
Approximating Maximum Edge 2-Coloring in Simple Graphs

Zhi-Zhong Chen∗ Sayuri Konno† Yuki Matsushita‡

Abstract

We present a polynomial-time approximation algorithm for legally coloring as many edges

of a given simple graph as possible using two colors. It achieves an approximation ratio of

roughly 0.842 and runs in O(n3m) time, where n (respectively, m) is the number of vertices

(respectively, edges) in the input graph. The previously best ratio achieved by a polynomial-time

approximation algorithm was 5
6 ≈ 0.833.

Keywords: Approximation algorithms, graph algorithms, edge coloring, NP-hardness.

1 Introduction

Given a graph G and a natural number t, the maximum edge t-coloring problem (called Max

Edge t-Coloring for short) is to find a maximum-sized set F of edges in G such that F can be

partitioned into at most t matchings of G. Motivated by call admittance issues in satellite based

telecommunication networks, Feige et al. [3] introduced the problem and proved its APX-hardness.

They also observed that Max Edge t-Coloring is a special case of the well-known maximum

coverage problem (see [6]). Since the maximum coverage problem can be approximated by a greedy

algorithm within a ratio of 1 − (1 − 1
t)t [6], so can Max Edge t-Coloring. In particular, the

greedy algorithm achieves an approximation ratio of 3
4 for Max Edge 2-Coloring, which is the

special case of Max Edge t-Coloring where the input number t is fixed to 2. For this special

case, Feige et al. [3] has improved the trivial ratio 3
4 = 0.75 to 10

13 ≈ 0.769 by an LP approach.

The APX-hardness proof for Max Edge t-Coloring given by Feige et al. [3] indeed shows

that the problem remains APX-hard even if we restrict the input graph to a simple graph and

fix the input integer t to 2. We call this restriction (special case) of the problem Max Simple

Edge 2-Coloring. Feige et al. [3] also pointed out that for Max Simple Edge 2-Coloring, an

approximation ratio of 4
5 can be achieved by the following simple algorithm: Given a simple graph

G, first compute a maximum-sized subgraph H of G such that the degree of each vertex in H is

at most 2 and there is no 3-cycle in H, and then remove one arbitrary edge from each odd cycle

∗Corresponding author. Supported in part by the Grant-in-Aid for Scientific Research of the Ministry of Education,

Science, Sports and Culture of Japan, under Grant No. 20500021. Department of Mathematical Sciences, Tokyo

Denki University, Hatoyama, Saitama 350-0394, Japan. Email: zzchen@mail.dendai.ac.jp
†Department of Mathematical Sciences, Tokyo Denki University, Hatoyama, Saitama 350-0394, Japan.
‡Department of Mathematical Sciences, Tokyo Denki University, Hatoyama, Saitama 350-0394, Japan.

1

of H. This simple algorithm has been improved in [1, 2, 9]. The previously best ratio (namely, 5
6)

was given in [9]. In this paper, we improve on both the algorithm in [1] and the algorithm in [9] to

obtain a new approximation algorithm that achieves a ratio of roughly 0.842. Roughly speaking,

our algorithm is based on local improvement, dynamic programming, and recursion. Its analysis

is based on an intriguing charging scheme and certain structural properties of train graphs and

starlike graphs (see Section 3 for definitions).

Kosowski et al. [10] also considered Max Simple Edge 2-Coloring. They presented an

approximation algorithm that achieves a ratio of 28∆−12
35∆−21 , where ∆ is the maximum degree of a

vertex in the input simple graph. This ratio can be arbitrarily close to the trivial ratio 4
5 because ∆

can be very large. In particular, this ratio is worse than our new ratio 0.842 when ∆ ≥ 4. Moreover,

when ∆ = 3, our algorithm indeed achieves a ratio of 6
7 , which is equal to the ratio 28∆−12

35∆−21 achieved

by Kosowski et al.’s algorithm [10]. Note that Max Simple Edge 2-Coloring becomes trivial

when ∆ ≤ 2. Therefore, no matter what ∆ is, our algorithm is better than or as good as all known

approximation algorithms for Max Simple Edge 2-Coloring.

