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Abstract

We consider a modified notion of planarity, in which two nations of a map are considered
adjacent when they share anypoint of their boundaries (not necessarily anedge, as planarity
requires). Such adjacencies define amap graph. We give an NP characterization for such
graphs, derive some consequences regarding sparsity and coloring, and survey some algorith-
mic results.

1 Introduction

1.1 Motivation and Definition

Suppose you are told that there are four planar regions, and for each pair you are told their topolog-
ical relation:A is insideB,B overlapsC,C touchesD on the outside,D overlapsB,D is disjoint
from A, andC overlapsA. All four planar regions are “bubbles” with no holes; more precisely,
they are closed disc homeomorphs. Are such regions possible? If so, we would like a model, a
picture of four regions so related; if not, a proof of impossibility.

This extension of propositional logic is known as thetopological inference problem[11]. No
decision algorithm or finite axiomatization is known, although the problem becomes both finitely
axiomatizable and polynomial-time decidable in any number of dimensions other than two [1, 15],
for some reasonable vocabularies of topological relations. In fact, the following special case has
been open since the 1960’s [10]: for every pair of regions, we are only told whether the regions
intersect or not. This is known as thestring graph problem, because the input is a simple graph,
and we may assume that the regions are in fact planar curves (or slightly fattened simple curves,
if we insist on disc homeomorphs). In other words, we are seeking a recognition algorithm for
the intersection graphs of planar curves. Until recently it was open whether this problem is even
decidable; in fact it is NP-complete [13, 16, 17].

The difficulty of the string graph problem stems to a large extent from the complex overlaps
allowed between regions. But many practical applications are so structured that no two regions
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in them overlap arbitrarily. For example, consider maps of political regions: such regions either
contain one another or else they have disjoint interiors; general overlaps are not allowed.

In this paper, we consider the following special case: for every pair of regions, they are either
disjoint, or they intersect only on their boundaries. Since the nations of political maps intersect in
this way, we call such regionsnations. In this paper we studymap graphs, the intersection graphs
of nations.

Definition 1.1 SupposeG is a simple graph. AmapofG is a functionM taking each vertexv of
G to a closed disc homeomorphM(v) in the sphere, such that:

1. For every pair of distinct verticesu andv, the interiors ofM(u) andM(v) are disjoint.

2. Two verticesu and v are adjacent inG if and only if the boundaries ofM(u) andM(v)
intersect.

If G has a map, then it is amap graph. The regionsM(v) are thenationsofM. The uncovered
points of the sphere fall into open connected regions; the closure of each such region is aholeof
M.

Can we recognize map graphs? This problem is closely related to planarity, one of the most
basic and influential concepts in graph theory. Usually, planarity is defined as above, but with
adjacency only for those pairs of nations sharing a curve segment. Planarity may also be defined in
terms of maps: specifically, a planar graph has a mapsuch that no four nations meet at a point.

We consider a natural restriction on maps and map graphs. Suppose we restrict our map so
thatno more thank nations meet at a point; we call this ak-map, and the corresponding graph is
a k-map graph. In particular the ordinary planar graphs are the 2-map graphs; in fact all 3-map
graphs are also 2-map graphs, as argued below.

In our figures we draw a map by projecting one point of the sphere to infinity; we always choose
a point that is not on a nation’s boundary.

1.2 Summary of Results

In Section 2 we present a characterization of map graphsG as the “half-squares” of planar bipartite
graphsH (Theorem 2.2); we callH a witnessof G. This characterization implies that map graph
recognition is in NP (Corollary 2.4), and also some sparsity results fork-map graphs. In Section 3
we characterize all possible clique maps (Theorem 3.1), and we show that a map graph has a linear
number of maximal cliques (Theorem 3.2). In Section 4 we consider the coloring ofk-map graphs.
We briefly survey the state of recognition algorithms in Section 5.

1.3 Examples

We give three examples. First, consider the adjacency graph of the United States in Figure 1.1; this
is a 4-map graph. It is not planar, since the “four corners” states (circled) form aK4, which is part
of aK5-minor.

Second, consider the 17-nation 4-map in Figure 1.2(1). LetG be its map graph. At the end of
Section 2, we show that after deleting the edgef6; 7g from G, the result is not a map graph. This
example demonstrates that the 4-map graph property is not monotone.
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Figure 1.1: The USA map graph.

