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Abstract

We present a polynomial-time approximation algorithm for legally coloring as many edges
of a given simple graph as possible using two colors. It achieves an approximation ratio of 468

575 .
This improves on the previous best (trivial) ratio of 4

5 .

1 Introduction

Given a graph G and a natural number t, the maximum edge t-coloring problem (called Max

Edge t-Coloring for short) is to find a maximum set F of edges in G such that F can be
partitioned into at most t matchings of G. Motivated by call admittance issues in satellite based
telecommunication networks, Feige et al. [1] introduced the problem and proved its APX-hardness.
They also observed that Max Edge t-Coloring is obviously a special case of the well-known
maximum coverage problem (see [4]). Since the maximum coverage problem can be approximated
by a greedy algorithm within a ratio of 1 − (1 − 1

t )t [4], so can Max Edge t-Coloring. In
particular, the greedy algorithm achieves an approximation ratio of 3

4 for Max Edge 2-Coloring

which is the special case of Max Edge t-Coloring where the input number t is fixed to 2. Feige
et al. [1] has improved the trivial ratio 3

4 = 0.75 to 10
13 ≈ 0.769 by an LP approach.

The APX-hardness proof for Max Edge t-Coloring given by Feige et al. [1] indeed shows
that the problem remains APX-hard even if we restrict the input graph to a simple graph and
fix the input integer t to 2. We call this restriction (special case) of the problem Max Simple

Edge 2-Coloring. Feige et al. [1] also pointed out that for Max Simple Edge 2-Coloring, an
approximation ratio of 4

5 can be achieved by the following simple algorithm:

Input: A simple graph G.

1. Compute a maximum subgraph H of G such that the degree of each vertex in H is at most 2
and there is no 3-cycle in H. (Comment: This step can be done in O(n2m2) time [3].)
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2. Remove one edge from each odd cycle of H.

Output: H.

Kosowski et al. [7] also considered Max Simple Edge 2-Coloring. They presented an
approximation algorithm that achieves a ratio of 28∆−12

35∆−21 , where ∆ is the maximum degree of a
vertex in the input simple graph. This ratio can be arbitrarily close to the trivial ratio 4

5 because
∆ can be very large.

In this paper, we present a polynomial-time approximation algorithm for Max Simple Edge

2-Coloring which achieves a ratio of 468
575 . To achieve this, we first design a randomized algorithm

and then derandomize it.
Kosowski et al. [7] showed that approximation algorithms for Max Simple Edge 2-Coloring

can be used to obtain approximation algorithms for certain packing problems and fault-tolerant
guarding problems. Combining their reductions and our improved approximation algorithm for
Max Simple Edge 2-Coloring, we can obtain improved approximation algorithms for their
packing problems and fault-tolerant guarding problems immediately.

2 Basic Definitions

Throughout the remainder of this paper, a graph means a simple undirected graph (i.e., it has
neither parallel edges nor self-loops).

Let G be a graph. We denote the vertex set of G by V (G), and denote the edge set of G by
E(G). The degree of a vertex v in G, denoted by dG(v), is the number of edges incident to v in
G. A vertex v of G with dG(v) = 0 is called an isolated vertex. For a subset U of V (G), let G[U ]
denote the graph (U,EU ) where EU consists of all edges {u, v} of G with u ∈ U and v ∈ U . We
call G[U ] the subgraph of G induced by U . An independent set of G is a subset U of V (G) such
that G[U ] has no edge.

A cycle in G is a connected subgraph of G in which each vertex is of degree 2. A Hamiltonian
cycle of G is a cycle C of G with V (C) = V (G). A path in G is a connected subgraph of G in
which exactly two vertices are of degree 1 and the others are of degree 2. The length of a cycle or
path C is the number of edges in C. A cycle of odd (respectively, even) length is called an odd
(respectively, even) cycle. A k-cycle is a cycle of length k. Similarly, a k+-cycle is a cycle of length
at least k. A path component (respectively, cycle component) of G is a connected component of G
that is a path (respectively, cycle). Note that an isolated vertex of G is not a path component of
G. A path-cycle cover of G is a subgraph H of G such that V (H) = V (G) and dH(v) ≤ 2 for every
v ∈ V (H). Note that each connected component of a path-cycle cover of G is a single vertex, path,
or cycle. A path-cycle cover C of G is triangle-free if C does not contain a 3-cycle. A path-cycle
cover C of G is maximum if the number of edges in C is maximized over all path-cycle covers of G.

