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Abstract

We consider a modified notion of planarity, in which two nations of a map are considered
adjacent when they share apgint of their boundaries (not necessarily atige as planarity
requires). Such adjacencies definenap graph We give an NP characterization for such
graphs, derive some consequences regarding sparsity and coloring, and survey some algorith-
mic results.

1 Introduction

1.1 Motivation and Definition

Suppose you are told that there are four planar regions, and for each pair you are told their topolog-
ical relation: A is insideB, B overlapsC, C touchesD on the outsideD overlapsB, D is disjoint

from A, andC overlapsA. All four planar regions are “bubbles” with no holes; more precisely,
they are closed disc homeomorphs. Are such regions possible? If so, we would like a model, a
picture of four regions so related; if not, a proof of impossibility.

This extension of propositional logic is known as theological inference problerfil]. No
decision algorithm or finite axiomatization is known, although the problem becomes both finitely
axiomatizable and polynomial-time decidable in any number of dimensions other than two [1, 15],
for some reasonable vocabularies of topological relations. In fact, the following special case has
been open since the 1960’s [10]: for every pair of regions, we are only told whether the regions
intersect or not. This is known as tlséring graph problembecause the input is a simple graph,
and we may assume that the regions are in fact planar curves (or slightly fattened simple curves,
if we insist on disc homeomorphs). In other words, we are seeking a recognition algorithm for
the intersection graphs of planar curves. Until recently it was open whether this problem is even
decidable; in fact it is NP-complete [13, 16, 17].

The difficulty of the string graph problem stems to a large extent from the complex overlaps
allowed between regions. But many practical applications are so structured that no two regions

*A preliminary version appeared with the title “Planar Map Graphs” [6].
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in them overlap arbitrarily. For example, consider maps of political regions: such regions either
contain one another or else they have disjoint interiors; general overlaps are not allowed.

In this paper, we consider the following special case: for every pair of regions, they are either
disjoint, or they intersect only on their boundaries. Since the nations of political maps intersect in
this way, we call such regiormmations In this paper we studgnap graphsthe intersection graphs
of nations.

Definition 1.1 Suppos&7 is a simple graph. Anapof G is a functionM taking each vertex of
G to a closed disc homeomorpW (v) in the sphere, such that:

1. For every pair of distinct vertices andv, the interiors ofM(u) and M (v) are disjoint.

2. Two vertices: and v are adjacent inG if and only if the boundaries of(u) and M (v)
intersect.

If G has a map, then it is emap graph The regionsM (v) are thenationsof M. The uncovered
points of the sphere fall into open connected regions; the closure of each such regibnléscd
M.

Can we recognize map graphs? This problem is closely related to planarity, one of the most
basic and influential concepts in graph theory. Usually, planarity is defined as above, but with
adjacency only for those pairs of nations sharing a curve segment. Planarity may also be defined in
terms of maps: specifically, a planar graph has a sumh that no four nations meet at a point

We consider a natural restriction on maps and map graphs. Suppose we restrict our map so
thatno more thark nations meet at a pointve call this ak-map and the corresponding graph is
a k-map graph In particular the ordinary planar graphs are the 2-map graphs; in fact all 3-map
graphs are also 2-map graphs, as argued below.

In our figures we draw a map by projecting one point of the sphere to infinity; we always choose
a point that is not on a nation’s boundary.

1.2 Summary of Results

In Section 2 we present a characterization of map grépas the “half-squares” of planar bipartite
graphsH (Theorem 2.2); we calH awitnessof G. This characterization implies that map graph
recognition is in NP (Corollary 2.4), and also some sparsity results-foap graphs. In Section 3

we characterize all possible clique maps (Theorem 3.1), and we show that a map graph has a linear
number of maximal cliques (Theorem 3.2). In Section 4 we consider the coloritvgnaip graphs.

We briefly survey the state of recognition algorithms in Section 5.

1.3 Examples

We give three examples. First, consider the adjacency graph of the United States in Figure 1.1; this
is a 4-map graph. Itis not planar, since the “four corners” states (circled) fdtm ehich is part
of a K5-minor.

