
1

Mutation Region Detection for Closely Related
Individuals without a Known Pedigree

Wenji Ma, Yong Yang, Zhi-Zhong Chen, and Lusheng Wang Member, IEEE

Abstract —Linkage analysis serves as a way of finding locations of genes that cause genetic diseases. Linkage studies have facilitated
the identification of several hundreds of human genes that can harbor mutations which by themselves lead to a disease phenotype. The
fundamental problem in linkage analysis is to identify regions whose allele is shared by all or almost all affected members but by none
or few unaffected members. Almost all the existing methods for linkage analysis are for families with clearly given pedigrees. Little work
has been done for the case where the sampled individuals are closely related, but their pedigree is not known. This situation occurs
very often when the individuals share a common ancestor at least six generations ago. Solving this case will tremendously extend
the use of linkage analysis for finding genes that cause genetic diseases. In this paper, we propose a mathematical model (the shared
center problem) for inferring the allele-sharing status of a given set of individuals using a database of confirmed haplotypes as reference.
We show the NP-completeness of the shared center problem and present a ratio-2 polynomial-time approximation algorithm for its
minimization version (called the closest shared center problem). We then convert the approximation algorithm into a heuristic algorithm
for the shared center problem. Based on this heuristic, we finally design a heuristic algorithm for mutation region detection. We further
implement the algorithms to obtain a software package. Our experimental data shows that the software is both fast and accurate. The
package is available at http://www.cs.cityu.edu.hk/∼lwang/software/LDWP/ for non-commercial use.

Index Terms —Haplotype inference, linkage analysis, pedigree, allele-sharing status, and approximation algorithm.

✦

1 INTRODUCTION

Linkage is the tendency for genes and other genetic
markers to be inherited together because of their mu-
tually close locations on the same chromosome. Linkage
analysis aims at establishing linkage between mutated
genes and genetic markers. Today linkage analysis serves
as a way of identifying disease causal mutations. Link-
age studies have facilitated the identification of several
hundreds of human genes that can harbor mutations
which by themselves lead to a disease phenotype. The
fundamental problem in linkage analysis is to identify
regions whose allele is shared by all or most affected
members but by none or few unaffected family members.

Traditional approaches to linkage analysis have usu-
ally been based on sparse microsatellite markers when
the recombination fraction between markers has to be
considered. With the new development of microarray
techniques, high-density SNP genotype data can be used
for large-scale and cost-effective linkage analysis [11],
[16]. With high-density SNP genotype data, there exist a
sufficient number of informative markers between every
pair of recombination points, and the allele-sharing sta-
tus among the family members can be unambiguously
determined. Analysis tools designed for analyzing mi-

• W. Ma is with the Department of Computer Science, City University of
Hong Kong, Hong Kong. Email:wenjima2@student.cityu.edu.hk.

• Y. Yang is with with the Department of Computer Science, City University
of Hong Kong, Hong Kong.

• Z. Chen is with the Department of Information System Design, Tokyo
Denki University. Email:zzchen@mail.dendai.ac.jp.

• L. Wang is with the Department of Computer Science, City University of
Hong Kong, Hong Kong. Email:cswangl@cityu.edu.hk.

crosatellite genotype data may not work optimally with
high-density SNP genotype data despite vigorous mod-
ifications. Lots of new computer programs have been
developed for dealing with high-density SNP genotype
data.

Almost all the existing methods for linkage analysis
are for families with clearly given pedigrees. Existing
approaches to linkage analysis can be classified into
two categories, namely, probabilistic approaches and
deterministic approaches. In probabilistic approaches,
recombinant rates are estimated in a way to maximize
the likelihood of the observed data [1], [7], [8], [9]. The
well-known software tools based on such approaches
include GeneHunter [8], LINKAGE [10], Allegro [7],
Merlin [1], etc. According to [11], these tools have dif-
ferent performances and efficiencies. Some of them (such
as those based on the Elston-Steward algorithm [5]) do
not work well when the number of markers is large,
while the others (such as those based on the Lander-
Green algorithm [9]) do not work well when the number
of family members is large. This still remains true even
after tremendous improvement has been made to them
through subsequent modifications [1], [7]. On the other
hand, these tools can give very accurate outputs when
the size of the pedigree is small.

Recently some deterministic approaches have been de-
veloped. The main idea is to minimize the total number
of recombinants to infer the input genotype data so that
all/most of diseased individuals share a segment that is
shared by none of the normal individuals [3], [14]. The
algorithm in [14] can give very accurate outputs when
the number of family members is large enough and for

2

each nuclear family the genotype data for both parents
are available. Subsequently, a new software package
(called LIden) has been developed in [18]. LIden focuses
on handling the case where the genotype data for the
whole chromosome of one of the parents in a nuclear
family is missing. It also uses the minimum recombinant
model for haplotype inference in pedigrees. The main
idea behind LIden is a heuristic that combines several
local optimization algorithms to first infer the haplotype
of each individual and then use the inferred haplotype
data to determine the linked regions.

A closely related problem is the haplotype inference
problem with a given pedigree. The purpose here is to
infer the haplotype accurately. Many haplotype inference
algorithms and programs have been developed. Qian
and Beckmann [15] and Tapader et al. [17] proposed
to minimize the number of recombinants when the
pedigree is given. Zhang et al. [21] develope a program
without recombinant for general pedigrees. Doi et al. [4]
designed two algorithms for haplotype inference with a
given pedigree. One of their algorithms works well when
the number of marker loci is a fixed constant, while the
other works well when the number of family members is
bounded by a small constant. Li and Jiang [12], [13] pro-
posed to use an integer linear programming approach
for minimum recombinant configuration. Xiao et al. [19]
designed a faster algorithm for the case where there is no
recombinant. All the aforementioned algorithms heavily
depend on the given pedigree and do not work at all
without a given pedigree.

To our knowledge, no algorithm can give good output
when the sampled individuals are closely related but the
real relationship is hidden (most of the times because
of remote relationship). This situation occurs very of-
ten when the individuals share a common ancestor at
least six generations ago. With the new development
of microarray techniques, high-density SNP genotype
data can be used for large-scale and cost-effective link-
age analysis. Recently, the international HapMap project
has produced enormous amount of haplotype data for
individuals in some major populations. For example,
there are 340 haplotypes in the group “Japanese in
Tokyo”+“Han Chinese in Beijing”. These new develop-
ments make it possible for us to propose new mathemat-
ical models for finding genes causing genetic diseases
when the sampled individuals are closely related but
their pedigree is unknown.

In this paper, we propose a mathematical model (the
shared center problem) for inferring the allele-sharing sta-
tus of a given set of individuals using a database of con-
firmed haplotypes as reference. We show that the shared
center problem is NP-complete. We then present a ratio-2
polynomial-time approximation algorithm for the closest
shared center problem which is the minimization version
of the shared center problem. We further convert the
approximation algorithm into a heuristic algorithm for
the shared center problem. Using this heuristic algorithm
as a subroutine, we finally design a heuristic algorithm

for mutation region detection. We also implement the
algorithms to obtain a software package for mutation
region detection. Experiments show that the method can
report about 50% to 90% SNPs in the true mutation
regions in different cases.

2 METHOD

Our task here is to solve the problem where the given
individuals are closely related but their pedigree is
unknown. Recently, the international HapMap project
has produced enormous amount of haplotype data for
individuals in some major populations. This motivates
us to propose a mathematical model that makes use of
the existing haplotype databases for individuals in major
populations.

Throughout this paper, a region on a chromosome,
denoted by [a, b], is a set of consecutive SNP sites (po-
sitions) starting at position a and ending at position
b. The general problem (referred to as the Mutation
Region Detection Problem) is as follows: We are given
three sets D = {ĝ1, ĝ2, . . . , ĝk}, N = {ĝk+1, . . . , ĝn},
and H = {ĥ1, ĥ2, . . . , ĥm}, where D consists of diseased
individuals represented by their genotype data on a
whole chromosome C, N consists of normal individuals
represented by their genotype data on C, and H consists
of confirmed haplotype data on C of some individuals
in the same (or similar) population. For convenience,
we call H the reference database. We remark that H can
be obtained from the database of HapMap project. The
objective here is to find the true mutation regions of C.
Here, a true mutation region of C means a consecutive
portion of C where all the diseased individuals share
a common haplotype segment that is shared by none
of the normal individuals. The true mutation regions
defined here are based on the haplotype segments of all
individuals. If we know the haplotype segments of all
the individuals, the true mutation regions can be easily
computed.