Figure 1.2: An example 4-map, and a subgraph of its witness.

Third, consider Figure 1.3: part (1) is a map graph, part (2) is a 4-map of the graph, and part (3)
is a corresponding witness (as defined in Section 2). The graph has a mirror symmetry exchanging
a with c, but the map and the witness do not. In fact a careful analysis shows that no map or witness
of this graph has such a symmetry, and so a layout algorithm must somehow “break symmetry” to
find a map for this graph.
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Figure 1.3: A symmetric map graph, a map, and a witness.
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2 A Characterization

We characterize map graphs in terms of planar bipartite graphs. For a graphH and a subsetA of its
vertices, letH[A] denote the subgraph ofH induced byA. LetH2 denote the square ofH, that is
the simple graph with the same vertex set, where vertices are adjacent whenever they are connected
by a two-edge path inH. We represent a bipartite graph asH = (A;B;E), where the vertices are
partitioned into the independent setsA andB, andE is the set of edges.

Definition 2.1 SupposeH = (A;B;E) is a bipartite graph. ThenH2[A] is thehalf-squareof H.
That is, the half-square has vertex setA, where two vertices are adjacent exactly when they have a
common neighbor inB.

Theorem 2.2 A graphG is a map graph if and only if it is the half-square of some planar bipartite
graphH.

Proof: For the “only if” part, supposeG is a map graph. LetN be the set of nations in a map
of G; for convenience we identify then vertices ofG with the corresponding nations inN .

Consider a single nationR. Clearly at mostn � 1 boundary points will account for all the
adjacencies ofR with other nations, and so a finite collectionP of boundary points witnesses all
the adjacencies among the nations inN .

In each nationR we choose a representative interior point, and connect it with edges through
the interior ofR to the points ofP boundingR. In this way we construct a planar embedding
of the bipartite graphH = (N ;P ;E0), such that any two nationsR1 andR2 intersect on their
boundaries if and only if they have distance two inH. In other words,G is the half-squareH2[N ].

For the “if” part, given a bipartite planar graphH = (N ;P;E0), we embed it in the plane. By
drawing a sufficiently thin star-shaped nation around eachR 2 N and its edges inE0, we obtain a
map forH2[N ]. 2

When graphsG andH are related as above,H acts as a proof thatG is a map graph. We call
H awitnessfor G, and we call the vertices inP thepointsof the witness; such points are displayed
as squares in the example Figure 1.3(3). The above argument shows thatH has at most quadratic
size, but we can do better.

Lemma 2.3 If G is a map graph withn vertices, then it has a witnessH with O(n) vertices and
edges.

Proof: ConstructH as above. A pointp 2 P is redundantif all pairs of its neighbors are also
connected through other points ofP . Deleting a redundant point does not change the half-square;
we repeat this untilH has no redundant points.

Consider a drawing ofH. For eachp 2 P, we choose a pair of nationsR1 andR2 connected
only byp. Remove eachp and its arcs, and replace them by a single arc fromR1 toR2. In this way,
we draw a simple planar subgraphH 0 of G with edge setP and vertex setN . HencejPj � 3n�6,
andH has less than4n vertices.

SinceH is simple and bipartite, by Euler’s formula it has at most2(n+ jPj)� 4 edges, which
is less than8n. 2

In particular, a map graph has a witness which may be checked in linear time [12], and so we
have:
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Corollary 2.4 The recognition problem for map graphs is in NP.

Corollary 2.5 For k � 3, k-map graphs are those with witnessesH such that every point has
degree at mostk. Moreover, ak-map graph withn vertices hasO(kn) edges.

Proof: The first assertion is clear from the arguments in Theorem 2.2. To prove the second, first
note that by Lemma 2.3, eachn-vertex map graphG has a witnessH with less than8n edges. So,
some nationR has degree at most 7 inH, and consequentlyR has degree at most7(k � 1) in the
map graph. Now we deleteR, and prove our edge bound by induction onn. 2

Remark:The first author [5] has improved the above edge bound tokn� 2k.
We conclude with some further simple consequences of Theorem 2.2:

� In the witness graph, a point of degree three may be replaced by three points of degree two.
Consequently, 3-map graphs are 2-map graphs (planar graphs).

