
Improved Approximation Algorithms for Metric Max TSP

Zhi-Zhong Chen ∗ Takayuki Nagoya †

Abstract

We present two polynomial-time approximation algorithms for the metric case of the maximum
traveling salesman problem. One of them is for directed graphs and its approximation ratio is 27

35 .
The other is for undirected graphs and its approximation ratio is 7

8−o(1). Both algorithms improve
on the previous bests.

1 Introduction

The maximum traveling salesman problem (MaxTSP) is to compute a maximum-weight Hamiltonian
circuit (called a tour) in a given complete edge-weighted (undirected or directed) graph. Usually,
MaxTSP is divided into the symmetric and the asymmetric cases. In the symmetric case, the input
graph is undirected; we denote this case by SymMaxTSP. In the asymmetric case, the input graph is
directed; we denote this case by AsymMaxTSP. Note that SymMaxTSP can be trivially reduced to
AsymMaxTSP.

A natural constraint one can put on AsymMaxTSP and SymMaxTSP is the triangle inequality
which requires that for every set of three vertices u1, u2, and u3 in the input graph G, w(u1, u2) ≤
w(u1, u3) + w(u3, u2), where w(ui, uj) is the weight of the edge from ui to uj in G. If we put this
constraint on AsymMaxTSP, we obtain a problem called metric AsymMaxTSP. Similary, if we put
this constraint on SymMaxTSP, we obtain a problem called metric SymMaxTSP.

Both metric SymMaxTSP and metric AsymMaxTSP are Max-SNP-hard [1] and there have been a
number of approximation algorithms known for them [7, 4, 5]. In 1985, Kostochka and Serdyukov [7]
gave an O(n3)-time approximation algorithm for metric SymMaxTSP that achieves an approximation
ratio of 5

6 . Their algorithm is very simple and elegant. Tempted by improving the ratio 5
6 , Hassin and

Rubinstein [4] gave a randomized O(n3)-time approximation algorithm for metric SymMaxTSP whose
expected approximation ratio is 7

8 − o(1). This randomized algorithm was recently (partially) deran-
domized by Chen et al. [3]; their result is a (deterministic) O(n3)-time approximation algorithm for
metric SymMaxTSP whose approximation ratio is 17

20−o(1). In this paper, we completely derandomize
the randomized algorithm, i.e., we obtain a (deterministic) O(n3)-time approximation algorithm for
metric SymMaxTSP whose approximation ratio is 7

8 − o(1). Our algorithm also has the advantage
of being easy to parallelize. Our derandomization is based on the idea of Chen et al. [3] and newly
discovered properties of a folklore partition of the edges of a 2n-vertex complete undirected graph into
2n − 1 perfect matchings. These properties may be useful elsewhere. In particular, one of the prop-
erties says that if G = (V,E) is a 2n-vertex complete undirected graph and M is a perfect matching
of G, then we can partition E −M into 2n− 2 perfect matchings M1, . . . , M2n−2 among which there
are at most k2 − k perfect matchings Mi such that the graph (V,M ∪Mi) has a cycle of length at
most 2k for every natural number k. This property is interesting because Hassin and Rubinstein [4]
prove that if G and M are as before and M ′ is a random perfect matching of G, then with probability
1− o(1) the multigraph (V,M ∪M ′) has no cycle of length at most

√
n. Our result shows that instead

∗Supported in part by the Grant-in-Aid for Scientific Research of the Ministry of Education, Science, Sports and
Culture of Japan, under Grant No. 14580390. Department of Mathematical Sciences, Tokyo Denki University, Hatoyama,
Saitama 350-0394, Japan. Email: chen@r.dendai.ac.jp.
†Department of Mathematical Sciences, Tokyo Denki University, Hatoyama, Saitama 350-0394, Japan. Email:

nagoya@r.dendai.ac.jp.

1



of sampling from the set of all perfect matchings of G, it suffices to sample from M1, . . . , M2n−2. This
enables us to completely derandomize their algorithm.

As for metric AsymMaxTSP, Kostochka and Serdyukov [7] gave an O(n3)-time approximation
algorithm that achieves an approximation ratio of 3

4 . Their result remained the best in two decades
until Kaplan et al. [5] gave a polynomial-time approximation algorithm whose approximation ratio is
10
13 . The key in their algorithm is a polynomial-time algorithm for computing two cycle covers C1 and
C2 in the input graph G such that C1 and C2 do not share a 2-cycle and the sum of their weights is at
least twice the optimal weight of a tour of G. They then observe that the multigraph formed by the
edges in 2-cycles in C1 and C2 can be split into two subtours of G. In this paper, we show that the
multigraph formed by the edges in 2-cycles in C1 and C2 together with a constant fraction of the edges
in non-2-cycles in C1 and C2 can be split into two subtours of G. This enables us to improve Kaplan
et al.’s algorithm to a polynomial-time approximation algorithm whose approximation ratio is 27

35 .

2 Basic Definitions

Throughout this paper, a graph means a simple undirected or directed graph (i.e., it has neither
multiple edges nor self-loops), while a multigraph may have multiple edges but no self-loops.

Let G be a multigraph. We denote the vertex set of G by V (G), and denote the edge set of G by
E(G). For a subset F of E(G), G−F denotes the graph obtained from G by deleting the edges in F .
Two edges of G are adjacent if they share an endpoint.

Suppose G is undirected. The degree of a vertex v in G is the number of edges incident to v in G.
A cycle in G is a connected subgraph of G in which each vertex is of degree 2. A cycle cover of G
is a subgraph H of G with V (H) = V (G) in which each vertex is of degree 2. A matching of G is a
(possibly empty) set of pairwise nonadjacent edges of G. A perfect matching of G is a matching M of
G such that each vertex of G is an endpoint of an edge in M .

Suppose G is directed. The indegree of a vertex v in G is the number of edges entering v in G, and
the outdegree of v in G is the number of edges leaving v in G. A cycle in G is a connected subgraph
of G in which each vertex has indegree 1 and outdegree 1. A cycle cover of G is a subgraph H of G
with V (H) = V (G) in which each vertex has indegree 1 and outdegree 1. A 2-path-coloring of G is a
partition of E(G) into two subsets E1 and E2 such that both graphs (V (G), E1) and (V (G), E2) are
collections of vertex-disjoint paths. G is 2-path-colorable if it has a 2-path-coloring.