For a function b mapping each vertex v of G to a nonnegative integer, a b-matching of G is a
subgraph H of G such that dH(v) ≤ b(v) for all vertices v of H. When b(v) ≤ 1 for all vertices
v of G, a b-matching of G is called a matching of G. Moreover, when b(v) ≤ 2 for all vertices v
of G, a b-matching of G is a path-cycle cover of G. The size of a b-matching M of G, denoted by
|M |, is the number of edges in M . Given a graph G and a function b mapping each vertex v to a
nonnegative integer, the maximum b-matching problem is to find a b-matching of G of maximum
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size. Similarly, given a graph G, the maximum matching problem is to find a matching of G of
maximum size. G is edge-2-colorable if E(G) can be partitioned into two matchings. Thus, Max

Simple Edge 2-Coloring is the problem of finding a maximum edge-2-colorable subgraph in a
given graph. Note that G is edge-2-colorable if and only if each connected component of G is an
isolated vertex, a path, or an even cycle.

For a random event A, Pr[A] denotes the probability that A occurs. For two random events A
and B, Pr[A | B] denotes the probability that A occurs given the occurrence of B. For a random
variable X, E [X] denotes the expected value of X.

3 The Algorithm

Throughout this section, fix a graph G and a maximum edge-2-colorable subgraph Opt of G. For
convenience, for each path-cycle cover K of G, we define two numbers as follows:

• For each i ∈ {0, 1}, let ni(K) be the number of vertices v in K with dK(v) = i.

Like the simple algorithm described in Section 1, our algorithm starts by performing the fol-
lowing step:

1. Compute a maximum triangle-free path-cycle cover H of G.

Since |E(H)| ≥ |E(Opt)|, it suffices to modify H into an edge-2-colorable subgraph of G without
significantly decreasing the number of edges in H. The simple algorithm achieves an approximation
ratio of 4

5 because it simply removes an arbitrary edge from each 5+-cycle in H. In order to improve
this ratio, we have to treat 5-cycles in H more carefully. So, we first define two useful operations
on 5-cycles of H as follows.

Suppose that C is a 5-cycle of H. A killer for C is an ordered pair (u, v) of vertices of G such
that {u, v} ∈ E(G), u ∈ V (C), G[V (C) − {u}] has a Hamiltonian cycle, and dH(v) ≤ 1 (hence
v 6∈ V (C)). Killing C in H by a killer (u, v) for it is the operation of modifying H by performing
the following three steps in turn:

(1) Delete all the edges of C from H.

(2) Add the edges of a Hamiltonian cycle of G[V (C)− {u}] to H.

(3) Add the edge {u, v} of G to H.

Killing C in H means killing it by an arbitrary killer for it. Note that killing C does not change
the number of edges in H and decreases the number of 5-cycles in H by 1. So, we say that C is
superb if there is a killer for it.

Similarly, suppose that C and D are two 5-cycles of H. A killer for the ordered pair (C,D)
is an ordered pair (u, v) of vertices of G such that {u, v} ∈ E(G), u ∈ V (C), v ∈ V (D), and
G[V (C)−{u}] has a Hamiltonian cycle. Killing (C,D) in H by a killer (u, v) for it is the operation
of modifying H by performing the following four steps in turn:

(a) Delete all the edges of C from H.
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(b) Delete one (arbitrary) edge incident to v from H.

(c) Add the edges of a Hamiltonian cycle of G[V (C)− {u}] to H.

(d) Add the edge {u, v} of G to H.

Killing (C,D) in H means killing it by an arbitrary killer for it. Note that killing (C,D)
decreases the number of 5-cycles in H by 2 and decreases the number of edges in H by 1. So, we
say that (C,D) is a good pair if there is a killer for it.

Using the above two operations, our algorithm then proceeds to modifying H by performing
the following steps:

2. Repeat killing an (arbitrary) superb 5-cycle in H, until there is none in H. (Definition: After
this step, let n, m, n7c+ , and npc be the numbers of vertices, edges, odd 7+-cycles, and path
components in H, respectively. Note that m ≥ |E(Opt)|.)

3. Repeat killing an (arbitrary) good pair of 5-cycles in H, until there is none in H. (Definition:
Let ngp be the number of good pairs killed in this step.)

4. Remove one (arbitrary) edge from each odd 7+-cycle of H.

5. Repeat killing an (arbitrary) superb 5-cycle in H, until there is none in H. (Definition: After
this step, let n5c be the number of vertices on 5-cycles in H.)

Before proceeding to the other steps of the algorithm, we first prove three lemmas that will be
very useful later.

Lemma 3.1 ngp + n7c+ ≤ 1
7(m− 5n5c).