� If G has no clique of size four, then it is a map graph if and only if it is a planar graph.

� A map graph may contain cliques of arbitrary size.

� From the previous two remarks, it is clear that the “map graph” property is not monotone,
and hence cannot be characterized by forbidden subgraphs or minors.

Regarding the last point, we can also show a stronger example:

Claim 2.6 There is a 4-map graphG with an edgee such thatG� e has no map.

Proof: Let G be the graph realized by the 4-map in Figure 1.2(1), and letH be a witness ofG.
We may assume thatH has no point of degree 1. Since each nationv 2 fa; : : : ; jg has exactly two
neighbors inG, the degree ofv inH is either 1 or 2. Suppose that the degree of somev 2 fa; : : : ; jg
in H is 2. We only consider the case wherev = a; the other cases are similar. Letp1 andp2 be
the two neighbors ofa in H. Other thana, only nations 1 and 2 can be adjacent top1 or p2 in H.
By this and the fact that nations 1 and 2 are adjacent to each other inG, it follows thatH remains
to be a witness ofG even after modifying it by identifyingp1 andp2 (note that the degree ofa in
H becomes 1 after this modification). So, we may assume that the degree ofa in H is 1. This
assumption can be made for eachv 2 fa; : : : ; jg.

Let H 0 be the bipartite graph in Figure 1.2(2), and letH 00 be the graph obtained fromH 0 by
deleting pointsp andq and their incident edges. By the above assumption,H 00 must be an induced
subgraph ofH (for example, the commom neighbor of nations 1 and 2 inH 00 is the unique neighbor
of nationa in H). In turn, by the existence of edgesf1; 6g andf4; 6g in G and the planarity of
H, H 0 must be a (not necessarily induced) subgraph ofH. Now, by Figure 1.2(2) and planarity,
point q must also be adjacent to nations 3 and 7 inH. Our argument so far did not depend on edge
e = f6; 7g in G, but now this edge has been forced by considering other edges. So in other words,
G� e is not a map graph. 2

3 Cliques in Map Graphs

SupposeG is the cliqueKn, then it may be realized in the following ways, corresponding to the
four parts of Figure 3.1:
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Figure 3.1: Cliques in map graphs.

(1) Then nations share a single boundary point (called thecenterof G). We call this thepizza.

(2) Somen � 1 nations share a single boundary point (called thecenterof G), and the one
remaining nation (called thecrustof G) is arbitrarily connected to them at other points. We
call this thepizza-with-crust.

(3) If n � 6, there may be three points supporting all adjacencies in the clique, with at most
n � 2 nations at any one point. In particular, there are at most two nations adjacent to all
three of the points. We call this thehamantasch.

(4) A clique with all boundary points of degree two; that is, an ordinary planar clique. Since the
planarK2 (edge) andK3 (triangle) are a pizza and pizza-with-crust respectively, the only
new clique to list here is the planarK4, which we call therice-ball.

Theorem 3.1 A map graph clique must be one of the above four types.

Proof: Given a mapM of the cliqueG = Kn, we construct a witness graphH = (N ;P ;E)
as in Theorem 2.2, being sure to include all intersection points of three or more nations inP . By
Euler’s formula there areO(n) such points, so we can still makeP finite. Now it suffices to show
that the witnessH is one of the four types listed above.

Let d be the maximum degree of all pointsp 2 P. If n = d, we have a pizza. Ifn = d + 1,
we have a pizza-with-crust. So we may assumen � d+ 2. If d � 3, then the map graph is planar;
sinceK5 is not planar, this forcesn = 4 andd = 2, the rice-ball. We now assumed � 4.