The strategy to solve this problem is to first infer the
haplotypes of each given individual. After knowing the
allele-sharing status of all the individuals, we can iden-
tify the regions of C where all the diseased individuals
share a common haplotype segment that is shared by
none of the normal individuals. Those identified regions
are candidate mutation regions. In order to get the allele-
sharing status of all the input individuals, we divide the
whole chromosome C into a set R of regions of a fixed
length L. For each region R ∈ R, we first obtain DR, NR,
and HR, where DR (respectively, NR or HR) is the set
of (genotype or haplotype) strings in D (respectively, N
or H) with their letters at positions outside R removed.
We then check if we can infer the haplotypes of the
individuals over R so that the following conditions hold:

(I) All the diseased individuals share a common
haplotype segment s that is shared by none
of the normal individuals. That is, for each
haplotype strand h (as a string) of a normal

3

individual, there is at least one position (de-
pending on s and h) where h and s differ.

(II) Each inferred haplotype is close to some hap-
lotype in HR.

Consider a genotype segment g in DR ∪ NR, where
the letter of g at each position can be 0, 1, or 2. A
position of g with a letter 0 indicates that the inferred
haplotypes of g both must have a 0 at the position, while
a position of g with a letter 1 indicates that the inferred
haplotypes of g both must have a 1 at the position. On
the other hand, a position of g with a letter 2 indicates
that one of the inferred haplotypes of g must have a 0
at the position while the other must have a 1 at the
position. For convenience, we say that a position of g
is decided if the letter of g at the position is 0 or 1, and is
undecided otherwise. A haplotype pair for g is a pair (h, h′)
of haplotypes satisfying the following conditions:

1) The letter of g at each decided position is the same
as the letters of both h and h′ at the same position.

2) For each undecided position of g, one of h and h′

has a 0 at the position while the other has a 1 at
the position.

For DR, we define three sets as follows:
• The set of decided positions associated with DR consists

of all positions q in R such that q is a decided
position of at least one string in DR.

• The set of undecided positions associated with DR

consists of all positions q in R such that q is an
undecided position for all strings in DR.

• The set of conflicting positions associated with DR con-
sists of all positions q in R such that q is a decided
position of two distinct gi ∈ DR and gj ∈ DR but
the letters of gi and gj at position q differ.

Given DR, NR, and HR, we want to decide if it is
possible to find a haplotype pair for each genotype
string in DR ∪NR such that Conditions (I) and (II) hold.
If we can successfully find such a haplotype pair for
each genotype string in DR ∪ NR, then R should be a
portion of a true mutation region of the chromosome.
In other words, to test whether R belongs to a true
mutation region of the chromosome, we need to solve
the following computational problem:

The shared center (SC) problem: We are given a quadru-
ple (DR, NR,HR, d), where DR = {g1, g2, . . . , gk} and
NR = {gk+1, gk+2, . . . , gn} are sets consisting of genotype
segments of the same length L, HR = {h1, h2, . . . , hm}
is a set consisting of haplotype segments of length L,
and d (referred to as the radius) is a nonnegative integer.
The segments in DR are from diseased individuals while
those in NR are from normal individuals. For conve-
nience, for two binary strings s and t, we denote their
Hamming distance by dist(s, t). Moreover, for a string t
and a set P of positions of t, let t|P denote the string
obtained from t by deleting the letters at the positions
not in P . A solution to (DR, NR,HR, d) consists of a center
haplotype segment s, a center index p ∈ {1, 2, . . . ,m}, and

a haplotype pair (hi,1, hi,2) for each gi ∈ DR ∪NR such
that the following conditions hold:

C1. dist(s, hp) ≤ d.
C2. For each i ∈ {1, 2, . . . , k}, hi,1 = s and

there is an integer ℓi ∈ {1, 2, . . . ,m} such that
dist(hi,2, hℓi) ≤ d.

C3. For each i ∈ {k + 1, k + 2, . . . , n} and for each
j ∈ {1, 2}, the following hold:

C3a. There is an integer ℓi,j ∈ {1, 2, . . . ,m}\
{p} with dist(hi,j , hℓi,j) ≤ d.

C3b. hi,j |U ̸= s|U , i.e., there is at least one
position q in U at which the letters of
hi,j and s differ, where U is the set of
decided positions associated with DR.

Note that the position q in Condition C3b depends
not only on i and j but also on hi,j , i.e., different i, j, or
hi,j may yield different q. Moreover, if U is empty,1 then
there is no solution to (DR, NR,HR, d).

Given (DR, NR, HR, d), an algorithm solving the SC
problem is required to check whether there is a solution
to (DR, NR,HR, d). If there is one, the algorithm outputs
“yes”; otherwise, it outputs “no”. Roughly speaking, we
want to compute a haplotype pair (hi,1, hi,2) for each
gi ∈ DR ∪ NR such that all the diseased individuals
“share” a center haplotype segment s that is shared by
none of the normal individuals. We also want s and
all the haplotypes hi,1 and hi,2 to be similar to some
segments in HR.

Intuitively speaking, for each position q ∈ U , there
is a diseased individual whose haplotype at position q
is already known and hence all the diseased individu-
als must share this haplotype at position q (cf. Condi-
tion C2). On the other hand, we need to compute a pair
(hi,1, hi,2) of hyplotypes to explain the genotype gi of the
normal individual so that neither hi,1 nor hi,2 is identical
to the center haplotype segment s on R. However, the
condition that hi,1 ̸= s (respectively, hi,2 ̸= s) on R can
be easily satisfied as long as we can make sure that R
contains a position at which hi,1 (respectively, hi,2) and s
disagree. Note that unlike the letters of s at the positions
in U , the letters of s at the positions in R \ U are not
fixed in advance. Thus, there is more freedom to find a
position in R \ U at which hi,1 (respectively, hi,2) and s
disagree. Hence, the positions in R \ U are less reliable
than the positions in U for distinguishing the diseased
individuals from the normal individuals. In this sense,
the condition that hi,1 ̸= s and hi,2 ̸= s looks too weak.
This is why we maintain Condition C3b instead.

If a solution to (DR, NR,HR, d) exists for a region R of
the target chromosome C, then we call R a valid region.
Suppose that R is a true mutation region of C. Then,
there is a real haplotype pair (h̃i,1, h̃i,2) for each gi ∈
DR ∪ NR. If HR contains both h̃i,1 and h̃i,2 for all gi ∈
DR ∪NR, then by setting d = 0, the SC problem always
has a solution over R. Intuitively speaking, a valid region

1. In our experiments, each string in DR∪NR∪HR is of length 500
and we have never found a case where U = ∅.

4

R should belong to (part of) a true mutation region of
C if HR contains both h̃i,1 and h̃i,2 for all gi ∈ DR ∪NR.

To find the true mutation regions of C, our idea is
to divide C into a set R of length-L regions and test
whether each of them is a valid region. After finding
all valid regions in R, we then use them to construct
the true mutation regions of C in a sophisticated way
(such as merging adjacent valid regions into longer
regions). Each length-L region R in R has to satisfy the
inequality in Condition C3b. Consequently, a (long) true
mutation region consisting of multiple valid length-L
regions actually has to satisfy multiple such inequalities.

We next show that the SC problem is NP-hard.
Theorem 1: The SC problem is NP-hard.

Proof: We reduce the binary closest-string (BCS)
problem to the special case of the SC problem where
all the individuals are diseased. Recall that an instance
of the BCS problem is a tuple (s1, . . . , sn, d), where s1,
. . . , sn are binary strings of the same length m and d
is a nonnegative integer. Given (s1, . . . , sn, d), the BCS
problem asks if there is a binary string t of length m
such that dist(t, si) ≤ d for all 1 ≤ i ≤ n. It is known
that the BCS problem is NP-complete [6].

Let (s1, . . . , sn, d) be an instance of the binary closest-
string problem. Let m be the common length of the
strings s1, . . . , sn. For convenience, for a letter ℓ ∈
{0, 1, 2} and a nonnegative integer i, let ℓi denote the
string consisting of i ℓs. Note that ℓ0 is the empty string.
For a binary string s, let s denote the string obtained
from s by flipping each bit. We obtain n + 1 strings h0,
h1, . . . , hn as follows:

1) h0 = s10
(d+1)n.

2) For each i ∈ {1, . . . , n}, hi =
si0

(d+1)(i−1)1d+10(d+1)(n−i).
We further obtain n strings g1, . . . , gn as follows:
• For each i ∈ {1, . . . , n}, gi =

2m0(d+1)(i−1)2d+10(d+1)(n−i).
Suppose that (s1, . . . , sn, d) has a solution t in the

binary closest-string problem. Then, we can construct a
solution for the instance ({g1, . . . , gn}, ∅, {h0, . . . , hn}, d)
of the SC problem as follows.

1) s = t0(d+1)n. Note that dist(s, h0) ≤ d because t is a
solution to (s1, . . . , sn, d) in the binary closest-string
problem and hence dist(t, s1) ≤ d.

2) For each i ∈ {1, . . . , n}, construct a haplotype
pair (hi,1, hi,2) for gi by setting hi,1 = s and
hi,2 = t0(d+1)(i−1)1d+10(d+1)(n−i). Note that for each
1 ≤ i ≤ n, dist(hi,2, hi) = dist(t, si) = dist(t, si) ≤ d
because t is a solution to (s1, . . . , sn, d) in the binary
closest-string problem.

