin systems. If the spin systems are connected by the links,
they will map to the sequence as a block together. We increased the number of links from 10% of
the sequence length to 90% of the sequence length. In other words, the algorithm was tested on 126
bipartite graphs with positive edge weights and adjacency constraints. The test results are sum-
marized in Table 1. In the tests, the target assignments are matchings consisting of edges of form
(ui, vi). Although these target assignments do not always have the maximum weights, their weights
are not far from the maxima. As can be seen from the table, although the algorithm did very well
in terms of maximizing the weight of its output matching, it recovered very few target-matching
edges and is thus almost useless in practice. A possible explanation of the poor performance of the
algorithm in this experiment is that the algorithm looks for edges by scanning U from left to right,
hence giving preference to edges close to the beginning of U . As a consequence, it may miss many
target-matching edges. Another reason of poor performance is due to the scoring function used.
The goal of the scoring function is that the correct assignment corresponds to the maximum score.
However, given the statistical nature of the scoring function, this goal can not be achieved currently.
That is why even the two-layer algorithm produced small number of correct assignments in many
cases, although as the number of links between adjacent spin systems increases, the performance
improves. The development of scoring function, which we are working on, will not be addressed
in this paper. As the scoring function improves, the correct assignment should get closer to the
maximum score, especially when the number of links between adjacent spin systems is large.

In trying to improve the performance on recovering target-matching edges, we next present a
second approximation algorithm that tries to take advantage of the presence of many long strings
in the instance, as described in Figure 2. Basically, the algorithm partitions the strings in V into
groups of strings of approximately the same length, greedily finds a maximal feasible matching
in each group, and then greedily extends the matching to a maximal feasible matching in G′. It
outputs the heaviest one among the matchings found for all groups.

3 log2D-Approximation on G′:
1. compute ratio r = the maximum length of strings in V

the minimum length of strings in V ;
2. partition V into ` = max{1, log4 r} subsets V1, V2, . . . , V` such that

a string s is included in subset Vi if and only if 4i−1 ≤ |s| < 4i;
3. for (every i ∈ {1, 2, . . . , `})

3.1 compute the set Ei of edges of G′ incident to strings in Vi;
3.2 initialize M ′i = ∅;
3.3 while (Ei 6= ∅)

3.3.1 find an edge e ∈ Ei of maximum weight;
3.3.2 add e to M ′i , and delete e and all edges conflicting with

e from Ei;
3.4 greedily extend M ′i to a maximal feasible matching of G′;

4. output the heaviest one among M ′1,M
′
2, . . . ,M

′
` and halt.

Figure 2: A new algorithm for finding a feasible matching in G′.

Theorem 2.2 The algorithm described in Figure 2 outputs a feasible matching in G′ with weight
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|M∗| w(M∗) |M2| w(M2) R2 R1 |M3| w(M3) R3 |M∗| w(M∗) |M2| w(M2) R2 R1 |M3| w(M3) R3