Second, consider the 17-nation 4-map in Figure 1.2(1).A.bt its map graph. At the end of
Section 2, we show that after deleting the ed@gr} from G, the result is not a map graph. This
example demonstrates that the 4-map graph property is not monotone.
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Figure 1.2: An example 4-map, and a subgraph of its witness.

Third, consider Figure 1.3: part (1) is a map graph, part (2) is a 4-map of the graph, and part (3)
is a corresponding witness (as defined in Section 2). The graph has a mirror symmetry exchanging
a with ¢, but the map and the witness do not. In fact a careful analysis shows that no map or witness
of this graph has such a symmetry, and so a layout algorithm must somehow “break symmetry” to

find a map for this graph.

Figure 1.3: A symmetric map graph, a map, and a witness.



2 A Characterization

We characterize map graphs in terms of planar bipartite graphs. For arapt a subsed of its

vertices, let [A] denote the subgraph &f induced byA. Let H? denote the square @, that is

the simple graph with the same vertex set, where vertices are adjacent whenever they are connected
by a two-edge path ifi/. We represent a bipartite graphHs= (A, B; E), where the vertices are
partitioned into the independent setsand B, andF is the set of edges.

Definition 2.1 Suppose = (A, B; E) is a bipartite graph. Ther/2[A4] is thehalf-squareof H.
That is, the half-square has vertex getwhere two vertices are adjacent exactly when they have a
common neighbor idB.

Theorem 2.2 A graphG is a map graph if and only if it is the half-square of some planar bipartite
graph H.

Proof: For the “only if” part, suppos& is a map graph. Le\ be the set of nations in a map
of G; for convenience we identify the vertices ofG with the corresponding nations .

Consider a single natioR. Clearly at most: — 1 boundary points will account for all the
adjacencies aoR with other nations, and so a finite collecti@hof boundary points witnesses all
the adjacencies among the nationgvin

In each nationR we choose a representative interior point, and connect it with edges through
the interior of R to the points ofP boundingR. In this way we construct a planar embedding
of the bipartite graptH = (N, P; E'), such that any two nation®; and R, intersect on their
boundaries if and only if they have distance twddn In other words( is the half-squarél2[\V].

For the “if” part, given a bipartite planar gragh = (N, P; E'), we embed it in the plane. By
drawing a sufficiently thin star-shaped nation around dach " and its edges i®’, we obtain a
map for H2[N]. O

When graph€7 andH are related as abové] acts as a proof tha¥ is a map graph. We call
H awitnesdor G, and we call the vertices iR thepointsof the witness; such points are displayed
as squares in the example Figure 1.3(3). The above argument sho&hhatat most quadratic
size, but we can do better.

Lemma 2.3 If G is a map graph with vertices, then it has a witneg$ with O(n) vertices and
edges.

Proof: ConstructH as above. A poinp € P is redundantf all pairs of its neighbors are also
connected through other points Bf Deleting a redundant point does not change the half-square;
we repeat this untiH has no redundant points.

Consider a drawing off. For eaclp € P, we choose a pair of natiorf®; and R, connected
only by p. Remove each and its arcs, and replace them by a single arc ffyno Rs. In this way,
we draw a simple planar subgragf of G with edge seP and vertex se. Hence|P| < 3n — 6,
andH has less thadn vertices.

SinceH is simple and bipartite, by Euler’s formula it has at mgt + |P|) — 4 edges, which
is less thargn. |

In particular, a map graph has a witness which may be checked in linear time [12], and so we
have:



Corollary 2.4 The recognition problem for map graphs is in NP.

Corollary 2.5 For & > 3, k-map graphs are those with withessdssuch that every point has
degree at most. Moreover, ak-map graph withn vertices hag)(kn) edges.

Proof: The first assertion is clear from the arguments in Theorem 2.2. To prove the second, first
note that by Lemma 2.3, eaehvertex map grapliz has a witnes#/ with less thar8n edges. So,

some natiorR has degree at most 7 i, and consequentl? has degree at mo¥tk — 1) in the

map graph. Now we delet®, and prove our edge bound by inductionan a

Remark:The first author [5] has improved the above edge bourichte 2k.
We conclude with some further simple consequences of Theorem 2.2:

¢ In the witness graph, a point of degree three may be replaced by three points of degree two.
Consequently, 3-map graphs are 2-map graphs (planar graphs).