Conversely, suppose that the instance
({g1, . . . , gn}, ∅, {h0, . . . , hn}, d) of the SC problem
has a solution. Let s be the center haplotype segment
in the solution. Let t be the prefix of s with |t| = m. We
claim that t is a solution to (s1, . . . , sn, d) in the binary
closest-string problem. To see this, first note that for
each 1 ≤ i ≤ (d + 1)n, there is a j ∈ {1, . . . , n} such

that the ith rightmost letter of gj is a 0. This implies
that the last (d + 1)n bits of s are 0s. So, the string hi

with dist(s, hi) ≤ d has to be h0 because there are d+ 1
1s in the last (d + 1)n bits of each hj with 1 ≤ j ≤ n.
Thus, dist(t, s1) ≤ d. Moreover, for each 1 ≤ i ≤ n, if we
decompose gi into two strings hi,1 and hi,2 with hi,1 = s,
then hi,2 = t0(d+1)(i−2)1d+10(d+1)(n−i). Hence, for each
1 ≤ i ≤ n, the hj with 0 ≤ j ≤ n and dist(hj , hi,2) ≤ d
has to be hi because of the different locations of the
d+1 1s in the last (d+1)n bits of h1, . . . , hn. Therefore,
dist(t, si) = dist(t, si) ≤ d. This completes the proof of
the claim and hence that of the theorem.

In the minimization version of the SC problem, we are
given a triple (DR, NR, HR), where DR, NR, and HR are
as in the SC problem. The objective is as follows. If there
is an integer d such that the instance (DR, NR,HR, d)
to the SC problem has a solution, then we find the
smallest such integer d together with a solution to
(DR,HR,HR, d). Otherwise, we report that no such inte-
ger d exists. For convenience, we call the minimization
version the closest shared center (CSC) problem.

3 AN APPROXIMATION ALGORITHM FOR THE
CSC PROBLEM

Throughout this section, let I = (DR, NR,HR) be an in-
stance of the CSC problem, where DR = {g1, g2, . . . , gk},
NR = {gk+1, gk+2, . . . , gn}, and HR = {h1, h2, . . . , hm} .
Let L be the common length of the strings in DR ∪NR ∪
HR.

First, we want to decide if there is an integer d such
that the instance (DR, NR, HR, d) to the SC problem has
a solution. For convenience, we refer to such an integer
d as a valid radius for I. Section 3.1 is devoted to testing
if valid radii exist for I. Note that if d is a valid radius
for I, then so are integers larger than d. We say that an
integer d is a semi-optimal radius for I if d is a valid radius
for I and is at most twice the smallest valid radius for I.
After knowing the existence of a valid radius for I, we
want to find a semi-optimal radius d for I together with
a solution to (DR,HR, HR, d). Section 3.2 is devoted to
this purpose.

3.1 Testing If Valid Radii Exist

Obviously, there is a valid radius for I if and only if
L is a valid radius for I. So, we consider how to test
if L is a valid radius for I. For convenience, we say
that a string s is a center haplotype segment shared by the
strings in DR if for each gi ∈ DR, there is a haplotype
pair (hi,1, hi,2) with hi,1 = s. Obviously, if the set of
conflicting positions associated with DR is not empty,
then there is no center haplotype segment shared by the
strings in DR. Moreover, if there is no center haplotype
segment shared by the strings in DR, then L is not a
valid radius for I. Hence, we hereafter assume that the
following condition holds:

A1. The set of conflicting positions associated with
DR is empty.

5

Let U (respectively, U) be the set of undecided (respec-
tively, decided) positions associated with DR. If there is
a center haplotype segment s shared by the strings in
DR, then the letter of s at each position q ∈ U can be
uniquely fixed according to the following rules:

Rule 1. If some segment in DR is 0 at position q and
each of the other segments in DR is 0 or 2 at
position q, then the letter of s at position q is
0.

Rule 2. If some segment in DR is 1 at position q and
each of the other segments in DR is 1 or 2 at
position q, then the letter of s at position q is
1.

For convenience, we refer to the letter of s at each
position q ∈ U as the center letter at position q. Because
we only care if L is a valid radius for I or not, the letters
of s at the positions in U are not important and neither
is the center index p.

Now, consider each gi ∈ NR. Let Ui (respectively,
Ui) denote the set of undecided (respectively, decided)
positions of gi. We say that gi is free if there is a position
in Ui ∩ U at which the center letter is different from the
letter of gi. On the other hand, we say that gi is dead if
(1) |U \Ui| ≤ 1 and (2) at every position q in U i ∩U , the
center letter is the same as the letter of gi.

We claim that if at least one gi in NR is dead, then L is
not a valid radius for I. Towards a contradiction, assume
that this claim does not hold. Then, some gi in NR is
dead but there is a solution S to (DR, NR,HR, L). Let s
be the center haplotype segment in S, and (hi,1, hi,2) be
the haplotype pair for gi in S. Since gi is dead, |U\Ui| ≤ 1
and gi|Ui∩U = s|Ui∩U . So, if |U \ Ui| = 0, then hi,1|U =
hi,2|U = s|U , a contradiction against Condition C3b in
Section 2. Thus, we may assume that |U \Ui| = 1. Let q be
the unique position in U \Ui. Obviously, either the letters
of hi,1 and s at position q are the same or the letters of
hi,2 and s at position q are the same. In the former case,
hi,1|U = s|U , while in the latter case, hi,2|U = s|U . Thus,
we always have a contradiction against Condition C3b
in Section 2. This completes the proof of the claim.

So, we hereafter assume that the following condition
holds:

A2. No string gi ∈ NR is dead.
Under Condition A2, if a string gi ∈ NR is not free, then
|Ui ∩ U | ≤ |U | − 2.

Under Conditions A1 and A2, L is a valid radius for I.
Indeed, we can construct a solution to (DR, NR,HR, L)
as follows. We let the center haplotype segment s in the
solution be any binary string such that the letter of s
at each position q ∈ U is the center letter at position q.
We let the center index p in the solution be any integer
in {1, . . . ,m}. For each gi ∈ DR, we obtain the unique
haplotype pair (hi,1, hi,2) for gi with hi,1 = s. For each
free gi ∈ NR, we obtain an arbitrary haplotype pair
(hi,1, hi,2). For each gi ∈ NR that is not free, we first
obtain an arbitrary haplotype pair (hi,1, hi,2) for gi, then
select two arbitrary positions q1 and q2 in U \ Ui, and

further make some necessary modifications on the letters
of hi,1 and hi,2 at positions q1 and q2 so that the letter
of hi,1 at position q1 is different from the center letter at
position q1 and the letter of hi,2 at position q2 is different
from the center letter at position q2.

Note that it is easy to decide if Conditions A1 and A2
hold. So, it is easy to decide if L is a valid radius for I.

3.2 Computing a Semi-Optimal Radius and a Solu-
tion

Throughout this subsection, we assume that L is a valid
radius for I. So, Conditions A1 and A2 hold. Let d be
the smallest valid radius for I. It is not hard to decide
if d = 0. So, we hereafter assume that d ≥ 1.

Our goal is to compute a valid radius b for I together
with a solution S to (DR, NR,HR, b) such that b ≤ 2d.
To find the center haplotype segment in S, our idea is
to look at the strings s1, s2, . . . , sm defined as follows:

• For each p ∈ {1, 2, . . . ,m}, let sp be the haplotype
segment of length L such that sp|U = hp|U and the
letter of sp at each position q ∈ U is the center letter
at position q.

Basically, our algorithm will select an appropriate sp
among s1, s2, . . . , sm and include it in S as its center
haplotype segment. After this, a haplotype pair for each
gi ∈ DR can be easily computed from sp as shown in the
next lemma:

Lemma 2: For every p ∈ {1, 2, . . . ,m} and every
i ∈ {1, 2, . . . , k}, there is a unique haplotype pair
(hp,i,1, hp,i,2) for gi with hp,i,1 = sp. Moreover, if p is
the center index in a solution to (DR, NR,HR, d), then
dp,i ≤ 2d for every i ∈ {1, 2, . . . , k}, where dp,i =
min1≤j≤m dist(hp,i,2, hj).

Proof: The first assertion in the lemma is obvious.
To prove the second assertion, consider a solution S∗

to (DR, NR,HR, d). Recall that S∗ consists of a center
haplotype segment s, a center index p ∈ {1, . . . ,m},
and a haplotype pair (hi,1, hi,2) for each gi ∈ DR ∪ NR

satisfying Conditions C1 through C3 in Section 2. Obvi-
ously, dist(sp, hp) ≤ dist(s, hp) ≤ d. Moreover, for every
gi ∈ DR, dist(hp,i,2, hi,2) = dist(sp, s) ≤ d. Therefore,
dist(hp,i,2, hℓi) ≤ dist(hp,i,2, hi,2) + dist(hi,2, hℓi) ≤ 2d,
where ℓi is the integer specified in Condition 2 in Sec-
tion 2. Now, since dp,i ≤ dist(hp,i,2, hℓi), dp,i ≤ 2d.