bmr4027 1 158 1896284 158 1871519 28 11 158 1931099 4 bmr4144 1 78 949170 78 936144 10 10 78 845578 5
bmr4027 2 157 1849500 7 18 158 1927193 2 bmr4144 2 78 928175 4 8 78 869229 1
bmr4027 3 158 1841683 8 18 158 1930119 23 bmr4144 3 77 917197 5 10 78 881665 1
bmr4027 4 158 1829367 11 43 158 1925237 36 bmr4144 4 78 907130 10 0 78 886147 6
bmr4027 5 156 1827498 3 33 158 1923556 37 bmr4144 5 77 921816 17 14 78 914564 14
bmr4027 6 157 1818131 8 36 158 1916814 48 bmr4144 6 77 897500 11 30 76 876005 3
bmr4027 7 155 1784027 44 79 158 1885779 90 bmr4144 7 76 842073 2 34 78 888087 6
bmr4027 8 154 1671475 19 113 158 1875058 117 bmr4144 8 77 804531 5 67 78 896088 22
bmr4027 9 155 1652859 60 155 158 1896606 156 bmr4144 9 76 837519 35 75 78 949844 76
bmr4288 1 105 1249465 105 1238612 8 9 105 1208142 6 bmr4302 1 115 1298321 115 1305677 0 9 115 1316209 8
bmr4288 2 105 1220481 8 9 105 1194198 9 bmr4302 2 115 1273146 0 12 115 1324173 8
bmr4288 3 103 1206095 17 16 105 1199374 17 bmr4302 3 114 1276372 8 7 115 1313288 8
bmr4288 4 105 1185685 5 33 105 1214237 21 bmr4302 4 114 1246952 4 16 115 1307472 10
bmr4288 5 103 1169907 6 38 105 1211226 34 bmr4302 5 113 1219920 11 34 115 1295035 24
bmr4288 6 102 1179110 15 52 105 1217006 52 bmr4302 6 114 1174564 0 44 115 1255172 60
bmr4288 7 103 1112288 22 55 105 1230117 62 bmr4302 7 112 1181267 8 65 115 1294044 78
bmr4288 8 101 1133554 35 N/A 105 1232331 66 bmr4302 8 113 1152323 27 N/A 113 1283268 99
bmr4288 9 100 1051817 48 105 105 1249465 105 bmr4302 9 115 1293954 107 111 115 1298321 111
bmr4309 1 178 2048987 178 2066506 4 6 178 2118482 4 bmr4316 1 89 1029827 89 997300 13 4 89 1011408 7
bmr4309 2 178 2023648 9 10 178 2108291 4 bmr4316 2 89 976270 2 15 89 1019640 7
bmr4309 3 177 2013099 9 33 178 2115356 22 bmr4316 3 88 972224 0 21 89 1020190 9
bmr4309 4 176 2024268 14 34 178 2107417 18 bmr4316 4 87 936852 5 20 89 1028608 31
bmr4309 5 174 1954955 13 46 178 2090346 31 bmr4316 5 86 890944 2 42 89 1007619 43
bmr4309 6 177 1924727 12 59 178 2074540 55 bmr4316 6 84 863207 13 60 89 1012008 48
bmr4309 7 174 1885986 24 122 178 2078322 114 bmr4316 7 87 882818 9 79 87 1004449 67
bmr4309 8 173 1868338 55 106 178 2026479 112 bmr4316 8 87 957378 62 87 89 1029827 89
bmr4309 9 170 1796864 95 176 175 1999734 153 bmr4316 9 85 984774 85 89 89 1029827 89
bmr4318 1 215 2390881 215 2418440 17 8 215 2495022 2 bmr4353 1 126 1498891 126 1482821 20 6 126 1492927 7
bmr4318 2 215 2398412 0 5 215 2481997 6 bmr4353 2 126 1473982 9 8 126 1499720 7
bmr4318 3 214 2409316 17 N/A 215 2481867 10 bmr4353 3 125 1455084 6 4 126 1499983 8
bmr4318 4 213 2394682 3 23 215 2481099 12 bmr4353 4 126 1441162 9 20 126 1511112 14
bmr4318 5 215 2355926 2 38 215 2473707 27 bmr4353 5 125 1417351 8 17 126 1502628 21
bmr4318 6 214 2312260 13 38 215 2440684 31 bmr4353 6 125 1421633 18 35 126 1514294 11
bmr4318 7 210 2259377 52 87 215 2421426 70 bmr4353 7 125 1370235 14 29 126 1499010 58
bmr4318 8 212 2214174 63 113 209 2326045 91 bmr4353 8 123 1337329 9 N/A 122 1443144 81
bmr4318 9 207 2158223 122 N/A 215 2390651 197 bmr4353 9 122 1273988 15 126 126 1498891 126
bmr4391 1 66 710914 66 723525 8 5 66 750059 5 bmr4393 1 156 1850868 156 1826257 10 6 156 1876203 5
bmr4391 2 66 720589 6 8 66 755718 3 bmr4393 2 156 1805561 3 14 156 1873989 6
bmr4391 3 66 724102 8 7 66 749505 5 bmr4393 3 156 1782350 5 N/A 156 1859924 4
bmr4391 4 65 681286 9 6 66 745159 5 bmr4393 4 156 1778165 3 22 156 1868573 12
bmr4391 5 64 688400 5 13 66 741824 0 bmr4393 5 155 1742954 3 30 156 1862071 42
bmr4391 6 66 699066 8 10 66 739778 0 bmr4393 6 155 1772955 42 45 156 1857579 67
bmr4391 7 66 684953 37 0 66 717888 21 bmr4393 7 154 1722026 22 74 151 1794248 94
bmr4391 8 64 663147 30 18 66 705513 20 bmr4393 8 156 1640682 15 128 154 1830609 136
bmr4391 9 66 687290 45 N/A 61 652235 45 bmr4393 9 152 1527885 3 143 156 1851298 152
bmr4579 1 86 950173 86 931328 12 7 86 967574 5 bmr4670 1 120 1391055 120 1378876 27 8 120 1434117 5
bmr4579 2 86 933035 7 12 86 977013 9 bmr4670 2 120 1366541 14 10 120 1437469 5
bmr4579 3 85 923916 4 11 86 973431 14 bmr4670 3 120 1370848 6 20 120 1437484 16
bmr4579 4 86 935901 6 16 86 961214 11 bmr4670 4 119 1341300 6 32 120 1423323 28
bmr4579 5 85 894084 2 13 86 968378 21 bmr4670 5 117 1309727 11 35 120 1393428 28
bmr4579 6 86 911564 8 15 86 945148 21 bmr4670 6 118 1290812 13 48 120 1394903 40
bmr4579 7 86 873884 17 42 86 952794 45 bmr4670 7 118 1239001 6 45 120 1377578 45
bmr4579 8 83 877556 26 49 86 950136 78 bmr4670 8 120 1236726 19 N/A 118 1370011 101
bmr4579 9 83 760356 0 86 86 950173 86 bmr4670 9 113 1237614 60 N/A 114 1319698 94
bmr4752 1 68 882755 68 862523 20 8 68 889083 9 bmr4929 1 114 1477704 114 1432825 5 7 114 1502375 3
bmr4752 2 68 848225 16 12 68 886989 11 bmr4929 2 114 1424433 5 10 114 1500838 7
bmr4752 3 68 834299 2 13 68 886910 18 bmr4929 3 113 1417722 7 16 114 1499302 18
bmr4752 4 67 820207 2 20 68 892854 16 bmr4929 4 113 1411387 7 20 114 1497361 27
bmr4752 5 67 796019 8 28 68 878244 29 bmr4929 5 114 1408112 4 24 114 1487741 26
bmr4752 6 67 824289 6 28 68 879380 35 bmr4929 6 112 1385673 12 24 114 1480828 31
bmr4752 7 66 752633 3 43 68 868981 40 bmr4929 7 112 1378166 30 65 114 1449648 55
bmr4752 8 65 730276 17 N/A 68 860366 42 bmr4929 8 114 1424433 5 86 114 1471279 87
bmr4752 9 67 812950 44 68 68 882755 68 bmr4929 9 107 1178499 20 112 114 1477704 114