¢ If G has no clique of size four, then it is a map graph if and only if it is a planar graph.
¢ A map graph may contain cliques of arbitrary size.

e From the previous two remarks, it is clear that the “map graph” property is not monotone,
and hence cannot be characterized by forbidden subgraphs or minors.

Regarding the last point, we can also show a stronger example:
Claim 2.6 There is a 4-map grapt with an edge: such thatG — e has no map.

Proof: Let G be the graph realized by the 4-map in Figure 1.2(1), and/l&te a witness of5.
We may assume th&@ has no point of degree 1. Since each natian{a, ..., j} has exactly two
neighbors irG, the degree of in H is either 1 or 2. Suppose that the degree of sora€{a, ..., j}
in H is 2. We only consider the case where= «; the other cases are similar. L@t andp- be
the two neighbors of in H. Other tharu, only nations 1 and 2 can be adjacenptoor ps in H.
By this and the fact that nations 1 and 2 are adjacent to each otligrtifiollows that H remains
to be a witness of7 even after modifying it by identifying; andp, (note that the degree afin
H becomes 1 after this modification). So, we may assume that the degacia &f is 1. This
assumption can be made for eack {a,...,j}.

Let H' be the bipartite graph in Figure 1.2(2), and Y be the graph obtained froii’ by
deleting point® andq and their incident edges. By the above assumptifhmust be an induced
subgraph off (for example, the commom neighbor of nations 1 and # fhis the unique neighbor
of nationa in H). In turn, by the existence of edg¢s, 6} and{4,6} in G and the planarity of
H, H' must be a (not necessarily induced) subgrapifofNow, by Figure 1.2(2) and planarity,
pointg must also be adjacent to nations 3 and HinOur argument so far did not depend on edge
e = {6,7} in G, but now this edge has been forced by considering other edges. So in other words,
G — eis not a map graph. |

3 Cliques in Map Graphs

Suppos€ is the cliquek,, then it may be realized in the following ways, corresponding to the
four parts of Figure 3.1:
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Figure 3.1: Cliques in map graphs.

(1) Then nations share a single boundary point (calledabmeterof G). We call this thepizza

(2) Somen — 1 nations share a single boundary point (called ¢baterof G), and the one
remaining nation (called therustof G) is arbitrarily connected to them at other points. We
call this thepizza-with-crust

(3) If n > 6, there may be three points supporting all adjacencies in the clique, with at most
n — 2 nations at any one point. In particular, there are at most two nations adjacent to all
three of the points. We call this thmantasch

(4) A cligue with all boundary points of degree two; that is, an ordinary planar clique. Since the
planar K, (edge) andK; (triangle) are a pizza and pizza-with-crust respectively, the only
new clique to list here is the plan&fy, which we call theiice-ball.

Theorem 3.1 A map graph clique must be one of the above four types.

Proof: Given a mapM of the cliqueG = K,, we construct a witness gragh = (N, P; E)

as in Theorem 2.2, being sure to include all intersection points of three or more natiBnsBin
Euler’s formula there ar®(n) such points, so we can still mafinite. Now it suffices to show
that the witnesd is one of the four types listed above.

Let d be the maximum degree of all poiniss P. If n = d, we have a pizza. lh = d + 1,
we have a pizza-with-crust. So we may assuirie d + 2. If d < 3, then the map graph is planar;
since K5 is not planar, this forces = 4 andd = 2, the rice-ball. We now assunae> 4.