By Lemma 2, to obtain S, it remains to obtain a hap-
lotype pair for each gi ∈ NR. The following definitions
will be useful:

• For each i ∈ {k + 1, k + 2, . . . , n} and each j ∈
{1, 2, . . . ,m}, let d′i,j be the number of decided po-
sitions q of gi such that the letters of gi and hj at
position q differ.

• For each triple (i, j, j′) with i ∈ {k + 1, k +
2, . . . , n}, j ∈ {1, 2, . . . ,m}, and j′ ∈ {1, 2, . . . ,m},
let Si,j,j′ be the set of undecided positions q
of gi such that the letters of hj and hj′ at
position q coincide, and let di,j,j′ = 1 +
max{d′i,j , d′i,j′ , ⌈0.5(d′i,j + d′i,j′ + |Si,j,j′ |)⌉}.

6

• For each p ∈ {1, 2, . . . ,m} and each i ∈ {k + 1, k +
2, . . . , n}, let dp,i = min(j,j′) di,j,j′ , where j and j′

range over all integers in {1, 2, . . . ,m} \ {p}.
Based on the above definitions, the following lemma

shows how to compute a haplotype pair for each gi ∈
NR:

Lemma 3: For each triple (i, j, j′) with i ∈ {k + 1, k +
2, . . . , n}, j ∈ {1, 2, . . . ,m}, and j′ ∈ {1, 2, . . . ,m},
we can construct a haplotype pair (hi,j,j′,1, hi,j,j′,2) for
gi in O(L) time such that dist(hi,j,j′,1, hj) ≤ di,j,j′ ,
dist(hi,j,j′,2, hj′) ≤ di,j,j′ , there is at least one position
q1 ∈ U at which the letter of hi,j,j′,1 is not the center
letter, and there is at least one position q2 ∈ U at which
the letter of hi,j,j′,2 is not the center letter.

Proof: Fix a triple (i, j, j′) with i ∈ {k+1, k+2, . . . , n},
j ∈ {1, 2, . . . ,m}, and j′ ∈ {1, 2, . . . ,m}. For convenience,
let d̄i,j,j′ = di,j,j′ − 1. The remainder of the proof can be
sketched as follows. First, we show how to construct a
haplotype pair (hi,j,j′,1, hi,j,j′,2) for each gi ∈ NR such
that dist(hi,j,j′,1, hj) ≤ d̄i,j,j′ and dist(hi,j,j′,2, hj′) ≤
d̄i,j,j′ . Unfortunately, such a pair (hi,j,j′,1, hi,j,j′,2) is not
necessarily what we need, because it might be the case
that (i) the letter of hi,j,j′,1 at every position q ∈ U is the
center letter at position q or (ii) the letter of hi,j,j′,2 at
every position q ∈ U is the center letter at position q. So,
we then show that if this bad case occurs, then it suffices
to modify hi,j,j′,1 and hi,j,j′,2 by first selecting a suitable
position q ∈ U and further switching the letters of hi,j,j′,1

and hi,j,j′,2 at position q. Note that this modification can
increase dist(hi,j,j′,1, hj) and dist(hi,j,j′,2, hj′) each by at
most 1, implying that we now have dist(hi,j,j′,1, hj) ≤
di,j,j′ and dist(hi,j,j′,2, hj′) ≤ di,j,j′ . Thus, after this mod-
ification, (hi,j,j′,1, hi,j,j′,2) becomes a required haplotype
pair for gi.

We next detail the proof. By definition, d′i,j ≤ d̄i,j,j′ ,
d′i,j′ ≤ d̄i,j,j′ , and d′i,j + d′i,j′ + |Si,j,j′ | ≤ 2d̄i,j,j′ . So, we
can easily partition Si,j,j′ into two subsets Ŝi,j,j′ and
S̃i,j,j′ such that d′i,j + |Ŝi,j,j′ | ≤ d̄i,j,j′ and d′i,j′ + |S̃i,j,j′ | ≤
d̄i,j,j′ . Thus, we can obtain a required haplotype pair
(hi,j,j′,1, hi,j,j′,2) for gi by performing the following steps
in turn:
(1) For each decided position q of gi, set the letters of

hi,j,j′,1 and hi,j,j′,2 at position q to be the letter of gi
at position q.

(2) For each undecided position q of gi not contained
in Si,j,j′ , set the letters of hi,j,j′,1 and hi,j,j′,2 at
position q to be the letters of hj and hj′ at position
q, respectively.

(3) For each undecided position q in Ŝi,j,j′ , set the
letter of hi,j,j′,2 at position q to be the letter of
hj′ at position q and set the letter of hi,j,j′,1 at
position q to be the letter in {0, 1} different from
the letter of hj at position q. (Note: After this step,
dist(hi,j,j′,1, hj) = d′i,j + |Ŝi,j,j′ | ≤ d̄i,j,j′ .)

(4) For each undecided position q in S̃i,j,j′ , set the
letter of hi,j,j′,1 at position q to be the letter of
hj at position q and set the letter of hi,j,j′,2 at

position q to be the letter in {0, 1} different from
the letter of hj′ at position q. (Note: After this step,
dist(hi,j,j′,2, hj′) = d′i,j′ + |S̃i,j,j′ | ≤ d̄i,j,j′ .)

(5) If (i) the letter of hi,j,j′,1 at every position q ∈ U
is the center letter at position q, or (ii) the letter of
hi,j,j′,2 at every position q ∈ U is the center letter
at position q, then choose an arbitrary position q ∈
U \Ui and switch the letters of hi,j,j′,1 and hi,j,j′,2 at
position q. (Note: After this step, dist(hi,j,j′,1, hj) ≤
1 + d′i,j + |Ŝi,j,j′ | ≤ 1 + d̄i,j,j′ = di,j,j′ and similarly
dist(hi,j,j′,2, hj) ≤ di,j,j′ . Moreover, for every posi-
tion q ∈ U \Ui, either the letter of hi,j,j′,1 at position
q is not the center letter at position q, or the letter
of hi,j,j′,2 at position q is not the center letter at
position q. Thus, if U \ Ui ̸= ∅, then it is impossible
that both Conditions (i) and (ii) in Step (5) hold.)

To finish the proof of the lemma, it suffices to show
that after Step (5), the letter of hi,j,j′,1 at some position
q ∈ U is not the center letter at position q and the letter
of hi,j,j′,2 at some position q′ ∈ U is not the center letter
at position q′. To this end, suppose that Condition (i)
or (ii) in Step (5) holds. Then, gi is not free. Moreover,
by Condition A2, gi is not dead. Hence, |U \ Ui| ≥ 2.
Consider two arbitrary positions q and q′ in U\Ui. Since q
is an undecided position of gi, either the letter of hi,j,j′,1

at position q is not the center letter at position q or the
letter of hi,j,j′,2 at position q is not the center letter at
position q. Similarly, either the letter of hi,j,j′,1 at position
q′ is not the center letter at position q′ or the letter of
hi,j,j′,2 at position q′ is not the center letter at position q′.
Consequently, because Condition (i) or (ii) holds, either
the letters of hi,j,j′,1 at positions q and q′ are the center
letters at positions q and q′ but the letters of hi,j,j′,2 at
positions q and q′ are not the center letters at positions
q and q′, or the letters of hi,j,j′,2 at positions q and q′

are the center letters at positions q and q′ but the letters
of hi,j,j′,1 at positions q and q′ are not the center letters
at positions q and q′. In either case, after switching the
letters of hi,j,j′,1 and hi,j,j′,2 at position q, the letter of
hi,j,j′,1 at some position r ∈ {q, q′} is not the center letter
at position r and the letter of hi,j,j′,2 at the position r′ ∈
{q, q′} \ {r} is not the center letter at position r′.

Lemma 4: If p is the center index in a solution to
(DR, NR,HR, d), then dp,i ≤ 1 + d ≤ 2d for every
i ∈ {k + 1, k + 2, . . . , n}.