Suppose G is undirected or directed. A path in G is either a single vertex of G or a subgraph of G
that can be transformed to a cycle by adding a single (new) edge. The length of a cycle or path C is
the number of edges in C. A k-cycle is a cycle of length k. A 3+-cycle is a cycle of length at least 3.
A tour (also called a Hamiltonian cycle) of G is a cycle C of G with V (C) = V (G). A subtour of G is
a subgraph H of G which is a collection of vertex-disjoint paths.

A closed chain is a directed graph that can be obtained from an undirected k-cycle C with k ≥ 3
by replacing each edge {u, v} of C with the two directed edges (u, v) and (v, u). Similarly, an open
chain is a directed graph that can be obtained from an undirected path P by replacing each edge
{u, v} of P with the two directed edges (u, v) and (v, u). An open chain is trivial if it is a single vertex.
A chain is a closed or open chain. A partial chain is a subgraph of a chain.

For a graph G and a weighting function w mapping each edge e of G to a nonnegative real number
w(e), the weight of a subset F of E(G) is w(F ) =

∑
e∈F w(e), and the weight of a subgraph H of G is

w(H) = w(E(H)).

3 New Algorithm for Metric AsymMaxTSP

Throughout this section, fix an instance (G,w) of metric AsymMaxTSP, whereG is a complete directed
graph and w is a function mapping each edge e of G to a nonnegative real number w(e).

Let OPT be the weight of a maximum-weight tour in G. Our goal is to compute a tour in G
whose weight is large compared to OPT . We first review Kaplan et al.’s algorithm and define several
notations on the way.

2



3.1 Kaplan et al.’s Algorithm

The key in their algorithm is the following:

Theorem 3.1 [5] We can compute two cycle covers C1, C2 in G in polynomial time that satisfy the
following two conditions:

1. C1 and C2 do not share a 2-cycle. In other words, if C is a 2-cycle in C1 (respectively, C2), then
C2 (respectively, C1) does not contain at least one edge of C.

2. w(C1) + w(C2) ≥ 2 ·OPT .

Let G2 be the subgraph of G such that V (G2) = V (G) and E(G2) consists of all edges in 2-cycles
in C1 and/or C2. Then, G2 is a collection of vertex-disjoint chains. For each closed chain C in G2,
we can compute two edge-disjoint tours T1 and T2 (each of which is of length at least 3), modify C1

by substituting T1 for the 2-cycles shared by C and C1, modify C2 by substituting T2 for the 2-cycles
shared by C and C2, and further delete C from G2. After this modification of C1 and C2, the two
conditions in Theorem 3.1 still hold. So, we can assume that there is no closed chain in G2.

For each i ∈ {1, 2}, let Wi,2 denote the total weight of 2-cycles in Ci, and let Wi,3 = w(Ci)−Wi,2.
For convenience, let W2 = 1

2(W1,2 + W2,2) and W3 = 1
2(W1,3 + W2,3). Then, by Condition 2 in

Theorem 3.1, we have W2 + W3 ≥ OPT . Moreover, using an idea in [7], Kaplan et al. observed the
following:

Lemma 3.2 [5] We can use C1 and C2 to compute a tour T of G with w(T ) ≥ 3
4W2+ 5

6W3 in polynomial
time.

Since each nontrivial open chain has a 2-path-coloring, we can use G2 to compute a tour T ′ of
G with w(T ′) ≥ W2 in polynomial time. Combining this observation, Lemma 3.2, and the fact that
W2 +W3 ≥ OPT , the heavier one between T and T ′ is of weight at least 10

13OPT .

3.2 Details of the New Algorithm

The idea behind our new algorithm is to improve the second tour T ′ in Kaplan et al.’s algorithm
so that it has weight at least W2 + 1

9W3. The tactics is to add some edges of 3+-cycles in Ci with
Wi,3 = max{W1,3,W2,3} to G2 so that G2 remains 2-path-colorable. Without loss of generality, we
may assume that W1,3 ≥ W2,3. Then, our goal is to add some edges of 3+-cycles in C1 to G2 so that
G2 remains 2-path-colorable.

We say that an open chain P in G2 spoils an edge (u, v) of a 3+-cycle in C1 if u and v are the
two endpoints of P . Obviously, adding a spoiled edge to G2 destroys the 2-path-colorability of G2.
Fortunately, there is no 3+-cycle in C1 in which two consecutive edges are both spoiled. So, let C1,
. . . , C` be the 3+-cycles in C1; we modify each Cj (1 ≤ j ≤ `) as follows (see Figure 1):

• For every two consecutive edges (u, v) and (v, x) of Cj such that (u, v) is spoiled, replace (u, v)
by the two edges (u, x) and (x, v). (Comment: We call (u, x) a bypass edge of Cj , call the 2-cycle
between v and x a dangling 2-cycle of Cj , and call v the articulation vertex of the dangling
2-cycle. We also say that the bypass edge (u, x) and the dangling 2-cycle between v and x
correspond to each other.)

We call the above modification of Cj the bypass operation on Cj . Note that applying the bypass
operation on Cj does not decrease the weight of Cj because of the triangle inequality. Moreover, the
edges of Cj not contained in dangling 2-cycles of Cj form a cycle. We call it the primary cycle of
Cj . Note that Cj may have neither bypass edges nor dangling 2-cycles (this happens when Cj has no
spoiled edges).

3



����� �����

Figure 1: (1) A 3+-cycle Cj (formed by the one-way edges) in C1 and the open chains (each shown by
a two-way edge) each of which has a parallel edge in Cj . (2) The modified Cj (formed by the one-way
edges), where bypass edges are dashed and dangling 2-cycles are painted.

Let H be the union of the modified C1, . . . , C`, i.e., let H be the directed graph with V (H) =⋃
1≤j≤` V (Cj) and E(H) =

⋃
1≤j≤`E(Cj). We next show that E(H) can be partitioned into three

subsets each of which can be added to G2 without destroying its 2-path-colorability. Before proceeding
to the details of the partitioning, we need several definitions and lemmas.