Kosowski et al. [10] showed that approximation algorithms for Max Simple Edge 2-Coloring

can be used to obtain approximation algorithms for certain packing problems and fault-tolerant

guarding problems. Combining their reductions and our improved approximation algorithm for

Max Simple Edge 2-Coloring, we can obtain improved approximation algorithms for their

packing problems and fault-tolerant guarding problems immediately.

2 Basic Definitions

Throughout the remainder of this paper, a graph means a simple undirected graph (i.e., it has

neither parallel edges nor self-loops).

Let G be a graph. We denote the vertex set of G by V (G), and denote the edge set of G by

E(G). The degree of a vertex v in G, denoted by dG(v), is the number of vertices adjacent to v

in G. A vertex v of G with dG(v) = 0 is called an isolated vertex. For a subset U of V (G), let

G[U] denote the graph (U,EU) where EU consists of all edges {u, v} of G with u ∈ U and v ∈ U .

We call G[U] the subgraph of G induced by U . For a subset U of V (G), we use G − U to denote

G[V (G) − U]. G is a star if G is connected, G has at least three vertices, and there is a vertex u

(called the center of G) such that every edge of G is incident to u. Each vertex of a star other than

the center is called a satellite of the star.

A cycle in G is a connected subgraph of G in which each vertex is of degree 2. A path in G

is a connected subgraph of G in which exactly two vertices are of degree 1 and the others are of

degree 2. Each vertex of degree 1 in a path P is called an endpoint of P , while each vertex of

degree 2 in P is called an inner vertex of P . An edge {u, v} of a path P is called an inner edge of

P if both u and v are inner vertices of P . The length of a cycle or path C is the number of edges

in C. A cycle of odd (respectively, even) length is called an odd (respectively, even) cycle.

A path-cycle cover of G is a subgraph H of G such that V (H) = V (G) and dH(v) ≤ 2 for every

v ∈ V (H). Note that each connected component of a path-cycle cover of G is an isolated vertex,

2

path, or cycle. A path-cycle cover C of G is triangle-free if C does not contain a cycle of length 3.

A path-cycle cover C of G is maximum-sized if the number of edges in C is maximized over all

path-cycle covers of G.

G is edge-2-colorable if each connected component of G is an isolated vertex, a path, or an even

cycle. Note that Max Simple Edge 2-Coloring is the problem of finding a maximum-sized

edge-2-colorable subgraph in a given graph.

3 Two Crucial Lemmas and the Outline of Our Algorithm

We say that a graph K = (VK , EK ∪ FK) is a train graph if it satisfies the following conditions:

• The graph (VK , EK) has h+ 1 connected components C0, . . . , Ch with h ≥ 0.

• C0 is a path while C1 through Ch are odd cycles of length at least 5.

• FK is a matching consisting of h edges {u1, v1}, . . . , {uh, vh}.

• For each i ∈ {1, . . . , h}, ui is an inner vertex of path C0 while vi is a vertex of Ci.

We call the edges of FK the column edges of K, call path C0 the beam path of K, and call cycles

C1 through Ch the wheels of K.

We say that a graph K = (VK , EK∪FK) is a starlike graph if it satisfies the following conditions:

• The graph (VK , EK) has h+ 1 connected components C0, . . . , Ch with h ≥ 2.

• C0 is a cycle of length at least 4 while C1 through Ch are odd cycles of length at least 5.

• FK is a matching consisting of h edges {u1, v1}, . . . , {uh, vh}.

• For each i ∈ {1, . . . , h}, ui is a vertex of C0 while vi is a vertex of Ci.

We call the edges of FK the bridge edges of K, call C0 the central cycle of K, and call C1 through

Ch the satellite cycles of K.

Let r be the root of the quadratic equation 23r2 − 55r + 30 = 0 that is smaller than 1. Note

that r = 0.84176 . . . ≈ 0.842. The reason why we choose r in this way will become clear later in

the proof of Lemma 4.8.