Proof: Consider a solution S∗ to (DR, NR,HR, d) that
consists of a center haplotype segment s, a center index
p ∈ {1, . . . ,m}, and a haplotype pair (hi,1, hi,2) for each
gi ∈ DR ∪ NR satisfying Conditions C1 through C3 in
Section 2. Fix an integer i ∈ {k + 1, k + 2, . . . , n}. Let
j = ℓi,1 and j′ = ℓi,2 be the integers in {1, 2, . . . ,m}\{p}
that are guaranteed to exist for i by Condition C3a. Then,
dist(hi,1, hj) ≤ d and dist(hi,2, hj′) ≤ d. Moreover, by
the definition of d′i,j and d′i,j′ , dist(hi,1, hj) ≥ d′i,j and
dist(hi,2, hj′) ≥ d′i,j′ . Furthermore, by the definition of
Si,j,j′ , we know that for every position q ∈ Si,j,j′ , either
the letters of hi,1 and hj at position q differ or the letters

7

of hi,2 and hj′ at position q differ. Thus, by Condi-
tion C3a, there must be a way to partition Si,j,j′ into
two subsets Ŝi,j,j′ and S̃i,j,j′ such that d′i,j + |Ŝi,j,j′ | ≤ d

and d′i,j′ + |S̃i,j,j′ | ≤ d. Hence, d′i,j + d′i,j′ + |Si,j,j′ | ≤ 2d.
By the discussion in the last paragraph, we

have the following three inequalities: d′i,j ≤ d,
d′i,j′ ≤ d, and d′i,j + d′i,j′ + |Si,j,j′ | ≤ 2d. So,
max{d′i,j , d′i,j′ , ⌈0.5(d′i,j + d′i,j′ + |Si,j,j′ |)⌉} ≤ d because d
is an integer. Thus, by the definition of di,j,j′ , di,j,j′ −1 ≤
d. Consequently, by the definition of dp,i, dp,i ≤ d + 1.
Finally, dp,i ≤ 2d for d ≥ 1.

We need two more definitions:

• For each p ∈ {1, 2, . . . ,m}, let dp = max1≤i≤n dp,i.
• b = min1≤p≤m dp.

Corollary 5: If p is the center index in a solution to
(DR, NR,HR, d), then dp ≤ 2d. Consequently, b ≤ 2d and
there is a solution to (DR, NR,HR, b).

Proof: The corollary follows from Lemmas 2, 3, and 4
immediately.

Based on Corollary 5, we design an approximation
algorithm for the CSC problem. It is shown in Figure 1.

Theorem 6: The algorithm in Figure 1 achieves an ap-
proximation ratio of 2 and runs in O(nLm2+nm3) time.

Proof: By Corollary 5, the algorithm achieves an
approximation ratio of 2. We next estimate its time
complexity. It is easy to show that Step 1 can be done in
O(nLm2) time. Clearly, Step 2 can be done in (n−k)Lm2

time. Step 3 can be done in O(kLm2 + (n− k)m3) time,
because Steps 3.1, 3.2, 3.3, and 3.4 can be done in O(L),
O(kLm), O((n − k)m2), and O(n) time, respectively.
Step 4 can be done in O(m) time. So, the total time
complexity is as claimed in the theorem.

We next show that we can modify the above algorithm
so that it runs in O(nLm2) time. The point is how to
compute b in O(nLm2) time when we know b ≥ 1. For
each p ∈ {1, 2, . . . ,m}, let d′p = max1≤i≤k dp,i and d′′p =
maxk+1≤i≤n dp,i. Then, b = min1≤p≤m max{d′p, d′′p}. More-
over, it is obvious that b ≤ L. So, b is the smallest integer
ℓ ∈ {1, 2, . . . , L} such that there is a p ∈ {1, 2, . . . ,m} with
d′p ≤ ℓ and d′′p ≤ ℓ. Thus, it suffices to consider how to
check if d′p ≤ ℓ and d′′p ≤ ℓ. Obviously, we can compute
all the integers in {d′p | 1 ≤ p ≤ m} in O(kLm2) total time
in advance. With d′p known, we can check if d′p ≤ ℓ in
O(1) time when p and ℓ are given. However, we do not
know how to compute d′′1 , d′′2 , . . . , d′′m in O((n− k)Lm2)
total time. So, we want to decide if d′′p ≤ ℓ without
actually knowing d′′p . The following definition is for this
purpose:

• For each triple (p, i, ℓ) with 1 ≤ p ≤ m, k+1 ≤ i ≤ n,
and 1 ≤ ℓ ≤ L, let Pp,i,ℓ be a set consisting of an
(arbitrary) pair (j, j′) of integers in {1, 2, . . . ,m}\{p}
with di,j,j′ ≤ ℓ if such a pair exists, and let Pp,i,ℓ be
the empty set otherwise.

The crucial point is that d′′p ≤ ℓ if and only if all the sets in
{Pp,i,ℓ | k+1 ≤ i ≤ n} are nonempty. Thus, it remains to
consider how to compute the sets in {Pp,i,ℓ | 1 ≤ p ≤ m,

Input: (DR, NR,HR) for which the common
length of the strings in DR ∪NR ∪HR is a
valid radius, where DR = {g1, g2, . . . , gk},
NR = {gk+1, gk+2, . . . , gn}, and HR =
{h1, h2, . . . , hm}.

Output: A valid radius b for (DR, NR,HR) together
with a solution to (DR, NR,HR, b).

1. Check if 0 is a valid radius for (DR, NR,HR),
and if so, output 0 together with a solution to
(DR, NR,HR, 0) and then halt.

2. For each triple (i, j, j′) with i ∈ {k +
1, k + 2, . . . , n}, j ∈ {1, 2, . . . ,m}, and j′ ∈
{1, 2, . . . ,m}, perform the following step:

2.1. Compute di,j,j′ and construct a haplotype pair
(hi,j,j′,1, hi,j,j′,2) for gi as in Lemma 3.

3. For each integer p ∈ {1, 2, . . . ,m}, perform the
following steps:

3.1. Construct sp.
3.2. For each i ∈ {1, 2, . . . , k}, perform the follow-

ing steps:
3.2.1. Construct the haplotype pair (hp,i,1, hp,i,2)

for gi with hp,i,1 = sp.
3.2.2. Compute dp,i = min1≤j≤m dist(hp,i,2, hj).
3.3. For each i ∈ {k + 1, k + 2, . . . , n}, perform the

following steps:
3.3.1. Compute dp,i = min(j,j′) di,j,j′ , where j and

j′ range over all integers in {1, 2, . . . ,m} \
{p}.

3.3.2. Find a pair (jp,i, j
′
p,i) such that jp,i ∈

{1, 2, . . . ,m} \ {p}, j′p,i ∈ {1, 2, . . . ,m} \ {p},
and di,jp,i,j′p,i = dp,i.

3.4. Compute dp = max1≤i≤n dp,i.
4. Compute b = min1≤p≤m dp and find a p ∈

{1, 2, . . . ,m} such that dp = b.
5. Output b and the solution to (DR, NR,HR, b)

consisting of sp, p, and the pairs
in {(hp,i,1, hp,i,2) | 1 ≤ i ≤ k} ∪
{(hp,jp,i,j′p,i,1

, hp,jp,i,j′p,i,2
) | k + 1 ≤ i ≤ n}.

Fig. 1. An approximation algorithm for the CSC problem.

k + 1 ≤ i ≤ n, 1 ≤ ℓ ≤ L} in O(kLm2) total time in
advance. The following definition is for this purpose:

• For each pair (i, ℓ) with k+1 ≤ i ≤ n and 1 ≤ ℓ ≤ L,
let Qi,ℓ be the set of all pairs (j, j′) of integers in
{1, 2, . . . ,m} with di,j,j′ ≤ ℓ.

Obviously, after performing Step 2 of the algorithm (in
Figure 1), we can compute all the sets Qi,ℓ with k +
1 ≤ i ≤ n and 1 ≤ ℓ ≤ L in O((n − k)Lm2) total time
in advance. The crucial point is that with Qi,ℓ known,
we can compute Pp,i,ℓ in O(m) time when p, i, and ℓ
are given. The idea for computing Pp,i,ℓ is to scan the
pairs in Qi,ℓ in an arbitrary order until at least one of
the following conditions holds:
(i) A pair (j, j′) with j ̸= p and j′ ̸= p is found.

(ii) Already 2m pairs in Qi,ℓ or all the pairs in Qi,ℓ have
been scanned.

If Condition (i) holds, then we can let Pp,i,ℓ = {(j, j′)}.

8

Otherwise, we can let Pp,i,ℓ = ∅ because among any
subset of 2m pairs in Qi,ℓ, there is at least one pair (j, j′)
with j ̸= p and j′ ̸= p.

In summary, to speed up the algorithm in Figure 1, it
suffices to replace Steps 3, 4, and 5 of the algorithm by
the four steps in Figure 2.

3. For each integer p ∈ {1, 2, . . . ,m}, compute d′p,
construct sp, and construct the haplotype pair
(hp,i,1, hp,i,2) for each gi ∈ DR with hp,i,1 = sp.

4. For each pair (i, ℓ) with k + 1 ≤ i ≤ n and 1 ≤
ℓ ≤ L, compute Qi,ℓ.

5. For each triple (p, i, ℓ) with 1 ≤ p ≤ m, k + 1 ≤
i ≤ n, and 1 ≤ ℓ ≤ L, compute Pp,i,ℓ.

6. For b = 1, 2, . . . , L (in this order), perform the
following step:

6.1. For each integer p with 1 ≤ p ≤ m, perform the
following step:

6.1.1. If d′p ≤ b and Pp,i,b ̸= ∅ for all i ∈ {k+1, k+
2, . . . , n}, then output b together with the
solution to (DR, NR,HR, b) that consists of
sp, p, and the pairs in {(hp,i,1, hp,i,2) | 1 ≤
i ≤ k}∪{(hp,ji,j′i,1

, hp,ji,j′i,2
) | k+1 ≤ i ≤ n

and (ji, j
′
i) is the pair in Pp,i,b}.