Two edges (u1, u2) and (v1, v2) of H form a critical pair if u1 and v2 are the endpoints of some
open chain in G2 and u2 and v1 are the endpoints of another open chain in G2 (see Figure 2). Note
that adding both (u1, u2) and (v1, v2) to G2 destroys its 2-path-colorability. An edge of H is critical if
it together with another edge of H forms a critical pair. Note that for each critical edge e of H, there
is a unique edge e′ in H such that e and e′ form a critical pair. We call e′ the rival of e. An edge of
H is safe if it is not critical. A bypass edge of H is a bypass edge of a Cj with 1 ≤ j ≤ `. Similarly, a
dangling 2-cycle of H is a dangling 2-cycle of a Cj with 1 ≤ j ≤ `. A dangling edge of H is an edge in
a dangling 2-cycle of H.

u u

v� v�

1 2
�

12
�

Figure 2: A critical pair formed by edges (u1, u2) and (v1, v2).

Lemma 3.3 No bypass edge of H is critical.

Proof. Suppose that e = (u1, u2) is a bypass edge of a Cj with 1 ≤ j ≤ `. Then, u2 is the
articulation vertex of a dangling 2-cycle C of Cj . Let u3 be the vertex of C other than u2. Then,
there is an open chain P in G2 whose endpoints are u1 and u3. Since e leaves u1 and e′ = (u2, u3)
is the unique edge in Cj entering u3, e′ has to be the rival of e whenever e is critical. However, by
the definition of criticalness, each critical edge and its rival should not be adjacent. So, e cannot be
critical. 2

Lemma 3.4 Fix a j with 1 ≤ j ≤ `. Suppose that an edge e of Cj is a critical dangling edge of H. Let
C be the dangling 2-cycle of Cj containing e. Let e′ be the rival of e. Then, the following statements
hold:

1. e′ is also an edge of Cj.
2. If e′ is also a dangling edge of H, then the primary cycle of Cj consists of the two bypass edges

corresponding to C and C ′, where C ′ is the dangling 2-cycle of Cj containing e′.
3. If e′ is not a dangling edge of H, then e′ is the edge in the primary cycle of Cj whose head is

the tail of the bypass edge corresponding to C.

Proof. Let u1 be the articulation vertex of C, and let u2 be the other vertex of C. Then, there is
an open chain P one of whose endpoints is u2. Let u3 be the other endpoint of P . We now prove the
statements separately as follows.

4



Statement 1. Note that u3 must be a vertex of Cj (indeed, (u3, u1) is a bypass edge of Cj). By the
definition of criticalness, the rival of e is an edge incident to u3. However, every edge of H incident to
u3 is in Cj . Thus, the rival of e must be in Cj whenever e is critical.

Statement 2. Suppose that e′ is also a dangling edge of H. Then, since e′ is incident to u3 (as
observed in the proof of Statement 1) and u3 appears in the primary cycle of Cj , u3 must be the
articulation vertex of the dangling 2-cycle C ′ containing e′. Let u4 be the vertex of C ′ other than u3.
Then, by the definition of criticalness, there is an open chain in G2 whose endpoints are u4 and u1.
Now, (u1, u3) has to be the bypass edge corresponding to C ′. Recall that (u3, u1) is the bypass edge
corresponding to C. This completes the proof of Statement 2.

Statement 3. Suppose that e′ is not a dangling edge of H. Recall that e′ is incident to u3 and
(u3, u1) is a bypass edge of Cj . By Lemma 3.3, e′ cannot be (u3, u1). So, e′ has to be the edge in the
primary cycle of Cj entering u3. 2

Lemma 3.5 Fix a j with 1 ≤ j ≤ ` such that the primary cycle C of Cj contains no bypass edge. Let
u1, . . . , uk be a cyclic ordering of the vertices in C. Then, the following hold:

1. Suppose that there is a chain P in G2 whose endpoints appear in C but not consecutively (i.e.,
its endpoints are not connected by an edge of C). Then, at least one edge of C is safe.

2. Suppose that every edge of C is critical. Then, there is a unique Cj′ with j′ ∈ {1, . . . , `} − {j}
such that (1) the primary cycle C ′ of Cj′ has exactly k vertices and (2) the vertices of C ′ have
a cyclic ordering v1, . . . , vk such that for every 1 ≤ i ≤ k, ui and vk−i+1 are the endpoints of
some chain in G2. (See Figure 4.)

Proof. We prove the two statements separately as follows.
Statement 1. By the existence of P , we can find two vertices ui and uh in C with i < h such

that (1) neither (ui, uh) nor (uh, ui) is an edge of C, (2) there is a chain in G2 whose endpoints are
ui and uh, and (3) there is no chain in G2 whose endpoints both are in the set {ui+1, ui+2, . . . , uh−1}.
Obviously, (ui, ui+1) is safe.

Statement 2. Each vertex ui of C is an endpoint of a chain Pi in G2 or else the two edges incident
to ui would be safe. Moreover, P1 6= P2, P2 6= P3, . . . , Pk−1 6= Pk, and Pk 6= P1 because we have
applied the bypass operation on Cj . Furthermore, by Statement 1, there do not exist i and h with
1 ≤ i 6= h ≤ k with Pi = Ph. Therefore, for every i ∈ {1, . . . , k}, the endpoint of Pi other than ui is
not in C.

For each i ∈ {1, . . . , k}, let vk−i+1 be the endpoint of Pi other than ui. Obviously, for each
i ∈ {1, . . . , k− 1}, (vk−i, vk−i+1) has to be an edge of H because (ui, ui+1) is a critical edge. Similarly,
(vk, v1) has to be an edge of H because (uk, u1) is a critical edge. So, v1, . . . , vk is a cyclic ordering
of the vertices of some cycle C ′ in H. Let j′ be the integer in {1, . . . , `} such that C ′ is a cycle in Cj′ .