Proof. For convenience, let H2 be the content of graph H immediately after Step 2. Note that
the algorithm never creates a new odd cycle in Steps 3, 4, and 5. Thus, each 5-cycle still remaining
in H immediately after Step 5 is also a 5-cycle in H2, each good pair killed in Step 3 is also a good
pair in H2, and each 7+-cycle destroyed in Step 4 (by removing one edge from it) is also a 7+-cycle in
H2. Moreover, a 5-cycle contains exactly 5 edges, a 7+-cycle contains at least 7 edges, and the total
number of edges in a good pair of 5-cycles is 10. Therefore, 5n5c + 10ngp + 7n7c+ ≤ |E(H2)| = m.
This establishes the lemma. 2

Lemma 3.2 Immediately after Step 5, the following statements hold:

(1) n− n0(H)− n1(H) = m− npc − 2ngp − 2n7c+.

(2) |E(H)| = m− ngp − n7c+.

(3) H is a path-cycle cover of G in which each odd cycle is a 5-cycle.

(4) The number of path components in H is npc + ngp + n7c+.

4



Proof. Statement (3) is clear because the algorithm never creates a new odd cycle in Steps 3, 4,
and 5. For convenience, let p(H) denote the number of path components in H. To prove the other
statements, let us see how the values of n− n0(H)− n1(H), |E(H)|, and p(H) change in Steps 3,
4, and 5. Immediately before Step 3, |E(H)| = m, p(H) = npc, and n− n0(H)− n1(H) = m− npc

because n1(H) = 2npc and the number of vertices on a path is 1 plus the number of edges on the
path. In Step 3, killing a good pair in H decreases the value of n− n0(H)− n1(H) by 2, decreases
that of |E(H)| by 1, increases that of p(H) by 1, and does not create a new odd cycle in H. Thus,
immediately after Step 3, n−n0(H)−n1(H) = m−npc−2ngp, |E(H)| = m−ngp, p(H) = npc +ngp,
and the number of odd 7+-cycles in H is n7c+ . In Step 4, removing one edge from an odd 7+-cycle
of H decreases the value of n− n0(H)− n1(H) by 2, decreases that of |E(H)| by 1, and increases
that of p(H) by 1. Hence, immediately after Step 4, n−n0(H)−n1(H) = m−npc− 2ngp− 2n7c+ ,
|E(H)| = m − ngp − n7c+ , and p(H) = npc + ngp + n7c+ . Note that during Steps 3, 4, and 5,the
algorithm does not create a new isolated vertex or a new odd cycle in H. So, if a superb 5-cycle
C in H is killed by a killer (u, v) in Step 5, then v cannot be an isolated vertex of H or else C
would have been killed in Step 2. Consequently, if a superb 5-cycle C in H is killed by a killer
(u, v) in Step 5, then dH(v) = 1 immediately before the killing and hence the killing does not
change the values of n− n0(H)− n1(H), |E(H)|, and p(H). Therefore, immediately after Step 5,
n−n0(H)−n1(H) = m−npc−2ngp−2n7c+ , |E(H)| = m−ngp−n7c+ , and p(H) = npc +ngp +n7c+ .
This completes the proof of the lemma. 2

Lemma 3.3 Immediately after Step 5, if C is a 5-cycle in H such that Opt contains a cycle C ′

with V (C ′) ⊆ V (C), then C ′ is a 4-cycle and the unique vertex u in V (C)−V (C ′) has no neighbor
v in Opt such that dH(v) ≤ 1 or v appears on a 5-cycle of H other than C.

Proof. Suppose that immediately after Step 5, C is a 5-cycle in H such that Opt contains a
cycle C ′ with V (C ′) ⊆ V (C). Then, since Opt contains no odd cycle, C ′ must be a 4-cycle. Let
u be the unique vertex in V (C) − V (C ′). If u has a neighbor v in Opt such that dH(v) ≤ 1 after
Step 5, then C would have been killed in Step 5, a contradiction. Similarly, if u has a neighbor v
in Opt such that v appears on a 5-cycle of H after Step 5, then C would have been killed in Step 3,
a contradiction. So, the lemma holds. 2

We now state the basic ideas behind the rest of our algorithm. By Lemma 3.1 and Statement (2)
in Lemma 3.2, H still has at least 6

7m+ 5
7n5c edges immediately after Step 5. Suppose that we delete

one arbitrary edge from each 5-cycle still remaining in H (so that it becomes edge-2-colorable).
After this deletion process, H has at least 6

7m−
2
7n5c edges, which is significantly larger than 4

5m

(≥ 4
5 |E(Opt)|) if n5c is small.
Unfortunately, n5c may be very large. Fortunately, after the deletion process (which removes one

edge from each 5-cycle still remaining in H), G may have some edges e such that both endpoints of e
are of degree at most 1 in H and appear in different connected components of H. For convenience,
let us call such an edge of G an available bridge. Clearly, an available bridge can be added to
H without invalidating the edge-2-colorability of H. Of course, we do not want to add only one
available bridge to H but want to add many available bridges to H simultaneously. Unfortunately,
two available bridges may conflict each other, i.e., adding them to H simultaneously invalidates the
edge-2-colorability of H. In order to find a large set of nonconflicting available bridges, we may first