Pick pointp; of maximum degred, and nations: andy not adjacent tg;. Consider the set
P’ of all points connecting or y to the nations aroung;. We claim that there is a poipt € P’
connectingr, y, and at least two nations adjacentptg otherwise, by drawing arcs through the
points of P’, we could get a plandk 4 » with thed nations on a common face, which is impossible.
Sincep; has maximum degree, there are also two nations adjacenthot notps. In summary,
the following three disjoint sets each contain at least two nations:

N1 = {R e N| Ris adjacent tg, but notp; }
N> = {R e N| Ris adjacent tg; but notps}
N3 = {R e N| Ris adjacent to botlp; andp>}

We will choose six distinct nationB;, Ry € N1, R3, R4 € N>, andRs5, Rg € N3; no matter
how we choose, the grapH will contain the induced subgraph in Figure 3.2(1), with the cycle
C = p1RspaRs. The graphH' = H[{p1,p2} U N3] is a complete bipartite graph, with a planar
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embedding inherited frontl. Each face off’ is a 4-cycle; furthermore all nations K7 U N>
must lie inside one face, in order to be connected by other points. So, we cRgaBg € N3 on
this face. Then this face is bounded 6y we have an embedding with; U N> insideC, and
Ns — {Rs, Rg} outsideC'. By an appropriate choice of natiofg, Ry € N7 andRs, Ry € Na,
we arrive at Figure 3.2(2), the embeddingwef p2, and all their edges to adjacent nations. In this

figure, the three occurrences of \” locate any other nations iV; U N> U Ns.

R3 R5 Rl
pl p2
R, R, R,

Figure 3.2: A subgraph dff, and its embedding.

There must exist a third poing inside C' connectingR; and R4. These edges now separate
N1 —{R;} from N> — { R4}, so all these nations are adjacenpias well, yielding Figure 3.2(3).
This figure is not necessarily an induced subgraph, since the ddtieps} and {Rs, ps} may
occur inH. But by the maximality of the degree pf, if exactlyi € {1, 2} of these edges exist,
then there exist other nationsk; € N3, necessarily outsid€. So, no matter whether these edges
exist or not, the pointg;, p2, andps support a hamantasch oy U A> U N3. Hence, we are done
if N'=N7 UNy UN;.

For contradiction, suppos& contains some natioR not adjacent tg; or p;. We need to
placeR, and some new points and edges, in Figure 3.2(3) saRtrats neighbor points connected
to the other nations. However by planarity 8f if {Rs,p3} or {Rs,p3} is an edge ird, thenR
cannot be placed so that bay and R; have neighbor points connectedRo Similarly, if neither
{Rs,p3} nor{Rg, ps} is an edge irf, thenR cannot be placed so that all &, Rs, andRg have
neighbor points connected R.

We have shown thalf is one of the four types. Since all intersection points of three or more
nations inM are represented i, the mapM has the same type. We remark that the four types
are not all mutually exclusive; for examplet could contain one point of degreeand another
point of degreex — 1. O

By a careful analysis of each kind of clique, we can now show:
Theorem 3.2 A map graphG with n vertices has at mo&trn maximal cliques.

Proof: We may assume thak is connected. As in Theorem 2.3, we choose a planar witness
H = (N, P; E') for G whereN is the set of nations? is the set of at mosin — 6 points, ande’
is the set of edges.

Fix a plane embedding off. If verticesuy, us, v1,v2 appear in that cyclic order as distinct
neighbors of some vertex in H, then we say that the paifs, v1 } and{uz,v2} crossatw.

Each point can contribute to at most one maximal pizza, and so there are 8rmdsmnaximal
pizzas inG. Note that each MEis a pizza.



Next, letC, ..., Cy be the maximal cliques iG that are either non-pizza MG or haman-
taschen. For each hamantasch we may choose three poings, q;,; € P and three nations
a;, bi, c; € C; such thatl; = p;a;q;b;r;c; is an induced cycle it andC; consists of all nations
adjacent to at least two of the points g;, r; in H. For each paifa, b} of nations such that some
non-pizza MG contains bottu andb, let s, , be a point inP that is adjacent to botandb in H.

For each non-pizza MCC;, let C; = {ai,bi,ci}, Di = Sajcir G = Sa; by Ti = Sb;cin andT; be

the induced cycle;a;q;b;r;c; in H. No matter whethe€; is a non-pizza M@ or hamantasch, we
definef(C;) = {pi, g, :} and note tha€’; consists of all nations adjacent to at least two points of
f(C;). This impliesf (C;) # f(C;) for distinctC; andC}, because otherwisg; U C; would be a
larger clique.