It remains to show that C ′ is not a dangling 2-cycle of Cj′ . For a contradiction, assume that C ′ is
a dangling 2-cycle of Cj′ . Then, by Statement 1 in Lemma 3.4, j = j′ and C has to be the primary
cycle of Cj′ . Moreover, since C ′ is a 2-cycle, C is a 2-cycle, too. But then, {u1, u2} ∩ {v1, v2} 6= ∅,
because the articulation vertex of C ′ has to be a vertex of C. This contradicts the fact that for each
i ∈ {1, . . . , k}, the endpoint of Pi other than ui is not in C (as observed above). 2

Now we are ready to describe how to partition E(H) into three subsets each of which can be added
to G2 without destroying its 2-path-colorability. We use the three colors 0, 1, and 2 to represent the
three subsets, and want to assign each edge of E(H) a color in {0, 1, 2} so that the following conditions
are satisfied:

(C1) For every critical edge e of H, e and its rival receive different colors.

(C2) For every dangling 2-cycle C of H, the two edges in C receive the same color.

(C3) If two adjacent edges of H receive the same color, then they form a 2-cycle of H.

5



To compute a coloring of the edges of H satisfying the above three conditions, we process C1, . . . ,
C` in an arbitrary order. While processing Cj (1 ≤ j ≤ `), we color the edges of Cj by distinguishing
four cases as follows (where C denotes the primary cycle of Cj):

Case 1: C is a 2-cycle. Then, C contains either one or two bypass edges. In the former (respec-
tively, latter) case, we color the edges of Cj as shown in Figure 3(2) (respectively, Figure 3(1)). Note
that the colored edges satisfy Conditions (C1) through (C3) above.

� � � �
�

�

� � ��

� ��� � � �

Figure 3: Coloring Cj when its primary cycle is a 2-cycle.

Case 2: Every edge of C is critical. Then, by Lemma 3.3, C contains no bypass edge. Let j′ be
the integer in {1, . . . , `} − {j} such that Cj′ satisfies the two conditions (1) and (2) in Statement 2 in
Lemma 3.5. Then, by Lemma 3.4 and Statement 2 in Lemma 3.5, neither Cj nor Cj′ has a bypass
edge or a dangling 2-cycle. So, the primary cycle of Cj (respectively, Cj′) is Cj (respectively, Cj′)
itself. We color the edges of Cj and Cj′ simultaneously as follows (see Figure 4). First, we choose one
edge e of Cj , color e with 2, and color the rival of e with 0. Note that the uncolored edges of Cj form
a path Q. Starting at one end of Q, we then color the edges of Q alternatingly with colors 0 and 1.
Finally, for each uncolored edge e′ of Cj′ , we color it with the color h ∈ {1, 2} such that the rival of e′

has been colored with h− 1. Note that the colored edges satisfy Conditions (C1) through (C3) above.

�
�

�

�
�

�

�
�

�
�

�

�
��� ���
	

Figure 4: Coloring Cj and Cj′ when all their edges are critical.

Case 3: Neither Case 1 nor Case 2 occurs and no edge of Cj is a critical dangling edge of H. Then,
by Lemma 3.3 and Statement 1 in Lemma 3.5, C contains at least one safe edge. Let e1, . . . , ek be the
edges of C, and assume that they appear in C cyclically in this order. Without loss of generality, we
may assume that e1 is a safe edge. We color e1 with 0, and then color the edges e2, . . . , ek in this order
as follows. Suppose that we have just colored ei with a color hi ∈ {0, 1, 2} and we want to color ei+1

next, where 1 ≤ i ≤ k− 1. If ei+1 is a critical edge and its rival has been colored with (hi + 1) mod 3,
then we color ei+1 with (hi + 2) mod 3; otherwise, we color ei+1 with (hi + 1) mod 3. If ek is colored 0
at the end, then we change the color of e1 from 0 to the color in {1, 2} that is not the color of e2.
Now, we can further color each dangling 2-cycle C ′ of Cj with the color in {0, 1, 2} that has not been
used to color the two edges of C incident to the articulation vertex of C ′. Note that the colored edges
satisfy Conditions (C1) through (C3) above.

Case 4: Neither Case 1 nor Case 2 occurs and some edge of Cj is a critical dangling edge of H.
For each dangling edge e of H with e ∈ E(Cj), we define the partner of e to be the edge e′ of C
leaving the articulation vertex u of the dangling 2-cycle containing e, and define the mate of e to be
the bypass edge e′′ of Cj entering u (see Figure 6). We say that an edge e of Cj is bad if e is a critical
dangling edge of H and its partner is the rival of another critical dangling edge of H. If Cj has a bad
edge e, then Statement 3 in Lemma 3.4 ensures that Cj is as shown in Figure 5 and can be colored as
shown there without violating Conditions (C1) through (C3) above.

6



�

�

�

�

�

� �
�

���

�

Figure 5: Cj (formed by the one-way edges) and its coloring when it has a bad edge e.

����������	�

����	������

��� �����������! �"�#%$$�& &'&�(*),+-+�)*.�/�.�0
)�1%2�3 46587:9

;�<%=
=

>

Figure 6: The rival, the mate, and the partner of a critical dangling edge e of H together with the
opponent of the partner of e.

So, suppose that Cj has no bad edge. We need one more definition (see Figure 6). Consider
a critical dangling edge e of H with e ∈ E(Cj). Let e′ and e′′ be the partner and the rival of e,
respectively. Let e′′′ be the edge of C entering the tail of e′′. Let P be the open chain in G2 whose
endpoints are the tails of e′ and e′′. We call e′′′ the opponent of e′. Note that e′ 6= e′′′ because the
endpoints of P are the tail of e′ and the head of e′′′. Moreover, if e′ is a critical edge of H, then the
rival of e′ has to be e′′′ because e is not bad and P exists. In other words, whenever an edge of C has
both its rival and its opponent, they must be the same. Similarly, if e′′′ is a critical edge of H, then
its rival has to be e′. Obviously, neither e′ nor e′′′ can be the rival or the mate of a critical dangling
edge of H (because Cj has no bad edge).