5



construct an auxiliary graph B whose vertices are the endpoints of paths of H (after the deletion
process) and whose edges are the available bridges, and then find a maximum b-matching N in B

where b(v) = 2− dH(v) for each vertex v of B. We now add the edges of N to H simultaneously,
obtaining a graph H ′ whose connected components are paths, even cycles, or odd cycles. Each odd
cycle of H ′ must contain at least two edges of N and we can delete exactly one edge of N from each
odd cycle of H ′. The resulting H ′ is now edge-2-colorable and contains at least 6

7m−
2
7n5c + 1

2 |N |
edges.

Unfortunately, |N | may be small and hence the above basic ideas do not work. So, we modify
the basic ideas as follows. First, we construct an auxiliary graph A (instead of constructing B as
above), where V (A) consists of those vertices v in H such that v is of degree at most 1 in H or
appears on a 5-cycle in H and E(A) consists of those edges {u, v} of G such that u and v belong to
different connected components of H. We further construct a maximum b-matching M in A (instead
of constructing N as above), where b(v) = 1 if v is a vertex of a 5-cycle in H while b(v) = 2−dH(v)
otherwise. Obviously, |M | may be much larger than |N |, especially when there are a lot of 5-cycles
in H. In particular, we can easily prove that |M | ≥ 1

2 |E(Opt) ∩ E(A)| (see Lemma 3.8 below).
Now, it comes the modified deletion process: For each 5-cycle C still remaining in H, instead of
deleting one arbitrary edge from C, we select one edge from C uniformly at random and delete it
from H. As before, we call an edge e of A an available bridge if both endpoints of e become of
degree at most 1 in H after the modified deletion process. Obviously, each edge of M becomes
an available bridge with probability at least 4

25 . Thus, we can expect at least 2
25 |E(Opt) ∩ E(A)|

available bridges in M , which can then be added to H as before to obtain H ′.
By the discussion in the last paragraph, if |E(Opt) ∩ E(A)| is significantly large, then the

above modified ideas lead to a randomized algorithm whose output can be expected to contain
significantly more than 6

7m−
2
7n5c edges. So, the problematic case happens when |E(Opt)∩E(A)|

is not significantly large. A large portion of the analysis of our algorithm is devoted to this case.
Intuitively speaking, we can prove that in this problematic case, 6

7m−
2
7n5c should be significantly

better than 4
5 |E(Opt)|.

We next give a formal description of the rest of our algorithm.

6. For i ∈ {0, 1}, let Ti be the set of vertices v of H with dH(v) = i.

7. Let V5c be the set of vertices on 5-cycles of H.

8. Construct an auxiliary graph A, where V (A) = T0 ∪ T1 ∪ V5c and E(A) consists of those
{u, v} ∈ E(G) such that no connected component of H contains both u and v.

9. Compute a maximum b-matching M in A, where b(v) = 2− dH(v) for each v ∈ T0 ∪ T1 and
b(v) = 1 for each v ∈ V5c.

10. Choose one edge from each 5-cycle of H uniformly and independently at random and remove
it from H.

11. Let M ′ be the set of all edges {u, v} in M such that dH(u)+dM (u) ≤ 2 and dH(v)+dM (v) ≤ 2.

12. Add the edges in M ′ to H. (Comment: Each connected component of H is an isolated vertex,
a path, or a cycle.)
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13. For each odd cycle C in H, select one edge in E(C) ∩M ′ uniformly and independently at
random and delete it from H.

14. Output H.

3.1 The First Analysis

For each i ∈ {3, 5, 10, 12, 13}, let Hi be the content of graph H immediately after Step i of our
algorithm. Note that H13 is the output of our algorithm. Related to Opt, we define three sets of
edges as follows:

• EA
opt is the set of edges {u, v} in Opt such that both u and v are vertices of A.

• EA,5c
opt is the set of edges {u, v} ∈ EA

opt such that some 5-cycle of H5 contains both u and v.

• EA,pc
opt is the set of edges {u, v} ∈ EA

opt such that some path component of H5 contains both u
and v.

Lemma 3.4 |EA
opt| ≥ |E(Opt)| − 2m+ 2npc + 4(ngp + n7c+) + 10n5c.