Table 1: Summary on the performances of the 2-approximation and 3 log2D-approximation algo-
rithms on 126 instances of NMR peak assignment. The number after the underscore symbol in the
name of each instance indicates the number of adjacent pairs of spin system in the instance (more
precisely, 5 means that the number of adjacent pairs of spin systems is 50% of the total number of
residues), M∗ represents the target assignment, and M1 (M2, or M3) is the assignment computed
by the two-layer (2-approximation, or 3 log2D-approximation, respectively) algorithm. The pa-
rameters R1 = |M∗ ∩M1|, R2 = |M∗ ∩M2|, and R3 = |M∗ ∩M3| show how many target-matching
edges were recovered by the two-layer, 2-approximation, and 3 log2D-approximation algorithms,
respectively, on each instance. Each N/A indicates that the computation of the two-layer algorithm
was taking too long (on a supercomputer) and had to be killed before any result could be obtained.
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at least 1
3 max{1,log2 r}

of the maximum weight in Õ(|U ||V |) (i.e. quadratic up to a poly-logarithmic
factor) time, where r is as defined in Figure 2. It is thus an approximation algorithm for D-String

CBM with ratio 3 log2D.

Proof. For each i ∈ {1, 2, . . . , `}, consider the bipartite graph G′i = (U, Vi, Ei). Let M∗i denote
an optimal feasible matching for graph G′i. Right before the execution of Step 3.4 of the algorithm,
M ′i is clearly a feasible matching for graph G′i, and its weight is at least 1

6 of that of M∗i because
we can claim that each execution of Step 3.3.2 only rules out at most 6 edges of M∗i from further
consideration. To see the claim, consider an edge e = (ux, vy) added to M ′i in Step 3.3.2. Let
e′ = (ux′ , vy′) be an edge conflicting with e. Let s (respectively, s′) be the size of the expanded
matching of e (respectively, e′). Then, at least one of the following conditions 1 through 6 holds:

1. y′ = y.

2. x′ = x and s′ = s.

3. x′ < x ≤ x′ + s′ − 1 < x+ s− 1.

4. x < x′ ≤ x+ s− 1 < x′ + s′ − 1.

5. x′ < x ≤ x+ s− 1 ≤ x′ + s′ − 1 or x′ ≤ x ≤ x+ s− 1 < x′ + s′ − 1.

6. x < x′ ≤ x′ + s′ − 1 ≤ x+ s− 1 or x ≤ x′ ≤ x′ + s′ − 1 < x+ s− 1.

Since M∗i is a feasible matching of G′i, M
∗
i may contain at most one edge satisfying Condition 1, at

most one edge satisfying Condition 2, at most one edge satisfying Condition 3, at most one edge
satisfying Condition 4, at most one edge satisfying Condition 5, and at most four edges satisfying
Condition 6 (because of the construction of Vi). Due to the same reason, if M∗i contains an edge
satisfying Condition 2 (respectively, 5), then M∗i contains no edge satisfying Condition 6. Similarly,
if M∗i contains an edge satisfying Condition 3 or 4, then M∗i contains at most three edges satisfying
Condition 6 (because of the construction of Vi). So, in the worse case (where M∗i contains the
largest number of edges conflicting with e), M∗i may contain one edge satisfying Condition 1, one
edge satisfying Condition 3, one edge satisfying Condition 4, and three edges satisfying Condition 6.
This proves the claim.

Let M ′ denote the output matching of the algorithm. Let M̄∗ denote an optimal feasible
matching for graph G′, and M̄∗i be the sub-matching of M̄∗ in edge set Ei. Suppose without loss of
generality that M̄∗j is the heaviest one among M̄∗1 , M̄

∗
2 , . . . , M̄

∗
` . Clearly, we have w(M̄∗j ) ≥ 1

`w(M̄∗).
Thus, w(M ′) ≥ 1

6w(M∗i ) ≥ 1
6`w(M̄∗). The time complexity analysis is straightforward. 2

The above 3 log2D-approximation has been implemented and tested on the same set of 126
instances of NMR peak assignment. The test results are also summarized in Table 1. It is quite
clear that this algorithm is much more superior to the 2-approximation algorithm both in terms
of maximizing the weight of the output matching and in terms of maximizing the number of
target-matching edges. In fact, on over half of the instances (more precisely, 65 out of the 126
instances), the 3 log2D-approximation algorithm recovered at least as many target-matching edges
as the (exhaustive) two-layer algorithm. Because the 3 log2D-approximation algorithm is much
more efficient than the two-layer algorithm, it will be very useful in NMR peak assignment.