Lemma 3.1 Suppose that K is a train graph such that each wheel of K is charged a penalty of

6−7r. Let p(K) be the total penalties charged to the wheels of K. Then, K has an edge-2-colorable

subgraph K ′ such that |E(K ′)| − p(K) ≥ r|EK |, where EK is the set of edges on the beam path or

the wheels of K.

Proof. Note that the degree of each vertex in K is at most 3. We prove the lemma by induction

on κ which is the number of edges e on the beam path of K such that both endpoints of e are of

degree 3 in K.

3

(Basis) In the base case, κ = 0. We obtain K ′ from K by deleting the column edges of K

and removing one edge from each wheel of K. Let τ be the number of wheels of K. Then,

|E(K ′)| = |EK | − τ . Moreover, |EK | ≥ 5τ + 2τ = 7τ because the wheels of K contain at least 5τ

edges while the beam path of K contains at least 2τ edges for κ = 0. So, |E(K ′)| − p(K) ≥ r|EK |
because p(K) = (6− 7r)τ .

(Induction step) Suppose that κ ≥ 1. Let {u1, u2} be an arbitrary edge on the beam path of

K such that both u1 and u2 are of degree 3 in K. For each i ∈ {1, 2}, let {ui, vi} be the column

edge of K incident to ui, and let Ci be the wheel of K with vi ∈ V (Ci). We cut K into two

train graphs K1 and K2 by deleting edge {u1, u2}, deleting column edges {u1, v1} and {u2, v2},
and deleting wheels C1 and C2. By the inductive hypothesis, Ki has an edge-2-colorable subgraph

K ′i with |E(K ′i)| − p(Ki) ≥ r|E(Ki) ∩ EK | for each i ∈ {1, 2}, where p(Ki) is the total penalties

charged to the wheels of Ki. We obtain K ′ from K ′1 and K ′2 by adding column edges {u1, v1} and

{u2, v2}, the path obtained from C1 by removing one edge incident to v1, and the path obtained

from C2 by removing one edge incident to v2. Clearly, |E(K ′)| =
∑2

i=1 (|E(K ′i)|+ |E(Ci)|). So,

|E(K ′)|−
∑2

i=1 p(Ki) ≥
∑2

i=1 (r|E(Ki) ∩ EK |+ |E(Ci)|). Note that p(K) =
∑2

i=1 p(Ki)+2(6−7r)

and |EK | =
∑2

i=1 (|E(Ki) ∩ EK |+ |E(Ci)|) + 1. Now, since |E(C1)|+ |E(C2)| ≥ 10 and r ≥ 3
4 , we

have |E(K ′)| − p(K) ≥ r|EK |. 2

Lemma 3.2 Suppose that K is a starlike graph such that each satellite cycle of K is charged a

penalty of 6− 7r. Let p(K) be the total penalties charged to the satellite cycles of K. Then, K has

an edge-2-colorable subgraph K ′ such that |E(K ′)| − p(K) ≥ r|EK |, where EK is the set of edges

on the central or satellite cycles of K.

Proof. Let C0 be the central cycle of K. Let C1, . . . , Ch be the satellite cycles of K. We

distinguish two cases as follows.

Case 1: No two degree-3 vertices are adjacent in K. In this case, we obtain K ′ from K as

follows:

• For every i ∈ {2, . . . , h}, remove one edge of Ci incident to the bridge edge between C0 and

Ci, and further remove the bridge edge.

• For the bridge edge {u0, u1} between C0 and C1 with u0 ∈ V (C0) and u1 ∈ V (C1), remove

one edge of C0 incident to u0 and remove one edge of C1 incident to u1.

Clearly, |E(K ′)| =
∑h

i=0 |E(Ci)| − h and p(K) = (6 − 7r)h. Moreover, since |E(C0)| ≥ 2h and

|E(Ci)| ≥ 5 for each i ∈ {1, . . . , h}, we have EK =
∑h

i=0 |E(Ci)| ≥ 7h. Thus, |E(K ′)| − p(K) ≥
r|EK |.