Now, let e1, . . . , eq be the edges of C none of which is the rival or the mate of a critical dangling
edge of Cj . We may assume that e1, . . . , eq appear in C cyclically in this order. Without loss of
generality, we may further assume that e1 is the partner of a critical dangling edge of H. Then, we
color e1 with 0, and further color e2, . . . , eq in this order as follows. Suppose that we have just
colored ei with a color hi ∈ {0, 1, 2} and we want to color ei+1 next, where 1 ≤ i ≤ q − 1. If ei+1 is a
critical edge of H and its rival or opponent has been colored with (hi + 1) mod 3, then we color ei+1

with (hi + 2) mod 3; otherwise, we color ei+1 with (hi + 1) mod 3. Note that the colored edges satisfy
Conditions (C1) through (C3) above, because the head of eq is not the tail of e1.

We next show how to color the rival and the mate of each critical dangling edge of Cj . For each
critical dangling edge e of Cj , since its partner e′ and the opponent of e′ have been colored, we can
color the rival of e with the color of e′ and color the mate of e with a color in {0, 1, 2} that is not the
color of e′. Note that the colored edges satisfy Conditions (C1) through (C3) above, because e′ and
its opponent have different colors.

Finally, for each dangling 2-cycle D of Cj , we color the two edges of D with the color in {0, 1, 2}
that has not been used to color an edge incident to the articulation vertex of D. Note that the colored
edges satisfy Conditions (C1) through (C3) above, because the rival of each critical dangling edge e
of H has the same color as the partner of e does. This completes the coloring of Cj (and hence H).

We next want to show how to use the coloring to find a large-weight tour in G. For each i ∈
{0, 1, 2}, let Ei be the edges of H with color i. Without loss of generality, we may assume that
w(E0) ≥ max{w(E1), w(E2)}. Then, w(E0) ≥ 1

3W1,3 (see the beginning of this subsection for W1,3).
Consider the undirected graph U = (V (G), F1 ∪ F2), where F1 consists of all edges {v1, v2} such that
(v1, v2) or (v2, v1) is an edge in E0, and F2 consists of all edges {v3, v4} such that v3 and v4 are the
endpoints of an open chain in G2. We further assign a weight to each edge of F1 as follows. We first
initialize the weight of each edge of F1 to be 0. For each edge (v1, v2) ∈ E0, we then add the weight of
edge (v1, v2) to the weight of edge {v1, v2}. Note that for each i ∈ {1, 2}, each connected component
of the undirected graph (V (G), Fi) is a single vertex or a single edge because of Condition (C3) above.
So, each connected component of U is a path or a cycle. Moreover, each cycle of U contains at least

7



three edges of F1 because of Condition (C1) above. For eacy cycle D of U , we mark exactly one edge
{v1, v2} ∈ F1 in D whose weight is the smallest among all edges {v1, v2} ∈ F1 in D. Let E3 be the set
of all edges (v1, v2) ∈ E0 such that {v1, v2} is marked. Then, w(E3) ≤ 1

3w(E0). Consider the directed
graph G′2 obtained from G2 by adding the edges of E0−E3. Obviously, w(G′2) ≥ (W1,2+W2,2)+ 1

9W1,3.
Moreover, G′2 is a collection of partial chains and hence is 2-path-colorable. So, we can partition the
edges of G′2 into two subsets E′1 and E′2 such that both graphs (V (G), E′1) and (V (G), E′2) are subtours
of G. The heavier one among the two subtours can be completed to a tour of G of weight at least
1
2(W1,2 +W2,2) + 1

18W1,3 ≥W2 + 1
9W3. Combining this with Lemma 3.2, we now have:

Theorem 3.6 There is a polynomial-time approximation algorithm for AsymMaxTSP achieving an
approximation ratio of 27

35 .

4 New Algorithm for Metric SymMaxTSP

Throughout this section, fix an instance (G,w) of metric SymMaxTSP, where G is a complete undi-
rected graph with n vertices and w is a function mapping each edge e of G to a nonnegative real
number w(e). Because of the triangle inequality, the following fact holds (see [3] for a proof):

Fact 4.1 Suppose that P1, . . . , Pt are vertex-disjoint paths in G each containing at least one edge. For
each 1 ≤ i ≤ t, let ui and vi be the endpoints of Pi. Then, we can use some edges of G to connect
P1, . . . , Pt into a single cycle C in linear time such that w(C) ≥

∑t
i=1w(Pi) + 1

2

∑t
i=1w({ui, vi}).

Like Hassin and Rubinstein’s algorithm (H&R2-algorithm) for the problem, our algorithm com-
putes two tours T1 and T2 of G and outputs the one with the larger weight. The first two steps of our
algorithm are the same as those of H&R2-algorithm:

1. Compute a maximum-weight cycle cover C. Let C1, . . . , Cr be the cycles in G.
2. Compute a maximum-weight matching M in G.

Lemma 4.2 [3] In linear time, we can compute two disjoint subsets A1 and A2 of
⋃

1≤i≤r E(Ci)−M
satisfying the following conditions:

(a) For each j ∈ {1, 2}, each connected component of the graph (V (G),M ∪ Aj) is a path of length
at least 1.

(b) For each j ∈ {1, 2} and each i ∈ {1, . . . , r}, |Aj ∩ E(Ci)| = 1.

For a technical reason, we will allow our algorithm to use only 1 random bit (so we can easily
derandomize it, although we omit the details). The third through the seventh steps of our algorithm
are as follows:

3. Compute two disjoint subsets A1 and A2 of
⋃

1≤i≤r E(Ci)−M satisfying the two conditions in
Lemma 4.2.

4. Choose A from A1 and A2 uniformly at random.
5. Obtain a collection of vertex-disjoint paths each of length at least 1 by deleting the edges in
A from C; and then connect these paths into a single (Hamiltonian) cycle T1 as described in
Fact 4.1.

6. Let S = {v ∈ V (G) | the degree of v in the graph (V,M ∪ A) is 1} and F = {{u, v} ∈
E(G) | {u, v} ⊆ S}. Let H be the complete graph (S, F ). Let ` = 1

2 |S|. (Comment: |S| is even,
because of Condition (a) in Lemma 4.2.)