Observe that the (feasible) matchings found by the approximation algorithms have weights
greater than that of the target assignments on quite a few instances, especially when the adjacency
information is sparse. This implies that the weighting scheme as formulated in [16] may not work
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very well when the adjacency information is sparse, and more work on weighting scheme is needed
in the future.

A natural question is if D-String CBM admits a ρ-approximation algorithm for some constant
ρ < 2. Our next theorem shows that there is a constant ρ > 1 such that D-String CBM does not
admit a ρ-approximation algorithm for every D ≥ 2, unless P = NP , even if the input bipartite
graph is unweighted.

Theorem 2.3 For all D ≥ 2, unweighted D-String CBM is MAX SNP-hard.

Proof. (Sketch) We prove the theorem for D = 2 by a simple L-reduction from Maximum 3-

Dimensional Matching (3DM), which is known to be MAX SNP-complete [11]. The proof can
be easily extended to any constant D ≥ 2.

Maximum Bounded 3-Dimensional Matching (MB3DM): Given a universal
set U = {1, 2, . . . ,m} and a collection of subsets S1, S2, . . . , Sn, where Si ⊆ U ,
|Si| = 3, and every element u ∈ U is contained in at most 3 subsets, find a largest
subcollection of pairwise disjoint subsets.

Given an instance of MB3DM, without loss of generality, suppose that m = 3q and n ≥ q.
Observe that n ≤ m, because every element of U appears in at most 3 subsets. For each subset
Si, construct 7 vertices ai,1, ai,2, . . . , ai,7 in set U and for each element i ∈ U construct a 2-vertex
string bi,1bi,2 in set V . We will also have in V q 1-vertex strings f1, f2, . . . , fq and 3n 2-vertex
strings c1,1c1,2, c1,3c1,4, c1,5c1,6, . . ., cn,1cn,2, cn,3cn,4, cn,5cn,6. Finally, for every i = 1, 2, . . . ,m, we
connect string bi,1bi,2 to aj,2kaj,2k+1 (i.e. connect vertex bi,1 to vertex aj,2k and vertex bi,2 to vertex
aj,2k+1), for each 1 ≤ k ≤ 3, if i ∈ Sj ; for every i = 1, 2, . . . , q and every j = 1, 2, . . . , n, connect
string fi to aj,1; and for every i = 1, 2, . . . , n and every j = 1, 2, . . . , n, connect string ci,2k−1ci,2k
to aj,2k−1aj,2k, for each 1 ≤ k ≤ 3. All the edges have the unit weight. This forms an instance of
unweighted 2-String CBM: G = (U, V,E), where |U | = 7n, |V | = 7q + 6n.

We claim that the above construction is an L-reduction [13] from MB3DM to unweighted 2-

String CBM. It is straightforward to see that each subcollection of p (where p ≤ q) disjoint
subsets implies a constrained matching in G of weight 7p + 6(n − p) = 6n + p. To complete the
proof of the claim, we only need to observe that, for any given constrained matching in the above
bipartite graph, we can always rearrange it without decreasing the weight so that each group of
vertices ai,1, ai,2, . . . , ai,7 are matched either with three c-type strings or with a combination of one
f -type string and three b-type strings, due to the special construction of the edges. This completes
the L-reduction. 2

3 Unweighted Constrained Bipartite Matching
As noted in the last section, a natural question is to ask if D-String CBM admits an approxima-
tion algorithm with ratio < 2. In this section, we answer the question affirmatively for a special
case, namely, unweighted 2-String CBM. More specifically, we will give a 1.7778-approximation
algorithm for unweighted 2-String CBM, using a quite nontrivial construction. Part of the ideas
in the construction are based on Berman’s recent work in [5], where he presented a (k+1

2 + ε)-
approximation algorithm for weighted k-Set Packing.
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Weighted k-Set Packing: Given a base set X and a collection S of subsets of X,
where every subset S ∈ S is of size at most k and is associated with a non-negative
weight w(S), find out a subcollection A ⊂ S of disjoint subsets such that its weight
is the maximum. The weight of a collection is the sum of the weights of the subsets
therein.
Unweighted k-Set Packing: Weighted k-Set Packing where every subset
has the same weight 1.

Given an instance graph G = (U, V,E) of unweighted 2-String CBM, we can construct an
instance I of weighted 3-Set Packing as follows: For each string vj · · · vj+t−1 ∈ V with 1 ≤ t ≤ 2
such that {(ui, vj), (ui+t−1, vj+t−1)} ⊆ E, we construct a (t + 1)-set {ui, ui+t−1, vj}. The weight
associated with this (t+ 1)-set is t. Let S denote the collection of all 2- and 3-sets constructed.