DefineH' as the simple graph with vertex setand edge sef{p, ¢} | {p, ¢} C f(C;) for some
i}. We claim thatd' is planar. To see this, we embétl in H by drawing the edgép;, ¢;} of H’
through their neighbot; in H, and similarly for the other two edgés;, r;} and{p;, r;}. Towards
a contradiction, assume that two edged#fcross in the embedding. Then, by cycle symmetries,
we may assume that for some distiigtandC}, pairs{p;, ¢;} and{p;, ¢;} cross at nation; = a;
(call it @) in H. Since the cycled; andT} cross ai in H, they must cross again, sharing either
another nation or a point.

Case 1. T; andT; share another nation but no point. By symmetry, it suffices to consider the
caseb; = b; = b. If C; andC; were both non-pizza Mgs, then we would have; = s, = g;,
contradicting the crossing. So at least on€phndC; is a hamantasch, we suppaSg ThenC;

has another natio' also adjacent tp; andg; or elseC; would be a pizza-with-crust. Because of
Ty, it must bea’ = ¢;. Now sinceg; is adjacent tax, b, ¢;, in order forC; to be a non-pizza;

must also be a hamantasch. Th@&nhas another natioa” adjacent tg; andg;, but planarity of

H makes this impossible.

Case 2: T; andT; share a point. Sincg; andT; are inducedg is adjacent to neithet; nor r;,

so the only possible shared pointris= r;. Inturn,C = {a, b;, ¢;,bj,¢;} is a clique ofG. So,
neitherC; nor C; is an MG, and both are hamantaschen. Now as in the previous case, we find it
is impossible to add a natiatt ¢ C betweerp; andg; and a natiom” ¢ C betweerp; andg;. By

this, bothC; andC); are pizza-with-crusts, a contradiction.

By the above case-analysis, the claim holds, Bh@ a simple planar graph with at m@st—6
vertices and at leagtdistinct triangles. An easy exercise shows that any simple planar graph with
h vertices has at mo8gt triangles. Sof < 9n — 18.

SinceH is embedded in the plane, for each rice-lgaJlH has an induced 6-cycle containing
exactly three nations af' and with the one remaining nation (called tente) of C lying inside
C. ltis clear that each nation can be the center of at most one rice-ball. So, there are at most
rice-balls.

It remains to bound the number of maximal pizza-with-crusts of size 4 or more. Fix gpgaint
H, letV, denote the set of nations adjacenpto H, and let/C, = {C1, ..., Cgp} be the maximal
pizza-with-crusts with centgr and size 4 or more. We claim thgf = |IC,| < 2(2|V,| — 3). This
claim implies thaG has at mos}_ ,(4|V,| — 6) maximal pizza-with-crusts of size 4 or more. This
sum equalg|E'| — 6|P|; since|E’'| < 2(n+ |P|) —4 and|P| < 3n — 6, the sumis less thalin.

Now we prove the claim. The embedding gives a cyclic clockwise order on the natidfs of
aroundp; this order defines “consecutive” nations and “intervals” of nations arguii@r nations
u,v € Vp, let [u,v] denote the circular interval of nations startinguatproceeding clockwise
aroundp, and ending av. For each clique”; in IC,, let b; be the crust ofC. SinceC; is not a



pizza, we can choose distinct natiansc; € C; — {b;} and distinct pointg;, r; # p satisfying the
following three conditions:

e T; = paiq;b;yric; is a simple cycle ird.

e If a nation ofC; — {a;, b;, ¢;} is adjacent tay; or r;, then it lies outsidd;, otherwise it lies
inside.

e All nations of C; lying inside the cycld; lie in the interval[a;, ¢;].

Denote the unordered pdit;, ¢;} by g(C;), and{g;, r;} by h(C;). By considering such 6-cycles
T; and the planarity off, we see that there are no cliqués C; € I, such thay(C;) andg(C})
cross ap; consequently the simple gragh, = (V,, {9(C;) | C;i € K,}) is outerplanar, where we
use the same cyclic order & for the outerplanar embedding. SinGg is simple outerplanar, it
can have at mog|V,| — 3 edges. Thus, to projé&,| < 2(2|V},| — 3), it suffices to prove that each
edge ofG), equalsg(C;) for at most twoC; € IC,,.