7. Let M ′ be the set of all edges {u, v} ∈ F such that some connected component of the graph
(V,M ∪ A) contains both u and v. (Comment: M ′ is a perfect matching of H because of
Condition (a) in Lemma 4.2.)

Lemma 4.3 [3] Let α = w(A1 ∪ A2)/w(C). For a random variable X, let E [X] denote its expected
value. Then, E [w(F )] ≥ 1

4(1− α)(2`− 1)w(C).

8



The next lemma shows that there cannot exist matchings of large weight in an edge-weighted graph
where the weights satisfy the triangle inequality:

Lemma 4.4 For every perfect matching N of H, w(N) ≤ w(F )/`.

Proof. Let the edges of N be {u1, u2}, {u3, u4}, . . . , {u2`−1, u2`}.
Case 1: ` is odd. For each odd number i with 1 ≤ i ≤ `, we assign the vertices ui+2, ui+3,

. . . , u`+i of H to the edge {ui, ui+1} of N . For each even number j with 1 ≤ j ≤ `, we assign the
vertices u1, u2, . . . , uj , u`+j+2, u`+j+3, . . . , u2` of H to the edge {u`+j , u`+j+1} of N . Note that
each edge in N is assigned exactly ` − 1 vertices of H. For each edge ei = {ui, ui+1} ∈ N and each
vertex uh assigned to ei, we then assign the two edges {ui, uh} and {ui+1, uh} of H to ei. Since
w({ui, uh}) + w({ui+1, uh}) ≥ w(ei) by the triangle inequality, the total weight of edges assigned to
each edge ei ∈ N is at least (`− 1)w(ei). Obviously, no edge of N is assigned to itself or another edge
of N . Moreover, a simple but crucial observation is that no edge of H is assigned to two or more edges
of N . Thus, w(F −N) ≥ (`− 1)w(N). Hence, w(N) ≤ w(F )/`.

Case 2: ` is even. Let N1 = {{u1, u2}, {u3, u4}, . . . , {un−1, un}} and N2 = N − N1. We assume
that w(N1) ≥ w(N2); the other case is similar. For each odd number i with 1 ≤ i ≤ ` − 1, we
assign the vertices ui+2, ui+3, . . . , u`+i+1 of H to the edge {ui, ui+1} of N , and assign the vertices
u1, u2, . . . , ui−1, u`+i+2, u`+i+3, . . . , u2` of H to the edge {u`+i, u`+i+1} of N . Note that each
edge in N1 (respectively, N2) is assigned exactly ` (respectively, ` − 2) vertices of H. For each edge
ei = {ui, ui+1} ∈ N and each vertex uh assigned to ei, we then assign the two edges {ui, uh} and
{ui+1, uh} of H to ei. Since w({ui, uh}) + w({ui+1, uh}) ≥ w(ei) by the triangle inequality, the total
weight of edges assigned to each edge ei ∈ N1 (respectively, ei ∈ N2) is at least `w(ei) (respectively,
(` − 2)w(ei)). Obviously, no edge of N is assigned to itself or another edge of N . Moreover, a
simple but crucial observation is that no edge of H is assigned to two or more edges of N . Thus,
w(F −N) ≥ `w(N1) + (`− 2)w(N2) ≥ (`− 1)w(N). Hence, w(N) ≤ w(F )/`. 2

The following is our main lemma and will be proved in Section 4.1:

Lemma 4.5 We can partition F −M ′ into 2` − 2 perfect matchings M1, . . . , M2`−2 of H in linear
time satisfying the following condition:

• For every natural number q, there are at most q2− q matchings Mi with 1 ≤ i ≤ 2`− 2 such that
the graph (S,M ′ ∪Mi) has a cycle of length at most 2q.

Now, the eighth through the thirteenth steps of our algorithm are as follows:

8. Partition F −M ′ into 2`− 2 perfect matchings M1, . . . , M2`−2 of H in linear time satisfying the
condition in Lemma 4.5.

9. Let q = d 3
√
`e. Find a matching Mi with 1 ≤ i ≤ 2`− 2 satisfying the following two conditions:

(a) The graph (S,M ′ ∪Mi) has no cycle of length at most 2q.
(b) w(Mi) ≥ w(Mj) for all matchings Mj with 1 ≤ j ≤ 2`−2 such that the graph (S,M ′∪Mj)

has no cycle of length at most 2q.

10. Construct the graph G′i = (V (G),M∪A∪Mi). (Comment: Mi∩(M∪A) = ∅ and each connected
component of G′i is either a path, or a cycle of length 2q + 1 or more.)

11. For each cycle D in G′i, mark exactly one edge e ∈ Mi ∩ E(D) such that w(e) ≤ w(e′) for all
e′ ∈Mi ∩ E(D).

12. Obtain a collection of vertex-disjoint paths each of length at least 1 by deleting the marked
edges from G′i; and then connect these paths into a single (Hamiltonian) cycle T2 as described
in Fact 4.1.

13. If w(T1) ≥ w(T2), output T1; otherwise, output T2.

Theorem 4.6 There is an O(n3)-time approximation algorithm for metric SymMaxTSP achieving
an approximation ratio of 7

8 −O(1/ 3
√
n).

9



Proof. Let OPT be the maximum weight of a tour in G. It suffices to prove that max{E [w(T1)],
E [w(T2)]} ≥ (7

8 −O(1/ 3
√
n))OPT . By Fact 4.1, E [w(T1)] ≥ (1− 1

2α+ 1
4α)w(C) ≥ (1− 1

4α)OPT .
We claim that |S| ≥ 1

3n. To see this, consider the graphs GM = (V (G),M) and GA = (V (G),M ∪
A). Because the length of each cycle in C is at least 3, |A| ≤ 1

3n by Condition (b) in Lemma 4.2.
Moreover, since M is a matching of G, the degree of each vertex in GM is 0 or 1. Furthermore, GA is
obtained by adding the edges of A to GM . Since adding one edge of A to GM increases the degrees
of at most two vertices, there exist at least n − 2|A| ≥ 1

3n vertices of degree 0 or 1 in GA. So, by
Condition (a) in Lemma 4.2, there are at least 1

3n vertices of degree 1 in GA. This establishes that
|S| ≥ 1

3n. Hence, ` ≥ 1
6n.