Pick pointp1 of maximum degreed, and nationsx andy not adjacent top1. Consider the set
P 0 of all points connectingx or y to the nations aroundp1. We claim that there is a pointp2 2 P 0

connectingx, y, and at least two nations adjacent top1; otherwise, by drawing arcs through the
points ofP 0, we could get a planarKd;2 with thed nations on a common face, which is impossible.
Sincep1 has maximum degree, there are also two nations adjacent top1 but notp2. In summary,
the following three disjoint sets each contain at least two nations:

N1 = fR 2 Nj R is adjacent top2 but notp1g

N2 = fR 2 Nj R is adjacent top1 but notp2g

N3 = fR 2 Nj R is adjacent to bothp1 andp2g

We will choose six distinct nationsR1; R2 2 N1, R3; R4 2 N2, andR5; R6 2 N3; no matter
how we choose, the graphH will contain the induced subgraph in Figure 3.2(1), with the cycle
C = p1R5p2R6. The graphH 0 = H[fp1; p2g [ N3] is a complete bipartite graph, with a planar
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embedding inherited fromH. Each face ofH 0 is a 4-cycle; furthermore all nations inN1 [ N2

must lie inside one face, in order to be connected by other points. So, we chooseR5; R6 2 N3 on
this face. Then this face is bounded byC; we have an embedding withN1 [ N2 insideC, and
N3 � fR5; R6g outsideC. By an appropriate choice of nationsR1; R2 2 N1 andR3; R4 2 N2,
we arrive at Figure 3.2(2), the embedding ofp1, p2, and all their edges to adjacent nations. In this
figure, the three occurrences of “: : :” locate any other nations inN1 [N2 [N3.
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Figure 3.2: A subgraph ofH, and its embedding.

There must exist a third pointp3 insideC connectingR1 andR4. These edges now separate
N1�fR1g fromN2�fR4g, so all these nations are adjacent top3 as well, yielding Figure 3.2(3).
This figure is not necessarily an induced subgraph, since the edgesfR5; p3g andfR6; p3g may
occur inH. But by the maximality of the degree ofp1, if exactly i 2 f1; 2g of these edges exist,
then there existi other nationsR7 2 N3, necessarily outsideC. So, no matter whether these edges
exist or not, the pointsp1, p2, andp3 support a hamantasch onN1 [N2 [N3. Hence, we are done
if N = N1 [N2 [N3.

For contradiction, supposeN contains some nationR not adjacent top1 or p2. We need to
placeR, and some new points and edges, in Figure 3.2(3) so thatR has neighbor points connected
to the other nations. However by planarity ofH, if fR5; p3g or fR6; p3g is an edge inH, thenR
cannot be placed so that bothR1 andR7 have neighbor points connected toR. Similarly, if neither
fR5; p3g norfR6; p3g is an edge inH, thenR cannot be placed so that all ofR1, R5, andR6 have
neighbor points connected toR.

We have shown thatH is one of the four types. Since all intersection points of three or more
nations inM are represented inH, the mapM has the same type. We remark that the four types
are not all mutually exclusive; for exampleM could contain one point of degreen and another
point of degreen� 1. 2

By a careful analysis of each kind of clique, we can now show:

Theorem 3.2 A map graphG with n vertices has at most27n maximal cliques.

Proof: We may assume thatG is connected. As in Theorem 2.3, we choose a planar witness
H = (N ;P ;E 0) for G whereN is the set of nations,P is the set of at most3n� 6 points, andE0

is the set of edges.
Fix a plane embedding ofH. If verticesu1; u2; v1; v2 appear in that cyclic order as distinct

neighbors of some vertexw in H, then we say that the pairsfu1; v1g andfu2; v2g crossatw.
Each point can contribute to at most one maximal pizza, and so there are at most3n�6 maximal

pizzas inG. Note that each MC2 is a pizza.
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Next, letC1; : : : ; C` be the maximal cliques inG that are either non-pizza MC3’s or haman-
taschen. For each hamantaschCi, we may choose three pointspi; qi; ri 2 P and three nations
ai; bi; ci 2 Ci such thatTi = piaiqibirici is an induced cycle inH andCi consists of all nations
adjacent to at least two of the pointspi; qi; ri in H. For each pairfa; bg of nations such that some
non-pizza MC3 contains botha andb, let sa;b be a point inP that is adjacent to botha andb in H.
For each non-pizza MC3 Ci, let Ci = fai; bi; cig, pi = sai;ci , qi = sai;bi , ri = sbi;ci , andTi be
the induced cyclepiaiqibirici in H. No matter whetherCi is a non-pizza MC3 or hamantasch, we
definef(Ci) = fpi; qi; rig and note thatCi consists of all nations adjacent to at least two points of
f(Ci). This impliesf(Ci) 6= f(Cj) for distinctCi andCj, because otherwiseCi [ Cj would be a
larger clique.