Note that every 3-set S ∈ S contributes 2 units of weight to the solution and every 2-set S ∈ S
contributes 1 unit of weight to the solution. Define a weight function w : S → Z+ as: w(S) = |S|−1.
For convenience, let w(A) =

∑
S∈Aw(S), where A ⊂ S is a subcollection of disjoint sets. Our goal

is to find a subcollection of disjoint sets that achieves the maximum weight. Define another new
(square) weight function w2 : S → Z+ in the way that w2(S) = (w(S))2 for every S ∈ S; and
similarly, let w2(A) =

∑
S∈Aw

2(S) for any subcollection A of disjoint sets in S.
Define a claw C of S to be a subcollection of disjoint sets that overlap (i.e. intersect) with a

common other set not in S; and define the common overlapped set to be the center of claw C. If
there are d sets in C, then C is called a d-claw. It is easy to see that in our constructed S, 1 ≤ d ≤ 3.

Let A be a subcollection of disjoint sets. We say that another subcollection of disjoint sets C (in
the most special case, C is a claw), where A∩C = ∅, improves w(A) if w((A−N(C,A))∪C) > w(A),
where N(C,A) is the collection of sets in A each of which overlaps with some set in C. We may
replace the weight function w(·) by other functions. For example, we say that C improves |A| if
|(A−N(C,A)) ∪ C| > |A|; it improves w2(A) if w2((A−N(C,A)) ∪ C) > w2(A); and it improves
f(A) = w2(A) + 3|A| if f((A−N(C,A)) ∪ C) > f(A).

Consider the unweighted 3-Set Packing problem. A straightforward greedy way to find a
collection of disjoint sets is to start with the empty collection and at each round to add in a set
while maintaining the disjointness. To formalize, for any A, if there is a set S such that {S}
improves |A|, then we say {S} 1-improves A or {S} is a 1-improvement for A. If A does not have
any 1-improvement, then it is 1-maximal. A 1-maximal collection of disjoint sets output in this
greedy manner could contain a number of sets only 1

3 of the optimum. Fortunately, we do have a
way to improve it. This needs the following more general definition of t-improvement [6, 9]. For a
collection of disjoint sets A, if there exists a size-t subcollection of disjoint sets C improving |A|,
then we say C t-improves A, where t ≥ 2. Similarly, when there is no t-improvement for A, we say
that A is t-maximal. When C t-improves A, and every set S ∈ C intersects at most two sets in
A, we say that C strictly t-improves A. It is trivial to note that a t-improvement is also a strict
t-improvement, for t ≤ 3.

Let A be a strictly t-maximal collection of disjoint sets, where t ≥ 2, and A∗ be an optimal
collection of disjoint sets. Then every set in A∗ should intersect some set in A. For simplicity, let
the number of sets in A intersecting a set S ∈ A∗ be the degree of S (with respect to A), denoted
by d(S). We can also let d(T ) denote the degree (number of sets in A∗ intersecting T ) of set T ∈ A
(with respect to A∗). Clearly, at most |A| sets in A∗ can have degree 1, and all the others must
have degree 2 or 3. Letting A∗i denote the subcollection of sets in A∗ having degree i, for i = 1, 2, 3,
we have the following lemma.
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Lemma 3.1 For t = 2k − 1 or 2k, where k ≥ 2, the subcollection A∗2 can be partitioned into k
disjoint subcollections: A∗2 = ∪ki=1Yi, such that for every set S ∈ Yi, 1 ≤ i ≤ k − 1, S intersects
exactly one set in N(Yi−1,A), denoted as N1(S), and exactly one set not in ∪i−1

j=0N(Yj ,A), denoted
as N2(S). Here Y0 = A∗1. Furthermore, for every two sets S1, S2 ∈ Yi, 1 ≤ i ≤ k− 1, if t = 2k− 1,
then either N1(S1) 6= N1(S2) or N2(S1) 6= N2(S2); if t = 2k, then N2(S1) 6= N2(S2).

Proof. We will partition A∗2 inductively. First of all, recall that every set in Y0 = A∗1 intersects a
distinct set in A. Let Y1 denote the subcollection (which could be empty) of sets in A∗2 each of which
intersects a set in N(Y0,A). Trivially, no set in Y1 can intersect two sets in N(Y0,A), otherwise it
would imply a 3-improvement to A. For two sets S1, S2 ∈ Y1 with N1(S1) = N1(S2), for the same
reason that there should be N2(S1) 6= N2(S2). Furthermore, when t = 2k, then N2(S1) 6= N2(S2)
whether N1(S1) = N1(S2) or not, since otherwise it would imply a strict 4-improvement to A.
Therefore, the lemma holds for k = 2.