Case 2: There are two degree-3 vertices adjacent in K. In this case, there is an edge {u1, u2} ∈
E(C0) such that both u1 and u2 are of degree 3 in K. Without loss of generality, we may assume

that for each i ∈ {1, 2}, Ci contains the vertex vi such that {ui, vi} is the bridge edge of K between

C0 and Ci. Consider the train K1 obtained from K by deleting edge {u1, u2}, deleting bridge

edges {u1, v1} and {u2, v2}, and deleting satellite cycles C1 and C2. By Lemma 3.1, we can obtain

4

an edge-2-colorable subgraph K ′1 of K1 with |E(K ′1)| − p(K1) ≥ r|E(K1) ∩ EK |. We obtain K ′

from K ′1 by adding bridge edges {u1, v1} and {u2, v2}, the path obtained from C1 by removing one

edge incident to v1, and the path obtained from C2 by removing one edge incident to v2. Clearly,

|E(K ′)| = |E(K ′1)|+ |E(C1)|+ |E(C2)|. So, |E(K ′)| − p(K1) ≥ r|E(K1)∩EK |+ |E(C1)|+ |E(C2)|.
Note that |EK | = |E(K1)∩EK |+ |E(C1)|+ |E(C2)|+ 1 and p(K) = p(K1) + 2(6− 7r). Now, since∑2

i=1 |E(Ci)| ≥ 10 and r ≥ 2
3 , we have |E(K ′)| − p(K) ≥ r|EK |. 2

Based on Lemmas 3.1 and 3.2, we will design our algorithm roughly as follows: Given an input

graph G, we will first construct a suitable maximum-sized triangle-free path-cycle cover C of G

and compute a suitable set F of edges such that the endpoints of each edge in F fall into different

connected components of C and each odd cycle of C has at least one vertex that is an endpoint of an

edge in F . Note that C has at least as many edges as a maximum-sized edge-2-colorable subgraph

of G. The edges in F will play the following role: we will break each odd cycle C in C by removing

one edge of C incident to an edge of F and then this edge of F can possibly be added to C so that

C becomes an edge-2-colorable subgraph of G. Unfortunately, not every edge of F can be added to

C and we have to discard some edges from F , leaving some odd cycles of C F -free (i.e., having no

vertex incident to an edge of F). Clearly, breaking an F -free odd cycle C of short length (namely,

5) by removing one edge from C results in a significant loss of edges from C. We charge the loss

to the non-F -free odd cycles (unevenly) as penalties. Fortunately, adding the edges of F to C will

yield a graph whose connected components are train graphs, starlike graphs, or certain other kinds

of graphs with good properties. Now, Lemmas 3.1 and 3.2 help us show that our algorithm achieves

a ratio of r.

4 The Algorithm

Throughout this section, fix a graph G and a maximum-sized edge-2-colorable subgraph B (for

“best”) of G. Let n (respectively, m) be the number of vertices (respectively, edges) in G. Our

algorithm starts by performing the following four steps:

1. If |V (G)| ≤ 2, then output G itself and halt.

2. Compute a maximum-sized triangle-free path-cycle cover C of G. (Comment:

This step can be done in O(n2m) time [5].)

3. While there is an edge {u, v} ∈ E(G)−E(C) such that dC(u) ≤ 1 and v is a vertex

of some cycle C of C, modify C by deleting one (arbitrary) edge of C incident to

v and adding edge {u, v}.

4. Construct a graph G1 = (V (G), E1), where E1 is the set of all edges {u, v} ∈
E(G) − E(C) such that u and v appear in different connected components of C
and at least one of u and v appears on an odd cycle of C.

5

Hereafter, C always refers to the path-cycle cover obtained after the completion of Step 3. We

give several definitions related to the graphs G1 and C. Let S be a subgraph of G1. S saturates

an odd cycle C of C if at least one edge of S is incident to a vertex of C. The weight of S is the

number of odd cycles of C saturated by S. For convenience, we say that two connected components

C1 and C2 of C are adjacent in G if there is an edge {u1, u2} ∈ E(G) such that u1 ∈ V (C1) and

u2 ∈ V (C2).