DefineH 0 as the simple graph with vertex setP and edge setffp; qg j fp; qg � f(Ci) for some
ig. We claim thatH 0 is planar. To see this, we embedH 0 in H by drawing the edgefpi; qig of H 0

through their neighborai in H, and similarly for the other two edgesfqi; rig andfpi; rig. Towards
a contradiction, assume that two edges ofH 0 cross in the embedding. Then, by cycle symmetries,
we may assume that for some distinctCi andCj, pairsfpi; qig andfpj; qjg cross at nationai = aj
(call it a) in H. Since the cyclesTi andTj cross ata in H, they must cross again, sharing either
another nation or a point.

Case 1: Ti andTj share another nation but no point. By symmetry, it suffices to consider the
casebi = bj = b. If Ci andCj were both non-pizza MC3’s, then we would haveqi = sa;b = qj ,
contradicting the crossing. So at least one ofCi andCj is a hamantasch, we supposeCi. ThenCi

has another nationa0 also adjacent topi andqi or elseCi would be a pizza-with-crust. Because of
Tj , it must bea0 = cj. Now sinceqi is adjacent toa; b; cj , in order forCj to be a non-pizza,Cj

must also be a hamantasch. ThenCj has another nationa00 adjacent topj andqj, but planarity of
H makes this impossible.

Case 2: Ti andTj share a point. SinceTi andTj are induced,a is adjacent to neitherri nor rj ,
so the only possible shared point isri = rj . In turn,C = fa; bi; ci; bj; cjg is a clique ofG. So,
neitherCi norCj is an MC3, and both are hamantaschen. Now as in the previous case, we find it
is impossible to add a nationa0 62 C betweenpi andqi and a nationa00 62 C betweenpj andqj. By
this, bothCi andCj are pizza-with-crusts, a contradiction.

By the above case-analysis, the claim holds, andH 0 is a simple planar graph with at most3n�6
vertices and at least` distinct triangles. An easy exercise shows that any simple planar graph with
h vertices has at most3h triangles. So,̀ � 9n� 18.

SinceH is embedded in the plane, for each rice-ballC, H has an induced 6-cycle containing
exactly three nations ofC and with the one remaining nation (called thecenter) of C lying inside
C. It is clear that each nation can be the center of at most one rice-ball. So, there are at mostn

rice-balls.
It remains to bound the number of maximal pizza-with-crusts of size 4 or more. Fix a pointp in

H, letVp denote the set of nations adjacent top in H, and letKp = fC1; : : : ; C`pg be the maximal
pizza-with-crusts with centerp and size 4 or more. We claim that`p = jKpj � 2(2jVpj � 3). This
claim implies thatG has at most

P
p(4jVpj � 6) maximal pizza-with-crusts of size 4 or more. This

sum equals4jE0j � 6jPj; sincejE0j � 2(n+ jPj)� 4 andjPj � 3n� 6, the sum is less than14n.
Now we prove the claim. The embedding gives a cyclic clockwise order on the nations ofVp

aroundp; this order defines “consecutive” nations and “intervals” of nations aroundp. For nations
u; v 2 Vp, let [u; v] denote the circular interval of nations starting atu, proceeding clockwise
aroundp, and ending atv. For each cliqueCi in Kp, let bi be the crust ofC. SinceCi is not a

8



pizza, we can choose distinct nationsai; ci 2 Ci � fbig and distinct pointsqi; ri 6= p satisfying the
following three conditions:

� Ti = paiqibirici is a simple cycle inH.

� If a nation ofCi � fai; bi; cig is adjacent toqi or ri, then it lies outsideTi, otherwise it lies
inside.

� All nations ofCi lying inside the cycleTi lie in the interval[ai; ci].

Denote the unordered pairfai; cig by g(Ci), andfqi; rig by h(Ci). By considering such 6-cycles
Ti and the planarity ofH, we see that there are no cliquesCi; Cj 2 Kp such thatg(Ci) andg(Cj)
cross atp; consequently the simple graphGp = (Vp; fg(Ci) j Ci 2 Kpg) is outerplanar, where we
use the same cyclic order onVp for the outerplanar embedding. SinceGp is simple outerplanar, it
can have at most2jVpj � 3 edges. Thus, to provejKpj � 2(2jVpj � 3), it suffices to prove that each
edge ofGp equalsg(Ci) for at most twoCi 2 Kp.