Proof. Since each vertex can be adjacent to at most two edges in Opt, |E(Opt) − EA
opt| ≤

2(n − |V (A)|) = 2(n − |T0| − |T1| − 5n5c). By Statement (1) in Lemma 3.2, n − |T0| − |T1| =
m− npc − 2ngp − 2n7c+ . So, the lemma holds. 2

Corollary 3.5 |E(Opt)∩E(A)| ≥ |E(Opt)|−2m+2npc +4(ngp +n7c+)+10n5c−|EA,5c
opt |− |E

A,pc
opt |.

Proof. Obviously, |E(Opt) ∩ E(A)| = |EA
opt| − (|EA,5c

opt |+ |E
A,pc
opt |). So, the corollary follows from

Lemma 3.4 immediately. 2

The following key lemma shows that each edge of M is included in the output with a significantly
high probability.

Lemma 3.6 For each edge e ∈M , Pr[e ∈ E(H13)] ≥ 8
75 .

Proof. Let us first recall that each connected component of H12 is an isolated vertex, a path, or
a cycle. Fix an arbitrary edge e = {u, v} in M . We distinguish three cases as follows:

Case 1: Both u ∈ V5c and v ∈ V5c. In this case, since Pr[dH10(u) = 1] = 2
5 , Pr[dH10(v) =

1] = 2
5 , dM (u) ≤ 1, and dM (v) ≤ 1, we have Pr[e ∈ M ′] = 4

25 . Thus, it remains to show that
Pr[e ∈ E(H13) | e ∈M ′] ≥ 2

3 . Assume that e ∈M ′. If no odd cycle of H12 contains e, then we are
done. So, further assume that some odd cycle C of H12 contains e. We claim that C contains at
least three edges of M ′. For a contradiction, assume that C contains only one edge e′ of M ′ other
than e. Obviously, if we delete e and e′ from C, we obtain two paths P1 and P2 both of which are
connected components of H10. Moreover, one of u and v is an endpoint of P1 and the other is an
endpoint of P2. Now, since u ∈ V5c and v ∈ V5c, P1 and P2 must have been obtained in Step 10
by deleting one edge from each 5-cycle of H5. So, both P1 and P2 are of length 4. However, this
implies that the length of C is 10 which is even, a contradiction. Hence, the claim holds. By the
claim, we have Pr[e ∈ E(H13) | e ∈M ′] ≥ 2

3 immediately.
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Case 2: Exactly one of u and v is contained in V5c. We assume that u ∈ V5c but v 6∈ V5c; the
other case is similar. Then, Pr[dH10(u) = 1] = 2

5 and dM (u) ≤ 1. Moreover, v ∈ T0 or v ∈ T1. In
the former case, dH10(v) = 0 and dM (v) ≤ 2. In the latter case, dH10(v) = 1 and dM (v) ≤ 1. So, in
both cases, dH10(v) + dM (v) ≤ 2. Consequently, Pr[e ∈ M ′] ≥ 2

5 · 1 = 2
5 . Thus, it suffices to show

that Pr[e ∈ E(H13) | e ∈M ′] ≥ 1
2 . Assume that e ∈M ′. If no odd cycle of H12 contains e, then we

are done. On the other hand, if some odd cycle C of H12 contains e, then the assumption u ∈ V5c

guarantees that C contains at least two edges of M ′ and hence Pr[e ∈ E(H13) | e ∈M ′] ≥ 1
2 .

Case 3: Both u 6∈ V5c and v 6∈ V5c. Then, as discussed in Case 2 about v, we have dH10(u) +
dM (u) ≤ 2 and dH10(v) + dM (v) ≤ 2. So, Pr[e ∈ M ′] = 1. Thus, it suffices to show that
Pr[e ∈ E(H13) | e ∈M ′] ≥ 1

2 . Assume that e ∈M ′. If no odd cycle of H12 contains e, then we are
done. So, further assume that some odd cycle C of H12 contains e. We claim that C contains at
least two edges of M ′. For a contradiction, assume that the claim is false. Then, the path obtained
from C by deleting e is a connected component of H5. However, this contradicts the construction
of graph A in Step 8. Thus, the claim holds. Consequently, Pr[e ∈ E(H13) | e ∈M ′] ≥ 1

2 . 2

By the algorithm, Statement (2) in Lemma 3.2, and Lemma 3.6, we have the following corollary
immediately:

Corollary 3.7 E [|E(H13)|] ≥ m− ngp − n7c+ − n5c + 8
75 |M |.

The following lemma proves a simple lower bound on |M |.

Lemma 3.8 |M | ≥ 1
2 |E(Opt) ∩ E(A)|.