Now, let x be the number of matchings Mj with 1 ≤ j ≤ 2`− 2 such that the graph (S,M ′ ∪Mi)
has a cycle of length at most 2q. Then, by Lemmas 4.4 and 4.5, the weight of the matching Mi found
in Step 9 is at least (1− x+1

` ) ·w(F ) · 1
2`−2−x . So, w(Mi) ≥ 1

` · (1−
`−1

2`−2−q2+q
) ·w(F ) because x ≤ q2−q.

Let Ni be the set of edges of Mi marked in Step 11. Then, w(Mi − Ni) ≥ q
q+1 ·

`−q2+q−1
`(2`−2−q2+q)

· w(F ).
Hence, by Lemma 4.3 and the inequality ` ≥ 1

6n, we have E [w(Mi−Ni)] ≥ 1
4(1−α)(1−O(1/ 3

√
n))w(C).

Obviously, E [w(T2)] ≥ E [w(M ∪ A)] + E [w(Mi − Ni)] ≥ (1
2 −

1
2n)OPT + 1

2αw(C) + E [w(Mi −
Ni)]. Hence, by the last inequality in the previous paragraph, E [w(T2)] ≥ (3

4 + 1
4α−O(1/ 3

√
n))OPT .

Combining this with the inequality E [w(T1)] ≥ (1− 1
4α)OPT , we finally have E [max{w(T1), w(T2)}] ≥

(7
8 −O(1/ 3

√
n))OPT .

The running time of the algorithm is dominated by the O(n3) time needed for computing a
maximum-weight cycle cover and a maximum-weight matching. 2

As observed in [3], the subsets A1 and A2 in Lemma 4.2 can be computed in O(log3 n) time using a
linear number of processors. So, our algorithm for metric Max TSP is parallelizable because maximum-
weight cycle covers and maximum-weight matchings can be computed by fast parallel algorithms [6, 8].
We omit the details here.

4.1 Partitioning into Perfect Matchings

Let the vertices of H be ∞, 0, 1, . . . , 2`− 2, and let the edges of M ′ be

{∞, 0}, {1, 2`− 2}, {2, 2`− 3}, . . . , {`− 1, `}.

Then, a folklore partitioning of F −M ′ into 2`−2 perfect matchings M1, . . . , M2`−2 of H is as follows:

M1 : {∞, 1}, {2, 0}, {3, 2`− 2}, . . . , {`, `+ 1}

M2 : {∞, 2}, {3, 1}, {4, 0}, . . . , {`+ 1, `+ 2}
...

M2`−2 : {∞, 2`− 2}, {0, 2`− 3}, {1, 2`− 4}, . . . , {`− 2, `− 1}.

For each integer j 6∈ {0, 1, . . . , 2` − 2}, we identify j with the vertex h of H such that h ≡
j (mod 2`− 1). Then, for each integer i ∈ {0, 1, . . . , 2`− 2}, Mi consists of edge {∞, i} and all edges
{j,−j + 2i} with j ∈ {0, 1, . . . , 2` − 2} − {i}. Obviously, for each i ∈ {1, . . . , 2` − 2}, the graph
Hi = (S,Mi ∪M ′) is a collection of vertex-disjoint cycles; we call the cycle containing vertex ∞ the
main cycle of Hi and denote it by Di. For two natural numbers x and y, let gcd(x, y) denote the
greatest common divisor of x and y, and let lcm(x, y) denote the least common multiple of x and y.

Lemma 4.7 For each i ∈ {1, . . . , 2`− 2}, the length of Di is
(

2`−1
gcd(2`−1,i) + 1

)
.

Proof. Recall that for each integer i ∈ {0, 1, . . . , 2` − 2}, Mi consists of edge {∞, i} and all edges
{j,−j + 2i} with j ∈ {0, 1, . . . , 2`− 2} − {i}. Fix an i ∈ {1, . . . , 2`− 2}. Let 2h be the length of Di.

10



Suppose that we traverse Di by starting at vertex ∞, then visiting i, and proceeding along the cycle
until reaching vertex 0. This traversal should give the following ordering of the vertices of Di:

∞, i,−i, 3i,−3i, 5i, · · · ,−(2h− 3)i, (2h− 1)i

where (2h− 1)i ≡ 0 (mod 2`− 1) because vertex 0 is the last one in the traversal. Note that for every
odd x ∈ {1, 2, . . . , 2h− 1}, xi is a vertex of Di.

Since (2h − 1)i ≡ 0 (mod 2` − 1), (2h − 1)i is a common multiple of integers 2` − 1 and i, and
hence there exists an integer α ≥ 1 such that

(2h− 1)i = α lcm(2`− 1, i) =
(
α · 2`− 1

gcd(2`− 1, i)

)
i. (4.1)

The last equality follows from the fact that (2`− 1) i = gcd(2`− 1, i) lcm(2`− 1, i). By Equation 4.1,
2h − 1 = α · 2`−1

gcd(2`−1,i) . Therefore, α is an odd integer because 2`−1
gcd(2`−1,i) is an integer and 2h − 1 is

odd.
We claim that α = 1. For a contradiction, assume that α is an odd integer greater than 1. Then,

by Equation 4.1, (2h− 1)i− (α− 1) lcm(2`− 1, i) = lcm(2`− 1, i) and hence

2h− 1− (α− 1) · 2`− 1
gcd(2`− 1, i)

=
lcm(2`− 1, i)

i
. (4.2)

Since α− 1 is a possitive even integer, the left side of Equation 4.2 is an odd integer less than 2h− 1.
Moreover, recall that 2h− 1 = α · 2`−1

gcd(2`−1,i) . So, the left side of Equation 4.2 is a positive odd integer

less than 2h− 1. Hence, (2h− 1− (α− 1) · 2`−1
gcd(2`−1,i)) i is an integer in the subsequence i, 3i, 5i, . . . ,

(2h− 3)i, and is a multiple of 2`− 1 by Equation 4.2. However, this implies that vertex 0 of Di is in
the subsequence i, 3i, 5i, . . . , (2h− 3)i, a contradiction. Thus, the claim holds.