For contradiction, assume that there exist three distinct cliquesCi; Cj; Ck 2 Kp with g(Ci) =
g(Cj) = g(Ck). Say that two of these cliques arenestedif the crust of one is inside the 6-cycle of
the other. We consider two cases.

Case I: There are two non-nested cliques. We may suppose that they areCi andCj. By planarity,
the interiors ofTi andTj are disjoint, withai = cj andci = aj . Moreover, no matter whether
h(Ci) \ h(Cj) = ; or not, no nation ofVp � g(Ci) is adjacent to bothp and at least one point of
h(Ci) [ h(Cj) in H. Thus, the set of nations lying insideTi and the set of nations lying insideTj
together form a partition ofVp � g(Ci). By this and the maximality of cliques inKp, the crust of
Ck must lie insideTi or Tj; by symmetry we suppose it lies insideTi. On the other hand, sinceCi

is a maximal clique of size 4 or more, there exists a nationxi 2 Ci � g(Ci) lying insideTi. Since
xi cannot be adjacent toqi or ri, there is another pointsi lying insideTi that connectsxi with bi.
So, we have a pathPi = pxisibi sharing only its endpoints withTi, and bisecting the interior of
Ti. Now the crustbk must lie insideTi, to one side or the other ofPi. To achieveg(Ck) = g(Ci),
bk must be adjacent tosi in H. But then we would see thatsi 2 h(Ck), and so eitherak or ck was
chosen incorrectly.

Case II: All three cliques nest. Again by planarity, the cyclesTi; Tj ; Tk cannot cross. So, their
interiors nest in some order; we may assume thatbk lies insideTj, andbj lies insideTi. We have
ai = aj = ak andci = cj = ck. SinceCj is a maximal clique, it contains some nationxj not
adjacent tobi in G. By planarity,xj must lie insideTj, and there is some pointsj connectingbj
with xj in H. We cannot havesj 2 h(Cj), by the choice ofg(Cj); so again we have a path
Pj = pxjsjbj , sharing only its endpoints withTj and bisecting its interior. Now the crustbk must
lie insideTj , to one side or the other ofPj; the rest of the argument proceeds as in the last case.2

4 Coloring of k-map Graphs

Fork � 3, Theorem 3.1 implies that the maximum clique size in ak-map graph isb3k=2c; therefore
at leastb3k=2c colors are needed to color somek-map graphs. An interesting question is to ask
whetherb3k=2c colors suffice to color allk-map graphs. In casek = 3, the answer is positive
because of the famous Four Color Theorem. As Thorup observed [18], the answer is also positive
for k = 4: 4-map graphs are all 1-planar (i.e., they can be drawn in the plane in such a way that each
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edge is crossed by at most one other edge), and 1-planar graphs are known to be 6-colorable [3].
However, the answer is unknown whenk � 5.

Coloring ofk-map graphs is closely related to cyclic coloring of planar graphs introduced by
Ore and Plummer [14]. Letk be an integer larger than two. Let�k be the minimum number
of colors sufficient to color the vertices of each planar graphG in such a way that (1) no two
adjacent vertices get the same color and (2) for every faceF of G whose boundary is a simple
cycle consisting of at mostk vertices, the vertices on the boundary ofF get distinct colors. Ore
and Plummer [14] proved that�k � 2k. Later, Borodin [4] proved that�k � 2k � 3 if k � 8. The
conjecture that�k � b3k=2c was due to Borodin [2]. It is not difficult to see that this conjecture is
true if and only ifb3k=2c colors suffice to colork-map graphs.

It also seems interesting to design efficient algorithms for coloringk-map graphs. The upper
boundkn � 2k [5] on the number of edges in ak-map graph implies a linear-time algorithm for
coloring the vertices of a givenk-map graph with2k colors. Are there efficient algorithms for
coloring the vertices of a givenk-map graph with2k � 1 or fewer colors? In light of the difficulty
of answering this question and the conjecture�k � b3k=2c, it also seems interesting to ask whether
it is NP-hard to decide if the vertices of a givenk-map graph can be colored withb3k=2c�1 colors.
This question is open even whenk = 4.