Fig. 2. Replacing Steps 3, 4, and 5 of the algorithm in
Figure 1.

Now, we are ready to state the main theorem of this
section.

Theorem 7: The modified algorithm achieves an ap-
proximation ratio of 2 and runs in O(nLm2) time.

4 A DECISION ALGORITHM

We can directly use the modified algorithm in Section 3
to approximately test if a given region R in a chro-
mosome belongs to a true mutation region. We first
obtain the instance (DR, NR,HR) of the CSC problem
in region R and see if the modified algorithm can return
an approximate solution with radius 2d. If the algorithm
cannot return an approximate solution with radius 2d
for a user defined value of d, we can conclude that there
is no solution to the instance (DR, NR,HR, d) of the SC
problem and rule out the possibility that R is part of
a true mutation region. Otherwise, we should consider
R as part of a candidate mutation region for further
processing.

In order to get better results in practice, we trans-
form the modified algorithm in Section 3 into a de-
cision algorithm which is shown in Figure 3. In the
decision algorithm, we have a user defined value d
as part of the input and the algorithm returns either
“yes” or “no”. The main difference is that instead of
trying to find a small radius b together with a solu-
tion to (DR, NR, HR, b) as in the modified algorithm,
we test Conditions (a) and (b) in Step 6.1. Note that
the inequality dist(sp, hp) + dist(hp,i,2, hℓi) ≤ 2d is
much stronger than the inequality dist(hp,i,2, hℓi) ≤ 2d

Input: An instance (DR, NR,HR, d) of the SC
problem.

Output: “Yes” if a solution to (DR, NR,HR, 2d)
exists; “no” otherwise.

1 – 5. Same as those of the modified algorithm
in Section 3.

6. For each integer p ∈ {1, 2, . . . ,m}, perform the
following step:

6.1. If the following conditions (a) and (b) hold,
then return “yes”.

(a) For each i ∈ {k+1, k+2, . . . , n}, Pp,i,d ̸=
∅.

(b) For each gi ∈ DR, there is an
integer ℓi ∈ {1, . . . ,m} such that
the haplotype pair (sp, hp,i,2) for gi
satisfies that dist(sp|U , hp|U) ≤ d,
dist(hp,i,2|U , hℓi |U) ≤ d, and
dist(sp, hp) + dist(hp,i,2, hℓi)
= dist(sp|U , hp|U)+dist(hp,i,2|U , hℓi |U)+
(|U | − dist(hℓi |U , hp|U)) ≤ 2d.

7. Return “no”.
Fig. 3. A decision algorithm.

which holds in the modified algorithm. Thus, Con-
ditions (a) and (b) together are much stronger than
the existence of a solution to (DR, NR,HR, 2d). So, if
the decision algorithm returns “yes”, then we can al-
ways get a solution to (DR, NR,HR, 2d). However, it
is possible that Condition (b) does not hold but a
solution to (DR, NR,HR, d + 1) exists. For example,
when dist(sp|U , hp|U) = dist(hp,i,2|U , hℓi |U) = d and
(|U | − dist(hℓi |U , hp|U)) = 1, the inequality dist(sp, hp) +
dist(hp,i,2, hℓi) ≤ 2d does not hold but it is still possible
to have a solution to (DR, NR,HR, d+ 1).

5 HEURISTICS FOR MUTATION REGION DE-
TECTION

In this section, we use the decision algorithm in Section 4
to design heuristics for the general mutation region
detection problem.

In order to find the true mutation regions of a target
chromosome C, we divide C into a set R of length-
L regions by cutting C at the positions L, 2 · L, . . . ,
⌊c/L⌋ · L, where c is the number of SNPs in C. In our
experiments, we always fix L = 500. For each region
R ∈ R, we first obtain the instance (DR, NR,HR, d) of
the SC problem in region R by setting d = ⌊L/10⌋. If the
decision algorithm outputs “yes”, then we view R as a
valid region. Otherwise, we view R as an invalid region.

Let V be the valid length-L regions obtained as above.
We then keep modifying V as follows. Whenever V
contains two regions R1 and R2 that are at most 3L
SNP sites apart on the chromosome C, we modify V
by replacing R1 and R2 with the smallest region of C
that contains both R1 and R2. For example, if L = 500
and [1, 500] and [1001, 1500] are two regions in V , then
we replace them by the larger region [1, 1500]. Finally, we

9

output the first few (say, 3 or 4) largest regions in V as the
mutation regions of C. This completes the description
of our first heuristic for mutation region detection. For
convenience, we call it Heuristic 1.

We have tested the performance of Heuristic 1 on
some simulated data. Our experimental data shows that
Heuristic 1 often outputs several disjoint mutation re-
gions that indeed belong to a single long true mutation
region of the target chromosome C. If we just report
one of them, a big portion of the true mutation region
will be missing. Therefore, we further keep modifying
the set V1 of mutation regions found by Heuristic 1 as
follows. Whenever V1 contains two regions R1 and R2

that are at most 7L SNP sites apart on the chromosome
C, we modify V1 by replacing R1 and R2 with the
smallest region of C that contains both R1 and R2. After
modifying V1 in this way, we output the regions in it.
For convenience, we call the new heuristic Heuristic 2.

We have tested the performance of Heuristic 2 on
some simulated data. Our experimental data shows that
Heuristic 2 often outputs a mutation region that can be
obtained from a true mutation region of the chromosome
C by deleting a number of SNPs in its left or right end.
In other words, by extending a mutation region found by
Heuristic 2 in both (left and right) directions, we obtain
a true mutation region of C. This motivates us to modify
the set V2 of mutation regions found by Heuristic 2 as
follows. For each region R ∈ V2, we try to extend R
along C in both directions each up to 4L SNP sites. More
precisely, if there are at least 4L SNP sites to the left
(respectively, right) of R on C, then we divide the 4L
SNP sites immediately to the left (respectively, right) of R
into a set R′ of 4 regions each of length L; otherwise, we
divide all SNP sites to the left (respectively, right) of R on
C into a set R′ of at most 4 regions, all of them except
one are of length L. For each R′ ∈ R′, we ignore the
normal individuals to obtain the instance (DR′ , ∅,HR′ , d)
of the SC problem in region R′ and call the decision
algorithm to approximately solve the SC problem on
input (DR′ , ∅,HR′ , d). If the algorithm outputs “yes” on
input (DR′ , ∅,HR′ , d) and R′ is within a distance of L
SNP sites to R on C, then we extend R to include R′.
After modifying each region R in the set V2 in this way,
we output the regions in the set as the mutation regions
of C. For convenience, we call this heuristic Heuristic 3.

6 IMPLEMENTATION

We have implemented the algorithms in C++ to obtain a
software package that can run on a Windows machine.
It has two versions: one of them provides a graphical
user interface while the other does not. To run the pack-
age, one has to prepare three input files: children.ped,
genotype.txt, and haplotype.phased. Here, children.ped
contains the basic information about the input individu-
als such as their names, genders, and diseased statuses.
File genotype.txt corresponds to the union of D and N
in Section 2 and hence contains the genotype data of

the input (diseased or normal) individuals. File haplo-
type.phased corresponds to H in Section 2 and hence
contains the confirmed haplotype data of some individ-
uals in the same population as the input individuals.
For the reader’s convenience, we provide an example
haplotype.phased which contains the haplotype data for
chromosome 1 of 170 unrelated Japanese in Tokyo and
Han Chinese in Beijing. These data were downloaded
from HapMap (http://hapmap.org). Given the three
files children.ped, genotype.txt, and haplotype.phased,
our package outputs the predicted mutation regions for
them. Each output region is shown by the indexes of its
starting SNP and ending SNP sites on the chromosome.

7 EXPERIMENTS

In order to evaluate the performance of the heuristics
and the feasibility of the mathematical model proposed
in this paper, we have written a program in C++ to
produce simulated data. The program takes a pedigree
and the haplotype data for the whole chromosome of
each founder in the pedigree as input. It generates the
haplotype data for the remaining individuals in the
pedigree using the standard χ2 model for recombination
with the parameter (the degree of freedom divided by 2)
equal to 4 [2] and according to the male/female aver-
aged genetic map for chromosome 1 downloaded from
HapMap (http://hapmap.org). The haplotype data of a
non-founder in the pedigree are generated to randomly
inherit one strand of the four-strand chromatid bundle
from each parent of the non-founder. A mutation point
is selected uniformly at random from the SNP sites of
the chromosome and it appears on one strand of the
haplotype pair in the diseased founder. (Each pedigree
has one diseased founder.) Each diseased offspring is
forced to inherit (from each of its parent) the strand with
the mutation point and the normal offsprings are forced
to inherit the strand without the mutation point. In this
way, we can guarantee that there is at least one true
mutation region. Moreover, since we know the haplotype
data of all the individuals in the simulations, we can
easily find the true mutation regions. By definition (see
Section 2), there may exist more than one true mutation
region. In our experiments, we find that the chance to
have more than one true mutation region is less than 1%.
Thus, from now on we just use the unique true mutation
region containing the mutation point in the rest of the
paper.