For larger k, we may further partition A∗2 − (Y1 ∪ Y0) just the same as in the above to get Y2,
Y3, . . ., Yk−1, and let Yk = A∗2 − ∪k−1

i=1 Yi. 2

Corollary 3.2 (i) For any 1 ≤ i ≤ k − 1, |Yi| ≤ 2|Yi−1|; (ii) 3(|A| −
∑k−2
i=0 |Yi|)− |Yk−1| ≥ 2|Yk|;

(iii) when t = 2k, |A| ≥
∑k−1
i=0 |Yi|.

Proof. The proof is straightforward according to the above lemma and the fact that every set
in A has degree between 1 and 3. 2

Trivially, if there is some C = {S} (strictly) 1-improving A, then it also improves w2(A), and
thus it improves f(A) as well. The following lemma concerns strict t-improvements, for t ≥ 2.

Lemma 3.3 Let A be a strictly (t− 1)-maximal collection of disjoint sets. If C strictly t-improves
A, then C improves f(A).

Proof. Let H(A, C, E) denote the bipartite graph which takes sets in A and C as vertices, and
two vertices S ∈ C and T ∈ A are adjacent if and only if they intersect. Let H ′ be the subgraph of H
induced by the vertex-subset C ∪N(C,A). From the assumption that A is strictly (t− 1)-maximal,
we know that |N(C,A)| = t − 1 and every vertex/set T ∈ N(C,A) must have degree at least 2.
From the fact that C strictly t-improves A, we know that every vertex/set C must have degree at
most 2. It follows that in H ′, there are x degree-3 vertices in A if and only if there are (2 − x)
degree-1 vertices in C, where x can be either 0, 1, or 2. Also from the strict (t− 1)-maximality of
A, we conclude that H ′ must be connected.

Case 1: x = 0. Then, H ′ is actually a path with two ending vertices both in C. Assume without
loss of generality that this path is S1-T1-S2-T2-. . .-St−1-Tt−1-St. We claim that if Ti is a 3-set, then
the next 3-set along the path, if exists, must be a set in C. To prove the claim, we assume without
loss of generality that i = 1: T1 is a 3-set. If S2 is not a 3-set, it means the element in T1 ∩S2 must
be an element in set U . Therefore the element in S2 ∩T2 is in set V , indicating that T2 is neither a
3-set. The argument can be repeated to show that if S3 is not a 3-set, then T3 neither, etc. Thus,
the next 3-set must be a set in C, proving the claim.

With the above claim, it is easy to notice that N(C,A) can have at most one more 3-set than C
has. Furthermore, if the first 3-set along the path is in C, then the number of 3-sets in N(C,A) is
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w(T ) w(S) w(N(S,A)) w2(S)− w2(N(S,A− {T})) charge(S, T )
2 2 3 = 2 + 1 3 0.5

2 4 1
1 2 2 = 1 + 1 3 0.5

1 4 1.5
1 1 1 0.5

Table 2: Possible configurations for a set S outside A having a positive charge.

no greater than that in C. This means that C can reduce w2(A) by at most 2 and thus it certainly
improves f(A).

Case 2: x = 1. Then, we can decompose H ′ into a simple cycle and a simple path, where only
the degree-3 vertex is shared by them. It is easy to verify that the claim in Case 1 applies to every
simple path, and every simple cycle, in H ′ as well. In particular, for each simple cycle, the number
of 3-sets in C which are vertices on the cycle is not less than the number of 3-sets in N(C,A) which
are vertices on the cycle. So, the number of 3-sets in N(C,A) is at most one greater than the
number of 3-sets in C. Thus, C improves f(A).

Case 3: x = 2. Then, we can decompose H ′ into either two vertex-disjoint simple cycles and
a path connecting the two cycles, or two simple cycles sharing a simple path. In either case, each
degree-3 vertex is included in some cycle. We conclude that in either case, the number of 3-sets in
N(C,A) is at most one greater than the number of 3-sets in C. Thus, C improves f(A). 2

Definition 3.1 Let A be a subcollection of disjoint sets, and S ∈ S − A such that w(S) >
1
2w(N(S,A)).

• N(S,A) = N({S},A).

• m(S) is the subcollection of sets T ∈ N(S,A) having the maximum weight w(T ) in N(S,A).

• charge(S, T ) =

{
1

|m(S)|

(
w(S)− 1

2w(N(S,A))
)
, if T ∈ m(S),

0, otherwise.

• C is a good claw if either (1) N(C,A) = ∅, or (2) the center of C is T ∈ A, w(S) >
1
2w(N(S,A)) for all S ∈ C, and

∑
S∈C charge(S, T ) > 1

2w(T ).

• C is a nice claw if it is a minimal good claw.

It is not hard to derive all possible configurations for a set S /∈ A having a positive charge,
which are listed in Table 2. The next lemma follows naturally:

Lemma 3.4 Let A be a subcollection of disjoint sets. If C is a nice claw with respect to A, then it
improves f(A).