Proof. Let M ′′ be a maximum matching in graph A. Since Opt has no odd cycle, E(Opt)∩E(A)
can be partitioned into two matchings of A. So, |M ′′| ≥ 1

2 |E(Opt) ∩ E(A)|. On the other hand,
since M is a maximum b-matching of A with b(v) ≥ 1 for each v ∈ V (A), we have |M | ≥ |M ′′|.
Thus, the lemma holds. 2

Theorem 3.9 E [|E(H13)|] ≥ 146
175 |E(Opt)|+ 2

21n5c + 8
75npc − 4

75 |E
A,5c
opt | − 4

75 |E
A,pc
opt |.

Proof. Combining Corollary 3.7 and Lemma 3.8, we have

E [|E(H13)|] ≥ m− ngp − n7c+ − n5c +
4
75
|E(Opt) ∩ E(A)|.

So, by Corollary 3.5 and a simple calculation, we have

E [|E(H13)|] ≥ 4
75
|E(Opt)|+ 67

75
m− 7

15
n5c −

59
75

(ngp + n7c+) +
8
75
npc −

4
75
|EA,5c

opt | −
4
75
|EA,pc

opt |.

Consequently, by Lemma 3.1, we have

E [|E(H13)|] ≥ 4
75
|E(Opt)|+ 82

105
m+

2
21
n5c +

8
75
npc −

4
75
|EA,5c

opt | −
4
75
|EA,pc

opt |.

Now, since m is larger than or equal to |E(Opt)|, the theorem follows. 2

The following corollary shows that our algorithm achieves an expected ratio of 304
375 .
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Corollary 3.10 E [|E(H13)|] ≥ 4
75 |E(Opt)|+ 58

75m−
2
25n5c ≥ 304

375 |E(Opt)|.

Proof. Obviously, |EA,pc
opt | does not exceed the number of path components in H5. So, by

Statement (4) in Lemma 3.2, |EA,pc
opt | ≤ n7c+ + ngp + npc ≤ 1

7(m− 5n5c) + npc. Moreover, since Opt
cannot contain a 5-cycle, EA,5c

opt contains at most four edges {u, v} with u ∈ V (C) and v ∈ V (C)
for each 5-cycle C of H5. Consequently, |EA,5c

opt | ≤ 4n5c. Also recall that m ≥ |E(Opt)|. Now, by
the last inequality in the proof of Theorem 3.9, the first inequality in the corollary follows. The
second inequality follows from the first because n5c ≤ 1

5m and m ≥ |E(Opt)|. 2

In the next subsection, we will give another analysis of the algorithm and combine it with the
analysis in this section to obtain a better ratio.

3.2 The Second Analysis

Let K be the graph with vertex set V (A) and edge set EA
opt − (EA,5c

opt ∪ E
A,pc
opt ).

Lemma 3.11 There are at least 5
4 |E

A,5c
opt | vertices v ∈ V5c with dK(v) < 2.

Proof. Fix an arbitrary 5-cycle C of H1. Let F be the set of edges {u, v} ∈ EA,5c
opt with

{u, v} ⊆ V (C). Note that |F | ≤ 4 because Opt cannot contain a 5-cycle. We claim that there
are at least 5

4 |F | vertices v ∈ V (C) with dK(v) < 2. The claim implies the lemma immediately
because summing up 5

4 |F | over all 5-cycles C of H1 yields the bound 5
4 |E

A,5c
opt |. To prove the claim,

we distinguish two cases as follows:
Case 1: The edges of F do not form a cycle. Then, |W | ≥ |F | + 1 where W is the set of the

endpoints of the edges in F . Thus, |W | ≥ 5
4 |F | because |F | ≤ 4. Obviously, for each v ∈ W ,

dK(v) < 2. Hence, the claim holds in this case.
Case 2: The edges of F form a cycle C ′. Then, C ′ must be a 4-cycle because Opt cannot

contain an odd cycle. Let u be the (unique) vertex of C that is not in C ′. Since C ′ is a 4-cycle, it
is a Hamiltonian cycle of G[V (C) − {u}]. So, G has no edge {u, v} with v ∈ (T0 ∪ T1) − V (C) or
else (u, v) would have been a killer for the superb 5-cycle C in H5. Similarly, G has no edge {u, v}
with v ∈ V5c − V (C) or else (u, v) would have been a killer for the good pair (C,C ′) in H3, where
C ′ is the 5-cycle in H3 containing v. Moreover, there is no edge {u, v} ∈ E(Opt) with v ∈ V (C)
because C ′ is a Hamiltonian cycle of G[V (C) − {u}]. Thus, dK(u) = 0. Of course, dK(v) = 0 for
each v ∈ V (C) − {u}, because C ′ is a Hamiltonian cycle of G[V (C) − {u}]. Therefore, dK(v) = 0
for all vertices v ∈ V (C). Hence, the claim holds in this case, too. 2

Besides Lemma 3.8, we have another (less obvious) lower bound on |M |.