In our experiments, we use the haplotype data for
chromosome 1 of 170 unrelated Japanese in Tokyo and
Han Chinese in Beijing as our reference database. The
founders of an input pedigree (and hence their haplotype
data) are randomly chosen from this database. We note
that there are 116415 SNPs in chromosome 1. When we
run our programs (to evaluate their performance) on
the simulated data, we delete the haplotype data of the
founders from the reference database H (to avoid trivial
solutions).

10

1 2

44

17

42

21

37

9

35

45

34

43

19

41

15 13 1911 14 17

48

16

50

5

46 47

8

40

10

39

12

3 4 76

25

15 18 20

2522 2223 24 2326 27 2728 29 30

31 32 39 3337 40 3631 38

49

Fig. 4. A pedigree P1 spanning five generations among
which the youngest consists of two diseased individuals
and eight normal individuals.

To evaluate our programs, we use six different pedi-
grees. They are shown in Figures 4 through 9 and are
denoted by P1, P2, . . . , P6, respectively. Pedigree P1 is
generated manually. The rest of pedigrees are modified
from P1. No couple is allowed to share any common
ancestor in all the six pedigrees. Pedigrees P1 through
P4 have 5 generations and each of them has 2, 3, 4
and 5 diseased individuals as part of the input for our
program in the latest generation, respectively. Pedigrees
P5 and P6 have 6 and 7 generations, respectively. In each
figure, a square represents a male, while a circle repre-
sents a female. Moreover, a filled square (respectively,
circle) represents a diseased male (respectively, female),
while an unfilled square (respectively, circle) represents a
normal male (respectively, female). Furthermore, if two
circles (respectively, squares) enclose the same number
in the figure, then they correspond to the same male
(respectively, female) and their circumferences (respec-
tively, sides) are dashed. This makes the figure more
readable. Note that our programs only take the indi-
viduals in the youngest generation of the pedigree as
input. So, to emphasize the youngest generation, we use
a dotted rectangle to enclose them at the bottom of the
pedigree. In this way, one can easily find out that P1,
P2, P3, and P4 have 10, 10, 12, and 15 individuals in
their youngest generation, respectively. Moreover, one
can see that the four pedigrees have different structures,
because they have 2, 3, 4, and 5 diseased individuals in
the youngest generation, respectively.

We have done 150 experiments for each pedigree and
calculated the average performance of our programs. We
use precision and recall to evaluate the performance of
our programs. The correctly detected mutation regions are
the intersection of the regions output by the computer
program and the true mutation regions. Here, precision is
defined as the number of SNPs in the correctly detected
mutation regions divided by the total number of SNPs in
the regions output by the program. The value of recall is
defined as the number of SNPs in the correctly detected
mutation regions divided by the total number of SNPs
in the true mutation regions. So, if the value of recall is
1, then all the SNPs in the true mutation regions have

1 2

44

17

42

21

37

9

35

45

34

43

19

41

15 13 1911 14 17

48

16

50

5

46 47

8

40

10

39

12

3 4 76

25

15 18 20

2522 2223 24 2326 27 2728 29 30

31 32 39 3337 40 3631 38

49

Fig. 5. A pedigree P2 spanning five generations among
which the youngest consists of three diseased individuals
and seven normal individuals.

1 2

45

17

42

21

37

9

35

46

34

43

19

41

15 13 1911 14 17

50

16

52

5

47 48

8

40

10

39

12

3 4 76

25

16 15 18 2020

2522 2223 24 2326 27 2728 29 30

31 32 39 3337 40 3631 38 38

514944

Fig. 6. A pedigree P3 spanning five generations among
which the youngest consists of four diseased individuals
and eight normal individuals.

been output by the program. Similarly, if precision is 1,
then all the SNPs reported by the program are in the
true mutation regions.

The columns “P1” through “P4” in Table 1 show our
experimental results for P1 through P4, respectively. The
table consists of three parts separated by two consecutive
horizontal lines. The first (respectively, second or third)
part shows the result of Heuristic 1 (respectively, Heuris-
tic 2 or Heuristic 3). Note that, in terms of recall, Heuris-
tic 3 always gives the best results. Each part has three
rows: “longest”, “first 2 longest”, and “first 3 longest”.
The row “longest” is the result that our program just
outputs the longest detected region. The row “first 2
longest” is the result that our program outputs the first
two longest detected regions as the output. The row
“first 3 longest” is the result that our program outputs

1 2

46

17

43

21

37

9

35

47

34

45

19

42

15 13 1911 14 17

51

16

54

5

49 50

8

40

10

39

12

3 4 76

25

16 15 18 2020

2522 2223 24 2326 27 2728 29 30

31 32 39 3337 40 3631 38 38

5341 44 48 52 55

Fig. 7. A pedigree P4 spanning five generations among
which the youngest consists of five diseased individuals
and ten normal individuals.

11

Pedigree P1 P2 P3 P4 P5 P6

real region 7107 6611 5088 4128 5508 4446
longest 5440 5667 2539 1278 5997 4711
first 2 longest 7349 7073 3223 1416 8635 6624
first 3 longest 8117 7628 3371 1437 10033 7470
longest 8441 7253 3877 1738 8590 6537
first 2 longest 10298 8564 4331 1787 12031 8809
first 3 longest 10918 8905 4394 1787 13548 9628
longest 9654 8149 4905 2610 10193 7738
first 2 longest 13252 10471 5995 2798 15513 11774
first 3 longest 14713 11301 6219 2818 18597 13738

TABLE 2
The average length of the true mutation regions and the
regions computed by the heuristics for P1 through P6.

the first three longest detected regions as the output. In
any case, if the output detected regions have no overlap
with the true mutation regions, both precision and recall
are treated as 0.

By the columns “P1” and “P2” in Table 1, the average
recall values for the 150 tests are 90.3% and 86.3 %,
respectively. This implies that the reported regions for P1

and P2 cover 90.3% and 86.3% of the true mutation re-
gions, respectively. The precision values 48.3% and 58.7%
at the bottom of the columns “P1” and “P2” in Table 1
indicate that the sizes of the reported mutation regions
are about twice of that for the true mutation regions. This
is still very useful for narrowing the region for searching
the mutation gene(s), which is the main purpose here.
From the columns “P1” through “P4” in Table 1, we can
see that the values of both precision and recall decrease
when the number of diseased individuals increases. One
of the possible reasons might be that the average length
of the true mutation regions becomes shorter when the
number of diseased individuals increases. Table 2 lists
the average length of the true mutation regions for P1

through P6. For pedigrees P1 to P4, where all the four
pedigrees have 5 generations, the length of the true
mutation regions decreases from 7107 to 4128 with the
increment of the number of diseased individuals. By
the definition of the true mutation regions, when there
are more diseased individuals, the length of the true
mutation regions shared by all the diseased individuals
will certainly decrease. Comparing pedigrees P1, P5 and
P6, where they all have two diseased individuals in the
input set and have 5, 6 and 7 generations, respectively,
the length of the true mutation regions also decreases
when the number of generations increases.
P5 and P6 demonstrate the situations where there are

6 and 7 generations, respectively. When there are two
diseased individuals, the average recall of the 150 tests
are very similar to that of 5 generations. The results are
shown in the columns “P5” and “P6” in Table 1.

We have run the programs on a computer with Intel(R)
Core(TM) 2 CPU 2.40GHz and 4GB memory. The run-
ning times of the heuristics range from several minutes
to dozens of minutes for the six pedigrees. We find that

1 2

44

17

42

21

37

9

35

46

34

43

19

41

15 13 1911 14 17

48

16

50

5

4547

8 10

39

12

3 4 76

25

15 18 20

2522 2223 24 2326 27 2728 29 30

31 32 39 3337 403631 38

49 50

34

65 66

4945

67 6869 70 61 62 63 64

Fig. 8. A pedigree P5 spanning six generations among
which the youngest consists of two diseased individuals
and eight normal individuals.

1 2

44

17

42

21

37

9

35

46

34

43

19

41

15 13 1911 14 17

48

16

50

5

4547

8 10

39

12

3 4 76

25

15 18 20

2522 2223 24 2326 27 2728 29 30

31 32 39 3337 403631 38

49 50

34

65 66

4945

67 6869 70 61 62 63 64 69 62 7061 63

71 72 73 74 79 80 75 7677 78

Fig. 9. A pedigree P6 spanning seven generations among
which the youngest consists of two diseased individuals
and eight normal individuals.