For contradiction, assume that there exist three distinct cliGues;, Cy, € K, with g(C;) =
g(C;) = g(C). Say that two of these cliques arestedf the crust of one is inside the 6-cycle of
the other. We consider two cases.

Case I: There are two non-nested cliques. We may suppose that th€y; arelC;;. By planarity,
the interiors off; andT; are disjoint, witha; = c¢; andc; = a;.  Moreover, no matter whether
h(C;) N k(C;) = 0 or not, no nation oV, — ¢g(C;) is adjacent to botlp and at least one point of
h(C;) UR(C;) in H. Thus, the set of nations lying insidé and the set of nations lying insidg
together form a partition o¥), — ¢(C;). By this and the maximality of cliques ik,, the crust of
Cy must lie insideT; or Tj; by symmetry we suppose it lies insidg On the other hand, sindg;

is a maximal clique of size 4 or more, there exists a natipa C; — g(C;) lying insideT;. Since
x; cannot be adjacent tg or r;, there is another poing; lying insideT; that connects:; with b;.
So, we have a patR; = px;s;b; sharing only its endpoints witl;, and bisecting the interior of
T;. Now the crusb;, must lie insideT;, to one side or the other @;. To achievey(Cy) = g(C;),
br, must be adjacent tg in H. But then we would see thaf € h(Cy), and so eithety, or ¢, was
chosen incorrectly.

Case II: All three cliques nest.  Again by planarity, the cyclEsT}, T}, cannot cross. So, their
interiors nest in some order; we may assume pdies insideT};, andb; lies insideT;. We have
a; = a; = a ande¢; = ¢; = c;. SinceCj is a maximal clique, it contains some natiop not
adjacent td; in G. By planarity,z; must lie insideT};, and there is some poiaf connectingp;
with z; in H.  We cannot have; € h(C}), by the choice of(C}); so again we have a path
P; = px;s;b;, sharing only its endpoints with; and bisecting its interior. Now the crulgt must
lie insideT}, to one side or the other d@;; the rest of the argument proceeds as in the last case.

4 Coloring of k-map Graphs

Fork > 3, Theorem 3.1 implies that the maximum clique size karaap graph ig3k/2|; therefore

at least|3k/2] colors are needed to color sorhemap graphs. An interesting question is to ask
whether|3k/2] colors suffice to color alk-map graphs. In case = 3, the answer is positive
because of the famous Four Color Theorem. As Thorup observed [18], the answer is also positive
for k = 4: 4-map graphs are all 1-planar (i.e., they can be drawn in the plane in such a way that each



edge is crossed by at most one other edge), and 1-planar graphs are known to be 6-colorable [3].
However, the answer is unknown whin> 5.

Coloring of k-map graphs is closely related to cyclic coloring of planar graphs introduced by
Ore and Plummer [14]. Lek be an integer larger than two. Lg} be the minimum number
of colors sufficient to color the vertices of each planar grépim such a way that (1) no two
adjacent vertices get the same color and (2) for every tacé G whose boundary is a simple
cycle consisting of at mogt vertices, the vertices on the boundaryfofget distinct colors. Ore
and Plummer [14] proved that, < 2k. Later, Borodin [4] proved that;, < 2k —3if £ > 8. The
conjecture thak, < |3k/2| was due to Borodin [2]. It is not difficult to see that this conjecture is
true if and only if| 3k /2] colors suffice to colok-map graphs.

It also seems interesting to design efficient algorithms for colokimgap graphs. The upper
boundkn — 2k [5] on the number of edges inklamap graph implies a linear-time algorithm for
coloring the vertices of a giveh-map graph witi2k colors. Are there efficient algorithms for
coloring the vertices of a givelrmap graph witl2k — 1 or fewer colors? In light of the difficulty
of answering this question and the conjectyge< |3k/2], it also seems interesting to ask whether
itis NP-hard to decide if the vertices of a giveimap graph can be colored witBk /2| —1 colors.

This question is open even wheén= 4.