A high-level description of our approximation algorithm, called f-Imp(t), for t ≥ 5, is given in
Figure 3. From Lemmas 3.3 and 3.4, we conclude that f-Imp(t), where t ≥ 5, terminates when A
is a strictly t-maximal collection of disjoint sets with respect to which there exists no nice claw.
Examining the existence of a nice claw takes O(m3) time and examining the existence of a strictly



Approximate NMR Matching 13

f-Imp(t):
1. A ← ∅; f0 = −1; f1 = 0;
2. while (f1 > f0)

2.1 f0 ← f1;
2.2 while (there exists a nice claw C for A)

2.2.1 A ← (A−N(C,A)) ∪ C;
2.3 i = 2;
2.4 maximalt = false;
2.5 while (i ≤ t && maximalt = false)

2.5.1 if (there exists a strict i-improvement C for A)
2.5.1.1 A ← (A−N(C,A)) ∪ C;
2.5.1.2 maximalt = true;

2.5.2 else
2.5.2.1 i← i+ 1;

2.6 f1 ← f(A);

Figure 3: A high-level description of algorithm f-Imp(t).

i-improving collection takes O(mi) time, where m = |S|. Since for every collection A of disjoint
sets, f(A) ≤ 4m+ 3m = 7m, f-Imp(t) runs in O(mt+1) time.

Lemma 3.5 Let A be a subcollection of disjoint sets, with respect to which there is no nice claw;
and A∗ an optimal subcollection. Assume that there are m1 2-sets and m2 3-sets in A. Then
w(A∗) ≤ 3

2m1 + 4m2.

Proof. We will distribute w(A∗) among sets in A in such a way that no 2-set T ∈ A receives
more than 3

2w(T ) and no 3-set T ∈ A receives more than 2w(T ). The distribution consists of two
phases. In the first phase, every set S ∈ A∗ sends to each T ∈ N(S,A) a portion of weight equal
to 1

2w(T ). Note that N(S,A) should not be empty, otherwise {S} would be a nice claw. It is
clear that in this phase, set S sends off weight equal to 1

2w(N(S,A)). Therefore, S still has an
amount w(S) − 1

2w(N(S,A)) of weight, which is positive only when w(S) > 1
2w(N(S,A)). In the

second phase, if w(S) > 1
2w(N(S,A)), S sends to every set T ∈ m(S) a portion of weight equal to

charge(S, T ). Note that after the second phase, set S sent off all its weight.
Consider the receiving side. In the first phase, every set T ∈ A gets weight 1

2w(T ) from each
neighbor S ∈ A∗. Therefore, from the fact that A∗ is a collection of disjoint sets, every 2-set T
would get weight in total at most w(T ) and every 3-set T would get weight in total at most 3

2w(T ).
During the second phase, T gets at most 1

2w(T ), since otherwise the sets that send (positive) charges
to T would form a good claw, which would imply the existence of a nice claw. In other words, T
in total receives at most an amount |T |+1

2 w(T ) of weight, implying that w(A∗) ≤ 3
2m1 + 4m2. 2

Lemma 3.6 Let A be a strictly t-maximal subcollection of disjoint sets, where t ≥ 5, with respect
to which there is no nice claw; and A∗ an optimal subcollection. Assume that there are m1 (m∗1,
respectively) 2-sets and m2 (m∗2, respectively) 3-sets in A (in A∗, respectively). Then

(7 · 2k−1 − 9)m1 + (10 · 2k−1 − 15)m2 ≥ (5 · 2k−1 − 6)m∗1 + (6 · 2k−1 − 9)m∗2,
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where k = d t2e.

Proof. Let A∗ be decomposed in the way as in Lemma 3.1, with respect to A. Clearly, every
2-set (3-set, respectively) in A has degree at most 2 (3, respectively). Therefore,

2m1 + 3m2 ≥
∑
T∈A d(T ) =

∑
S∈A∗ d(S)

= 3|A∗| − 2|A∗1| − |A∗2| = 3(m∗1 +m∗2)− 2|Y0| −
∑k
i=1 |Yi|.

(3.1)

From Corollary 3.2 (ii) we have

3m1 + 3m2 ≥ 3
k−2∑
i=0

|Yi|+ |Yk−1|+ 2|Yk|. (3.2)

In addition, from the fact that there is no nice claw with respect to A, we conclude that a degree-1
3-set (in Y0) cannot intersect a 2-set in A. That is,

m2 ≥ |Y0| −m∗1. (3.3)

It follows that (3.1)×3+α
2 +(3.2)+(3.3)×α, where 0 ≤ α ≤ 1, gives the following:

(6 + α)m1 + 15+5α
2 m2

≥ 9+α
2 m∗1 + 9+3α

2 m∗2 + 3−α
2

∑k−2
i=1 |Yi| − 1+α

2 |Yk−1|+ 1−α
2 |Yk|.

(3.4)

By setting 3−α = 2k−2

2k−2−1
(1 +α), or equivalently α = 2k−1−3

2k−1−1
, in (3.4), together with Corollary 3.2

(i), we have the following:

(7 · 2k−1 − 9)m1 + (10 · 2k−1 − 15)m2 ≥ (5 · 2k−1 − 6)m∗1 + (6 · 2k−1 − 9)m∗2.

This proves the lemma. 2

In order to analyze f-Imp(t), we need one more lemma.