Lemma 4.1 We can compute a maximum-weighted path-cycle cover in G1 in O(nm log n) time.

Proof. The proof is similar to that of Proposition 2.2 in [9], and is hence by a reduction to the

maximum-weight [f, g]-factor problem. Recall that for two functions f and g mapping each vertex

v of a graph G to an integer with f(v) ≤ g(v), an [f, g]-factor of G is a subgraph H of G such

that V (H) = V (G) and f(v) ≤ dH(v) ≤ g(v) for every v ∈ V (G). The weight of an [f, g]-factor H
of G is the total weight of edges in H. It is known that a maximum-weight [f, g]-factor of a given

edge-weighted graph with n′ vertices and m′ edges can be computed in O(n′m′ log n′) time [4].

Let C1, . . . , Ck be the odd cycles of C. We construct an auxiliary edge-weighted graph G =

(V (G) ∪X,E1 ∪ F1 ∪ F2) from G1 as follows:

• X = {xi, yi, zi | 1 ≤ i ≤ k}.

• F1 = {{xi, v}, {yi, v} | 1 ≤ i ≤ k, v ∈ V (Ci)} and F2 = {{xi, zi}, {yi, zi} | 1 ≤ i ≤ k}.

• The weight of each edge in E1 ∪ F1 is 0 while the weight of each edge in F2 is 1.

• For each v ∈ V (G), f(v) = g(v) = 2.

• For each i ∈ {1, . . . , k}, f(xi) = f(yi) = f(zi) = 0, g(xi) = g(yi) = |V (Ci)|, and g(zi) = 1.

For each weighted path-cycle cover M of G1, we can obtain an [f, g]-factor N of G from M as

follows.

1. Initially, N = M .

2. For each i ∈ {1, . . . , k} and for each v ∈ V (Ci) with dM (v) ≤ 1, add edge {v, xi} to N if

dM (v) = 1, and add edges {v, xi} and {v, yi} to N otherwise.

3. For each i ∈ {1, . . . , k} with dN (xi) < |V (Ci)| or dN (yi) < |V (Ci)|, add edge {xi, zi} to N if

dN (xi) < |V (Ci)|, and add edge {yi, zi} to N otherwise.

Obviously, the weight of N is the same as that of M , i.e., equal to the number of odd cycles

saturated by M . Thus, the maximum weight of an [f, g]-factor of G is at least as large as the

maximum weight of a path-cycle cover of G1.

Conversely, for each maximum-weight [f, g]-factor N of G, we can obtain a path-cycle cover

M of G1 from N by letting E(M) = E(N) ∩ E1. We claim that the weight of M is the same

as that of N . To see this claim, observe that for each i ∈ {1, . . . , k} with V (M) ∩ V (Ci) 6= ∅,

6

exactly one of edges {xi, zi} and {yi, zi} is contained in N . This observation holds because N is a

maximum-weight [f, g]-factor of G. By the claim, the maximum weight of a path-cycle cover of G1

is at least as large as the maximum weight of an [f, g]-factor of G. So, by the discussion in the last

paragraph, the maximum weight of a path-cycle cover of G1 is the same as the maximum weight

of an [f, g]-factor of G. 2

Our algorithm then proceeds to perform the following four steps:

5. Compute a maximum-weight path-cycle cover M in G1.

6. While there is an edge e ∈ M such that the weight of M − {e} is the same as

that of M , delete e from M .

7. Construct a graph G2 = (V (G), E(C) ∪M). (Comment: For each pair of con-

nected components of C, there is at most one edge between them in G2 because

of Step 6.)

8. Construct a graph G3, where the vertices of G3 one-to-one correspond to the

connected components of C and two vertices are adjacent in G3 if and only if the

corresponding connected components of C are adjacent in G2.