5 Hole-Free Map Graphs and Recognition Algorithms

Suppose thaM is a map of a graplr and that every point of the sphere is covered by some nation

of M. Then we say thaM is ahole-free magmand thatG is ahole-free map graphif in addition

M is ak-map, then we say that1 is a hole-freek-mapand thatG is ahole-freek-map graph

Since removing one nation from a hole-free map leaves a connected set of nations, all hole-free

map graphs are 2-connected; consequently, the adjacency graph of the United States in Figure 1.1
is not a hole-free map graph. On the other hand, the 4-map in Figure 1.2(1) is hole-free and hence

Claim 2.6 indeed shows that there is a hole-free 4-map gtapith an edge: such thatG — e has

no map. Moreover, as a simple consequence of Theorem 2.2, we have that hole-free map graphs
are those with witnessd$ such that the boundary of every facekbthas exactly four or six edges.

Can we recognize map graphs efficiently? We would also like to recognmap graphs (for
each choice ok), and hole-freg:-map graphs. There is an obvious naive approach for all these
recognition problems: for each maximal clique in the given graph, assert a point in the map where
the nations of the clique should meet. This approach fails because there are other maps which
realize a clique, as we saw in Figure 3.1.

In a preliminary version of this paper [6] we sketched a polynomial-time recognition algorithm
for 4-map graphs; that result is omitted here for brevity. See [7] for a full presentation of a cubic
time recognition algorithm fohole-free4-map graphs. The basic idea behind this algorithm is to
figure out the correct type (cf. Theorem 3.1) of each maximal clique the input graphG. The
correct type ofC is found by a case-analysis of the neighborhood structure of the nati@nhsnof
G. Before the case-analysis, certain separato( afe found and used to simplify so that the
case-analysis needs to consider only a few cases.

Thorup [18] has recently presented a polynomial-time algorithm for recognizing general map
graphs. The main tools used in his algorithm are the PQ-tree data structure and dynamic program-
ming. Thorup’s result does not necessarily imply ours, since even if we are given a map realizing
a map graph, it is not clear that it helps us to find a map with the additional restrictions we want
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(a hole-free 4-map). Also, Thorup’s algorithm is complex and the exponent of its time bound
polynomial is about 20, while our algorithm is more understandable and its time boul{is}).

6 Concluding Problems

The existing algorithms (both ours and Thorup’s) are very complex. We would like faster algo-
rithms, with simpler arguments. We would also prefer to output an efficiently verifiable witness
when the input is not a map graph, so that we could have reliable “checkers” for these complex
algorithms.

Naturally, we are very interested in polynomial-time algorithms for recognizing (hole-free or
not) k-map graphs wittk > 5. In view of the complication of our algorithm for hole-free 4-map
graphs, however, new insights seem to be needed in order to make progress in this direction.

The recognition problem of map graphs is just a special topological inference problem, where
each pair of regions either touch or are disjoint. One more general problem is obtained by allowing
the relation between certain pairs of regions to be left unspecified (i.e., each such pair may touch
or not touch). We conjecture that this generalization is NP-complete. Another generalization is
obtained by allowing a region to include another region as a subregion. We conjecture that this
generalization is polynomial-time solvable. Note that the inclusion relations among the regions
should induce a rooted forest. The special case of this generalization where no four leaf regions
meet at a point and each non-leaf region is the union of its descendant regions, can be solved by a
nontrivial O(n log n)-time algorithm [8]. In the real world, a non-leaf region is usually not a closed
disc homeomorph; this more general problem is addressed in [9].

Finally, we point out three purely combinatorial open questions. The first question asks whether
the upper bound on the number of maximal cliques given in Theorem 3.2 can be improved. The
second asks whether the upper boémd— 2k on the number of edges inkamap graph [5] can
be improved. Next, consider a connected gréptvith nonnegative weights on its vertices. The
weightof a subgraph of7 is the total weight of vertices in the subgraph. s@paratorof G is
a subgraphH of G such that deleting the vertices &f from G leaves a graph whose connected
components each have wei@t%, wherelV is the weight ofG. Thesizeof a separatofd is the
number of vertices it. The first author [5] has shown that edetmap graph with vertices has
a separator of siz€ 21/2k(n — 1). The third question asks whether this bound can be improved.
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