Lemma 3.12 |M | ≥ |EA
opt| − 5n5c − 2(ngp + n7c+)− 2npc + 1

4 |E
A,5c
opt |+ |E

A,pc
opt |.

Proof. Let h be the number of vertices v ∈ V5c with dK(v) = 2. By Lemma 3.11, h ≤
5n5c − 5

4 |E
A,5c
opt |.

Let ` be the number of vertices v ∈ T1 with dK(v) = 2. We claim that ` ≤ 2(ngp +n7c+ +npc)−
2|EA,pc

opt |. To see this, first observe that |T1| = 2(ngp + n7c+ + npc) by Statement (4) in Lemma 3.2.
Moreover, if {u, v} ∈ EA,pc

opt , then both dK(u) ≤ 1 and dK(v) ≤ 1. Now, since no two edges of EA,pc
opt

can share an endpoint, the claim holds.
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Obviously, if we modify K by removing one edge from each v ∈ V5c ∪ T1 with dK(v) = 2, we
obtain a b-matching of A. So, since M is a maximum b-matching of A, we have

|M | ≥ |EA
opt| − |E

A,5c
opt | − |E

A,pc
opt | − h− `.

Thus, by the aforementioned bounds on h and `, the lemma holds. 2

Theorem 3.13 E [|E(H13)|] ≥ 82
105 |E(Opt)|+ 2

21n5c + 2
75 |E

A,5c
opt |+ 8

75 |E
A,pc
opt |.

Proof. Combining Corollary 3.7 and Lemma 3.12, we have

E [|E(H13)|] ≥ m+
8
75
|EA

opt| −
23
15
n5c −

91
75

(ngp + n7c+)− 16
75
npc +

2
75
|EA,5c

opt |+
8
75
|EA,pc

opt |.

So, by Lemma 3.4 and a simple calculation, we have

E [|E(H13)|] ≥ 59
75
m+

8
75
|E(Opt)| − 59

75
(ngp + n7c+)− 7

15
n5c +

2
75
|EA,5c

opt |+
8
75
|EA,pc

opt |.

Consequently, by Lemma 3.1, we have

E [|E(H13)|] ≥ 118
175

m+
8
75
|E(Opt)|+ 2

21
n5c +

2
75
|EA,5c

opt |+
8
75
|EA,pc

opt |.

Now, since m ≥ |E(Opt)|, the theorem follows. 2

Corollary 3.14 E [|E(H13)|] ≥ 1258
1575 |E(Opt)|+ 2

21n5c.

Proof. By Theorem 3.9, we have
1
3
E [|E(H13)|] ≥ 146

525
|E(Opt)|+ 2

63
n5c −

4
225
|EA,5c

opt | −
4

225
|EA,pc

opt |.

On the other hand, by Theorem 3.13, we have
2
3
E [|E(H13)|] ≥ 164

315
|E(Opt)|+ 4

63
n5c +

4
225
|EA,5c

opt |+
16
225
|EA,pc

opt |.

So, summing up the left sides and the right sides of the above two inequalities respectively, we have

E [|E(H13)|] ≥ 1258
1575

|E(Opt)|+ 2
21
n5c.

2

Theorem 3.15 E [|E(H13)|] ≥ 468
575 |E(Opt)|.

Proof. By Corollary 3.10, we have
25
46
E [|E(H13)|] ≥ 31

69
|E(Opt)| − 1

23
n5c.

By Corollary 3.14 and the fact that m ≥ |E(Opt)|, we have

21
46
E [|E(H13)|] ≥ 629

1725
|E(Opt)|+ 1

23
n5c.

So, summing up the left sides and the right sides of the above two inequalities respectively, we have

E [|E(H13)|] ≥ 468
575
|E(Opt)|.

2
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3.3 Derandomization

Our algorithm makes random choices only in Steps 10 and 13. To derandomize Step 13, we just
modify it as follows:

10. For each odd cycle C in H, select an arbitrary edge of C and delete it from H.

Because the input graph is unweighted, it does not matter which edge is deleted from each odd
cycle in Step 13. So, it should be clear that the above modification of Step 13 does not affect the
approximation ratio achieved by the algorithm.

In Step 10, we make a random choice for each 5-cycle. In our above analysis of the algorithm,
only the proof of Lemma 3.6 is based on the mutual independence between these random choices.
Indeed, by carefully inspecting the proof, we can see that the proof is still valid even if the random
choices made in Step 10 are only pairwise independent. So, we can derandomize it via conventional
approaches. Therefore, we have the following theorem:

Theorem 3.16 There is an O(n2m2)-time approximation algorithm for Max Simple Edge 2-

Coloring achieving a ratio of 468
575 , where n (respectively, m) is the number of vertices (respectively,

edges) in the input graph.