Heuristics 1 and 2 have almost the same running time for
all the six pedigrees, and hence we only list the average
running times of Heuristics 1 and 3 in Table 3.

8 CONCLUDING REMARKS

We have proposed a mathematical model for inferring
the allele-sharing status of a given set of individuals
using a database of confirmed halpotypes as reference.
Our experimental data shows that the method can report
about 50% to 90% SNPs in the true mutation regions in
different cases.

Based on the mathematical model, we know that if
HR contains all the real haplotype pairs (h̃i,1, h̃i,2) for
all gi ∈ DR ∪NR, then by setting d = 0, the SC problem

Pedigree P1 P2 P3 P4 P5 P6

Heuristic 1 15.47 13.62 9.23 2.3 27.78 34.08
Heuristic 3 17.59 15.50 10.51 2.92 29.72 35.58

TABLE 3
The average running times (in minutes) of Heuristics 1

through 3 for P1 through P6.

12

Pedigrees
P1 P2 P3 P4 P5 P6

Heuristics precision recall precision recall precision recall precision recall precision recall precision recall
longest 68.5% 51.5% 74.7% 59.3% 73.6% 37.4% 75.4% 28.7% 53.2% 50.1% 53.0% 50.9%
first 2 longest 62.5% 61.6% 69.2% 66.8% 69.0% 43.2% 74.8% 30.7% 46.7% 65.2% 46.6% 64.3%
first 3 longest 59.4% 64.6% 67.6% 69.4% 67.7% 43.9% 74.7% 30.9% 42.9% 69.6% 44.1% 67.9%
longest 64.7% 68.2% 74.3% 70.2% 69.9% 49.4% 74.5% 35.2% 48.6% 60.6% 47.6% 59.0%
first 2 longest 59.3% 77.5% 68.5% 76.8% 67.9% 53.4% 74.7% 36.1% 42.0% 74.9% 43.6% 73.2%
first 3 longest 57.2% 78.8% 67.1% 77.7% 67.4% 53.4% 74.7% 36.1% 39.4% 79.3% 41.5% 76.2%
longest 55.4% 68.7% 65.9% 72.9% 63.6% 59.1% 68.2% 50.4% 39.1% 60.5% 36.4% 50.6%
first 2 longest 50.5% 86.7% 60.0% 83.6% 62.2% 69.1% 67.8% 52.4% 33.5% 80.8% 32.3% 72.4%
first 3 longest 48.3% 90.3% 58.7% 86.3% 61.7% 69.4% 67.8% 52.5% 30.6% 87.4% 31.6% 83.7%

TABLE 1
The results for P1 through P6, where each percentage is relative to 150 tests. The table consists of three parts
separated by two consecutive horizontal lines. The first (respectively, second or third) part shows the results of

Heuristic 1 (respectively, Heuristic 2 or Heuristic 3).

always has a solution over R. Note that, when we do
the experiments, we delete the haplotype data of all the
founders from the reference database. Thus, for some
cases, the recall value is not very big. With the increasing
of the size of the database, we can expect that the value
of recall can be improved.

Acknowledgments We thank the referees for very help-
ful comments. This work is supported by a grant from
the Research Grants Council of the Hong Kong Spe-
cial Administrative Region, China [Project No. CityU
121608]. Lusheng Wang is the corresponding author.

REFERENCES

[1] G. Abecasis, S. Cherny, W. Cookson, and L. Cardon. Merlin-rapid
analysis of dense genetic maps using sparse gene flow trees, Nature
Genetics, 30, 97-101, 2002.

[2] K. W. Broman and J. Weber. Characterization of human crossover
interference, Am. J. Hum. Genet., 66, 1911-1926, 2000.

[3] Z. Cai, H. Sabaa, Y. Wang, R. Goebel, Z. Wang, J. Xu, P. Stothard,
and G. Lin. Most parsimonious haplotype allele sharing determi-
nation, BMC Bioinformatics, 10:115, 2009.

[4] K. Doi, J. Li, and T. Jiang. Minimum recombinant haplotype config-
uration on tree pedigrees, In Proceedings of Workshop on Algorithms
in Bioinformatics (WABI), 339-353, 2003.

[5] R. C. Elston and J. Stewart. A general model for the analysis of
pedigree data, Human Heredity, 21, 523-542, 1971.

[6] M. Frances and A. Litman. On covering problems of codes, Theory
of Computing Systems, 30, 113-119, 1997.

[7] D. F. Gudbjartsson, K. Jonasson, M. L. Frigge, and A. Kong.
Allegro, a new computer program for multipoint linkage analysis,
Nature Genetics, 25, 12-13, 2000.

[8] L. Kruglyak, M. J. Daly, M. P. Reeve-Daly, and E. S. Lander. Para-
metric and nonparametric linkage analysis: a unified multipoint
approach, American Journal of Human Genetics, 58, 1347-1363, 1995.

[9] E. Lander and P. Green. Construction of multilocus genetic linkage
maps in human, Proceedings of National Academy of Sciences (USA),
84, 2363-2367, 1987.

[10] G. M. Lathrop, J. M. Lalouel, C. Julier, and J. Ott. Strategies for
multilocus linkage analysis in humans, Proceddings of the National
Academy of Sciences (USA), 81, 3443-3446, 1984.

[11] I. Leykin, K. Hao, J. Cheng, N. Meyer, M. R. Pollak, R. J. H. Smith,
W. H. Wong, C. Rosenow, and C. Li. Comparative linkage analysis
and visualization of high-density oligonucleotide snp array data,
BMC Genetics, 6:7, 2005.

[12] J. Li and T. Jiang. Computing the Minimum Recombinant Haplo-
type Configuration from Incomplete Genotype Data on a Pedigree
by Integer Linear Programming, Journal of Computational Biology,
12(6), 719-739, 2005.

[13] J. Li and T. Jiang. An exact solution for finding minimum re-
combinant haplotype configurations on pedigrees with missing
data by integer linear programming, Proceedings of Symposium on
Computational Molecular Biology (RECOMB), 20-29, 2004.

[14] G. Lin, Z. Wang, L. Wang, Y.-L. Lau, W. Yang. Identification of
linked regions using high-density SNP genotype data in linkage
analysis, Bioinformatics, 24(1), 86-93 , 2008.

[15] D. Qian and L. Beckmann. Minimum recombinant haplotyping in
pedigrees, American Journal of Human Genetics, 70, 1434-1445, 2002.

[16] G. Sellick, C. Longman, J. Tolmie, R. Newbury-Ecob, L. Geen-
halgh, S. Hughes, M. Whiteford, C. Carrett, and R. Houlston.
Genomewide linkage searches for mendelian disease loci can be
efficiently conducted using high-density snp genotyping arrays,
Nucleic Acids Res, 32(20), e164, 2004.

[17] P. Tapadar, S. Ghosh, and P. P. Majumder. Haplotyping in pedi-
grees via a genetic algorithm, Human Heredity, 43-56, 1999.

[18] L. Wang, Z. Wang, and W. Yang. Linked region detection using
high-density SNP genotype data via the minimum recombinant
model of pedigree haplotype inference, BMC Bioinformatics, 10:216,
2009.

[19] J. Xiao, L. Liu, L. Xia, and T. Jiang. Fast elimination of redun-
dant linear equations and reconstruction of recombination-free
mendelian inheritance on a pedigree, Proceedings of ACM-SIAM
Symposium on Discrete Algorithms (SODA), 655-664, 2007.

[20] W. Yang, Z. Wang, L. Wang, P.-C. Sham, P. Huang, and Y. L.
Lau. Predicting the number and sizes of IBD regions among family
members and evaluating the family size requirement for linkage
studies, European Journal of Human Genetics, 16(12), 1535-1543, 2008.

[21] K. Zhang, F. Sun, and H. Zhao. Haplore: a program for haplo-
type reconstruction in general pedigrees without recombination,
Bioinformatics, 21, 90-103, 2005.

13

Wenji Ma received the Bachelor’s degree in
software engineering from Shandong University,
Jinan, Shandong, China in 2009. She is now
a PhD student in the Department of Computer
Science, City University of Hong Kong. Her re-
search interests include algorithms and bioinfor-
matics.

Yong Yang received his Master of Philosophy
degree in Computer Science from City University
of Hong Kong, in 2010. His research interests
include algorithms and bioinformatics.

Zhi-Zhong Chen received the PhD degree
from the University of Electro-Communications,
Tokyo, Japan in 1992. Currently, he is a profes-
sor in the Division of Information System Design,
Tokyo Denki University. His research interests
include algorithms, computational biology, and
graph theory.

Lusheng Wang received the PhD degree
from McMaster University, Hamilton, Ontario,
Canada, in 1995. Currently, he is a professor
in the Department of Computer Science, City
university of Hong Kong. His research interests
include algorithms, bioinformatics, and computa-
tional biology. He is a member of the IEEE.