Lemma 3.7 Let graph G = (U, V,E) be an instance of the unweighted 2-String CBM problem
such that the set V consists of strings of equal length (namely, 2), where n1 = |U |, n2 = |V |, and
m = |E|. Then, a feasible matching in G can be found in O(m

√
n1n2) time, whose size is at least

2
3 of the optimum.

Proof. Let U = {u1, u2, . . . , un1}. For each index i ∈ {0, 1, 2}, let Gi be the bipartite graph
obtained from G as follows:

1. For every string in V , merge the two vertices in the string into a single super-vertex (with all
resulting multiple edges deleted).

2. For all j such that i + 1 ≤ j ≤ n1 − 2 and j mod 3 = i, merge uj , uj+1, and uj+2 into a
single super-vertex (with all resulting multiple edges deleted); and for every neighbor sh of
the new super-vertex, if the original string (in V ) corresponding to sh can be matched to
neither ujuj+1 nor uj+1uj+2, then delete the edge between the new super-vertex and sh.

3. If neither u1 nor u2 was merged in Step 2, then merge u1 and u2 into a single super-vertex
(with all resulting multiple edges deleted); and for every neighbor sh of the new super-vertex,
if the original string (in V ) corresponding to sh cannot be matched to u1u2, then delete the
edge between the new super-vertex and sh.
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4. If neither un1−1 nor un1 was merged in Step 2 or 3, then merge un1−1 and un1 into a single
super-vertex (with all resulting multiple edges deleted); and for every neighbor sh of the new
super-vertex, if the original string (in V ) corresponding to sh cannot be matched to un1−1un1 ,
then delete the edge between the new super-vertex and sh.

It is clear that every matching in Gi can be easily transformed into a feasible matching of the same
size in G. So, for each i ∈ {0, 1, 2}, we compute a maximum matching Mi in Gi, and transform
it into a feasible matching M̄i of the same size in G. We claim that |M̄ | ≥ 2

3 |M
∗|, where M̄ is

the maximum-sized one among M̄0, M̄1, M̄2, and M∗ is a maximum-sized feasible matching in G.
To see this, for each i ∈ {0, 1, 2}, let M∗i denote the subset of matches (uhuh+1, v`v`+1) ∈ M∗

such that uh and uh+1 belong to the same super-vertex in Gi. It holds that
∑2
i=0 |M∗i | = 2|M∗|

because each match (uhuh+1, v`v`+1) ∈ M∗ belongs to exactly two of M∗0 ,M
∗
1 ,M

∗
2 . This implies

that the maximum-sized one among M∗0 ,M
∗
1 ,M

∗
2 has size at least 2

3 |M
∗|. On the other hand, for

each i ∈ {0, 1, 2}, if we modify M∗i by merging uh, uh+1 into a super-vertex and merging v`, v`+1

into a super-vertex for every match (uhuh+1, v`v`+1) ∈ M∗, the resulting matching is a matching
in Gi and has size |M∗i |; hence |M∗i | ≤ |Mi| = |M̄i| because Mi is a maximum matching in Gi.
Therefore,

2
3
|M∗| ≤ max{|M∗0 |, |M∗1 |, |M∗2 |} ≤ max{|M̄0|, |M̄1|, |M̄2|} = |M̄ |.

This completes the proof of the claim and hence that of the lemma. 2

Theorem 3.8 For any positive ε, the unweighted 2-String CBM problem can be approximated
within ratio 16

9 + ε in polynomial time.

Proof. Let A denote the subcollection of disjoint sets output by algorithm f-Imp(t), where t ≥ 5.
We have known that A is strictly t-maximal and there is no nice claw with respect to A. Let A∗
denote an optimal subcollection. Assume there are m1 (or m∗1) 2-sets and m2 (or m∗2, respectively)
3-sets in A (A∗, respectively). Let k = d t2e. We have by Lemma 3.5

3
2
m1 + 4m2 ≥ w(A∗) (3.5)

and by Lemma 3.6

(7 · 2k−1 − 9)m1 + (10 · 2k−1 − 15)m2 ≥ (5 · 2k−1 − 6)m∗1 + (6 · 2k−1 − 9)m∗2. (3.6)

Moreover, by Lemma 3.7, we may assume that

w(A) ≥ 4
3
m∗2. (3.7)

These three inequalities ((3.5)×(4 · 2k−1 − 3)+(3.6)+(3.7)×3
4(4 · 2k−1 − 3)) imply that

w(A) ≥ 36 · 2k−1 − 36
64 · 2k−1 − 63

w(A∗).

Since f-Imp(t) terminates in O(mt+1) time, where m = |S|, it is an approximation algorithm
for the unweighted 2-String CBM problem and its worst-case performance ratio is 64·2k−1−63

36·2k−1−36
,

which approaches 16
9 when t (and thus k) approaches +∞. 2
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4 Concluding Remarks
It would be interesting to test if the 1.7778-approximation algorithm works well in practice. An
obvious open question is if D-String CBM admits a ρ-approximation algorithm for some constant
ρ < 2.
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