Proof. We estimate the running time of the derandomized algorithm as follows. Step 1 can be
done in O(n2m2) time [3]. Obviously, Steps 2 through 4 can be done in O(n) time. Step 5 can
be trivially done in O(n2) time. Since b(v) ≤ 2 for each vertex v, Step 6 can be done in O(

√
nm)

time [2]. In Step 7, we need to generate O(n) pairwise independent random integers. A conventional
way to do this uses two random seeds s1 and s2 both of value O(n). So, the sample space of (s1, s2)
is of size O(n2). For each sample (s1, s2) in the space, we perform Steps 8 through 11 to obtain
an output H(s1, s2). This takes a total time of O(n3) because Steps 8 through 11 can be done in
O(n) time. We then find the sample (s1, s2) in O(n2) time such that |H(s1, s2)| is maximized, and
further output H(s1, s2). 2

3.4 Limitation of Our Approach

In this subsection, we construct an example graph to show that our analysis of the algorithm is
almost tight, and also construct an example graph to show that our approach can not be revised
to obtain a significantly better ratio.

Consider the graph G1 in Figure 1, where the bold edges show a maximum triangle-free path-
cycle cover of G1 (that could be found in Step 1 in our algorithm). Clearly, G1 has an edge-2-
colorable subgraph which is made up of eleven 4-cycles (including all the fine lines) and hence has
44 edges in total. However, if our algorithm deletes the edge {v1, v7} from the 7-cycle C1 and
deletes the edge {u1, u2} from the 7-cycle C2 in Step 4, then the edge-2-colorable subgraph output
by our algorithm contains only the remaining 36 bold edges. So, the ratio is 9

11 ≈ 0.818.

The above example shows that in order to achieve a much better ratio, we cannot afford to delete
an arbitrary edge from each odd 7+-cycle. However, no matter how we deal with odd 7+-cycles, we
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Figure 1: An example graph G1.

cannot get an approximation algorithm that achieves a ratio better than 5
6 ≈ 0.833. To see this,

consider the graph G2 in Figure 2, where the bold edges show a maximum triangle-free path-cycle
cover H of G2 (that could be found in Step 1 in our algorithm). Clearly, G2 has an edge-2-colorable
subgraph which is made up of four 4-cycles and one 8-cycle (including all the fine lines) and hence
has 24 edges in total. However, if we do not modify even cycles in H when transforming it to an
edge-2-colorable graph of G2, then what we can do is just to delete one edge from each 5-cycle in
H, yielding an edge-2-colorable subgraph of G2 with only 20 edges. So, the ratio achieved is only
5
6 .

Figure 2: An example graph G2.

By the example graph G2, in order to achieve a much better approximation ratio, we need to
figure out how to modify even cycles in the maximum triangle-free path-cycle cover computed in
Step 1. However, this seems to be a very difficult task.

4 An Application

Let G be a graph. An edge cover of G is a set F of edges of G such that each vertex of G is
incident to at least one edge of F . For a natural number k, a [1,∆]-factor k-packing of G is a
collection of k disjoint edge covers of G. The size of a [1,∆]-factor k-packing {F1, . . . , Fk} of G is
|F1|+ · · ·+ |Fk|. The problem of deciding whether a given graph has a [1,∆]-factor k-packing was
considered in [5, 6]. In [7], Kosowski et al. defined the minimum [1,∆]-factor k-packing problem
(Min-k-FP) as follows: Given a graph G, find a [1,∆]-factor k-packing of G of minimum size or
decide that G has no [1,∆]-factor k-packing at all.

According to [7], Min-2-FP is of special interest because it can be used to solve a fault tolerant
variant of the guards problem in grids (which is one of the art gallery problems [8, 9]). Indeed,
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they proved the following:

Lemma 4.1 If Max Simple Edge 2-Coloring admits an approximation algorithm A achieving
a ratio of α, then Min-2-FP admits an approximation algorithm B achieving a ratio of 2 − α.
Moreover, if the time complexity of A is T (n), then the time complexity of B is O(T (n)).

So, by Theorem 3.16, we have the following immediately:

Theorem 4.2 There is an O(n2m2)-time approximation algorithm for Min-2-FP achieving a ratio
of 682

575 , where n (respectively, m) is the number of vertices (respectively, edges) in the input graph.

Previously, the best ratio achieved by a polynomial-time approximation algorithm for Min-2-

FP was 6
5 [7], although Min-2-FP admits a polynomial-time approximation algorithm achieving a

ratio of 42∆−30
35∆−21 , where ∆ is the maximum degree of a vertex in the input graph [7].
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