By the claim, 2h− 1 = 2`−1
gcd(2`−1,i) and so the length of Di is 2h = 2`−1

gcd(2`−1,i) + 1. 2

Corollary 4.8 If gcd(2`− 1, i) = 1, then Di is a tour of Hi.

We next show that if Di is not a tour of Hi, then Di is the shortest cycle in Hi.

Lemma 4.9 Fix an i such that 1 ≤ i ≤ 2` − 2 and gcd(2` − 1, i) 6= 1. Then, each cycle of Hi other
than Di is of length 2(2`−1)

gcd(2`−1,i) .

Proof. Fix a cycle D of Hi other than Di. Let 2h be the length of D. Consider an arbitrary vertex
j of D. As in the proof of Lemma 4.7, a traversal of D started at vertex j and ended at vertex −j
produces the following ordering of the vertices of D:

j,−j + 2i, j − 2i,−j + 4i, j − 4i,−j + 6i, . . . , j − 2(h− 1)i,−j + 2hi

where −j + 2hi ≡ −j (mod 2`− 1). Note that for every even x ∈ {2, 3, . . . , 2h}, −j + xi is a vertex of
D.

Since 2hi ≡ 0 (mod 2`− 1), 2hi is a common multiple of integers 2`− 1 and i, hence there exists
an integer α ≥ 1 such that

2hi = α lcm(2`− 1, i) =
(
α · 2`− 1

gcd(2`− 1, i)

)
i. (4.3)

By Equation 4.3, 2h = α · 2`−1
gcd(2`−1,i) . Therefore, α is an even integer.

We claim that α = 2. For a contradiction, assume that α is an even number greater than 2. Then,
by Equation 4.3, 2hi− (α− 2)lcm(2`− 1, i) = 2 lcm(2`− 1, i) and hence

2h− (α− 2) · 2`− 1
gcd(2`− 1, i)

=
2 lcm(2`− 1, i)

i
. (4.4)

11



Since α − 2 is a possitive even integer, the left side of Equation 4.4 is an even integer less than 2h.
Moreover, recall that 2h = α · 2`−1

gcd(2`−1,i) . So, the left side of Equation 4.4 is a positive even integer

less than 2h. Hence, −j+ (2h− (α− 2) · 2`−1
gcd(2`−1,i)) i is an integer in the subsequence −j+ 2i, −j+ 4i,

. . . , −j+ 2(h− 1)i, and is congruent to −j modulo 2`− 1 by Equation 4.4. However, this implies that
vertex −j of Di is in the subsequence −j + 2i, −j + 4i, . . . , −j + 2(h − 1)i, a contradiction. Thus,
the claim holds.

By the claim, 2h = 2(2`−1)
gcd(2`−1,i) and so the length of Di is 2h = 2(2`−1)

gcd(2`−1,i)
. 2

Corollary 4.10 For every i ∈ {1, 2, . . . , 2`− 2}, Di is the shortest cycle in Hi.

Proof. Fix an i ∈ {1, 2, . . . , 2` − 2}. If gcd(2` − 1, i) = 1, then Di is the unique cycle (and hence
the shortest cycle) in Hi by Corollary 4.8. Otherwise, by Lemmas 4.7 and 4.9, Di is shorter than the
other cycles in Hi. 2

Now, we are ready to prove Lemma 4.5:

Proof of Lemma 4.5: Fix a natural number q. By Corollary 4.10, it suffices to show that there are
at most q2 − q integers i ∈ {1, 2, . . . , 2`− 2} such that Di is of length at most 2q.

Consider a natural number p ≤ q. For each i ∈ {1, 2, . . . , 2`− 2}, if the length of Di is exactly 2p,
then by Lemma 4.7, 2`−1

gcd(2`−1,i) + 1 = 2p and so

gcd(2`− 1, i) =
2`− 1
2p− 1

.

Since each integer i satisfying the above equality has to be a multiple of 2`−1
2p−1 , there can be at most

2p− 2 such integers in {1, 2, . . . , 2`− 2}.
Hence, there can be at most

∑q
p=1(2p− 2) = q2− q integers i ∈ {1, 2, . . . , 2`− 2} such that Hi has

a cycle of length at most 2q. 2

References

[1] A. I. Barvinok, D. S. Johnson, G. J. Woeginger, and R. Woodroofe. Finding Maximum Length
Tours under Polyhedral Norms. Proceedings of the Sixth International Conference on Integer
Programming and Combinatorial Optimization (IPCO), Lecture Notes in Computer Science, 1412
(1998) 195–201.

[2] Z.-Z. Chen and L. Wang. An Improved Randomized Approximation Algorithm for Max TSP.
Submitted.

[3] Z.-Z. Chen, Y. Okamoto, and L. Wang. Improved Deterministic Approximation Algorithms for
Max TSP. To appear in Information Processing Letters.

[4] R. Hassin and S. Rubinstein. A 7/8-Approximation Approximations for Metric Max TSP. Infor-
mation Processing Letters, 81 (2002) 247–251.

[5] H. Kaplan, M. Lewenstein, N. Shafrir, and M. Sviridenko. Approximation Algorithms for Asym-
metric TSP by Decomposing Directed Regular Multigraphs. Proceedings of the 44th Annual IEEE
Symposium on Foundations of Computer Science, pp. 56–75, 2003.

[6] R. M. Karp, E. Upfal, and A. Wigderson. Constructing a Perfect Matching is in random NC.
Combinatorica, 6 (1986) 35–48.

[7] A. V. Kostochka and A. I. Serdyukov. Polynomial Algorithms with the Estimates 3
4 and 5

6 for the
Traveling Salesman Problem of Maximum (in Russian). Upravlyaemye Sistemy, 26 (1985) 55–59.

[8] K. Mulmuley, U. V. Vazirani, and V. V. Vazirani. Matching is as easy as matrix inversion.
Combinatorica, 7 (1987) 105–113.

12