5 Hole-Free Map Graphs and Recognition Algorithms

Suppose thatM is a map of a graphG and that every point of the sphere is covered by some nation
of M. Then we say thatM is ahole-free mapand thatG is ahole-free map graph. If in addition
M is ak-map, then we say thatM is a hole-freek-mapand thatG is a hole-freek-map graph.
Since removing one nation from a hole-free map leaves a connected set of nations, all hole-free
map graphs are 2-connected; consequently, the adjacency graph of the United States in Figure 1.1
is not a hole-free map graph. On the other hand, the 4-map in Figure 1.2(1) is hole-free and hence
Claim 2.6 indeed shows that there is a hole-free 4-map graphG with an edgee such thatG� e has
no map. Moreover, as a simple consequence of Theorem 2.2, we have that hole-free map graphs
are those with witnessesH such that the boundary of every face ofH has exactly four or six edges.

Can we recognize map graphs efficiently? We would also like to recognizek-map graphs (for
each choice ofk), and hole-freek-map graphs. There is an obvious naive approach for all these
recognition problems: for each maximal clique in the given graph, assert a point in the map where
the nations of the clique should meet. This approach fails because there are other maps which
realize a clique, as we saw in Figure 3.1.

In a preliminary version of this paper [6] we sketched a polynomial-time recognition algorithm
for 4-map graphs; that result is omitted here for brevity. See [7] for a full presentation of a cubic
time recognition algorithm forhole-free4-map graphs. The basic idea behind this algorithm is to
figure out the correct type (cf. Theorem 3.1) of each maximal cliqueC in the input graphG. The
correct type ofC is found by a case-analysis of the neighborhood structure of the nations ofC in
G. Before the case-analysis, certain separators ofG are found and used to simplifyG so that the
case-analysis needs to consider only a few cases.

Thorup [18] has recently presented a polynomial-time algorithm for recognizing general map
graphs. The main tools used in his algorithm are the PQ-tree data structure and dynamic program-
ming. Thorup’s result does not necessarily imply ours, since even if we are given a map realizing
a map graph, it is not clear that it helps us to find a map with the additional restrictions we want
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(a hole-free 4-map). Also, Thorup’s algorithm is complex and the exponent of its time bound
polynomial is about120, while our algorithm is more understandable and its time bound isO(n3).

6 Concluding Problems

The existing algorithms (both ours and Thorup’s) are very complex. We would like faster algo-
rithms, with simpler arguments. We would also prefer to output an efficiently verifiable witness
when the input is not a map graph, so that we could have reliable “checkers” for these complex
algorithms.

Naturally, we are very interested in polynomial-time algorithms for recognizing (hole-free or
not) k-map graphs withk � 5. In view of the complication of our algorithm for hole-free 4-map
graphs, however, new insights seem to be needed in order to make progress in this direction.

The recognition problem of map graphs is just a special topological inference problem, where
each pair of regions either touch or are disjoint. One more general problem is obtained by allowing
the relation between certain pairs of regions to be left unspecified (i.e., each such pair may touch
or not touch). We conjecture that this generalization is NP-complete. Another generalization is
obtained by allowing a region to include another region as a subregion. We conjecture that this
generalization is polynomial-time solvable. Note that the inclusion relations among the regions
should induce a rooted forest. The special case of this generalization where no four leaf regions
meet at a point and each non-leaf region is the union of its descendant regions, can be solved by a
nontrivialO(n log n)-time algorithm [8]. In the real world, a non-leaf region is usually not a closed
disc homeomorph; this more general problem is addressed in [9].

Finally, we point out three purely combinatorial open questions. The first question asks whether
the upper bound on the number of maximal cliques given in Theorem 3.2 can be improved. The
second asks whether the upper boundkn � 2k on the number of edges in ak-map graph [5] can
be improved. Next, consider a connected graphG with nonnegative weights on its vertices. The
weightof a subgraph ofG is the total weight of vertices in the subgraph. Aseparatorof G is
a subgraphH of G such that deleting the vertices ofH from G leaves a graph whose connected
components each have weight� 2W

3
, whereW is the weight ofG. Thesizeof a separatorH is the

number of vertices inH. The first author [5] has shown that eachk-map graph withn vertices has
a separator of size� 2

p
2k(n� 1). The third question asks whether this bound can be improved.
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