Fact 4.2 Suppose that H is a connected component of G3. Then, the following statements hold:

1. H is a vertex, an edge, or a star.

2. If H is an edge, then at least one endpoint of H corresponds to an odd cycle of C.

3. If H is a star, then every satellite of H corresponds to an odd cycle of C.

An isolated odd-cycle of G2 is an odd cycle of G2 whose corresponding vertex in G3 is isolated

in G3. Similarly, a leaf odd-cycle of G2 is an odd cycle of G2 whose corresponding vertex in G3 is of

degree 1 in G3. Moreover, a branching odd-cycle of G2 is an odd cycle of G2 whose corresponding

vertex in G3 is of degree 2 or more in G3.

The next lemma is essentially the same as Lemma 2.1 in [9]. We include its proof here for

self-containedness.

Lemma 4.3 Let I be the set of isolated odd-cycles in G2. Then, |E(B)| ≤ |E(C)| − |I|.

Proof. Let C1, . . . , Ch be the odd cycles of C such that for each i ∈ {1, . . . , h}, B contains

no edge {u, v} with |{u, v} ∩ V (Ci)| = 1. Let U1 =
⋃h

i=1 V (Ci) and U2 = V (G) − U1. For

convenience, let C0 = G[U2]. Note that for each e ∈ E(B), one of the graphs C0, C1, . . . , Ch

contains both endpoints of e. So, B can be partitioned into h + 1 disjoint subgraphs B0, . . . ,

Bh such that Bi is a path-cycle cover of G[V (Ci)] for every i ∈ {0, . . . , h}. Since C[U2] must

be a maximum-sized path-cycle cover of C0, |E(C[U2])| ≥ |E(B0)|. The crucial point is that

7

for every i ∈ {1, . . . , h}, |E(Bi)| ≤ |V (Ci)| − 1 = |E(Ci)| − 1 because |V (Ci)| is odd. Thus,

|E(C)| = |E(C[U2])|+
∑h

i=1 |E(Ci)| ≥ |E(B0)|+
∑h

i=1(|E(Bi)|+ 1) = |E(B)|+ h.

Note that (V (G), E(G1)∩E(B)) is a path-cycle cover in G1 of weight k−h, where k is the number

of odd cycles in C. So, k − h ≤ k − |I| because M is a maximum-weight path-cycle cover in G1 of

weight k− |I|. So, by the last inequality in the last paragraph, |E(B)| ≤ |E(C)| − h ≤ |E(C)| − |I|.
2

odd

nonspecial
type-1 front

back cycles
cycle

odd
cycle

lollipop

odd
cycle

odd
cycle

odd
cycle

 joint cherry

twigsstickend
vertex

odd
cycle

lollipop

odd
cycle

odd
cycle

cherry

twigsstickend
vertex

type-2
special

cycle or path

Figure 1: An example of G2, where the hollow vertices are free, the bold edges belong to C, the left

connected component is a bicycle, and the middle connected component is a tricycle.

Some definitions are in order (see Figure 1 for an example). A bicycle of G2 is a connected

component of G2 that consists of two odd cycles and an edge between them. Note that a connected

component of G3 is an edge if it corresponds to a bicycle in G2. A tricycle of G2 is a connected

component T of G2 that consists of one branching odd-cycle C1, two leaf odd-cycles C2 and C3,

and two edges {u1, u2} and {u1, u3} such that u1 ∈ V (C1), u2 ∈ V (C2), and u3 ∈ V (C3). For

convenience, we call C1 the front cycle of tricycle K, call C2 and C3 the back cycles of tricycle K,

and call u1 the front joint of tricycle K.

A cherry of G2 is a subgraph Q of G2 that consists of two leaf odd-cycles C1 and C2 of C,
a vertex u ∈ V (G) − (V (C1) ∪ V (C2)), and two edges {u, v1} and {u, v2} such that v1 ∈ V (C1)

and v2 ∈ V (C2). For convenience, we call edges {u, v1} and {u, v2} the twigs of cherry Q. By the

construction of G2, each pair of cherries are vertex-disjoint. Note that each odd cycle in a cherry of

G2 is a satellite of a star in G3. We classify the cherries of G2 into two types as follows. A cherry

Q of G2 is of type-1 if Q is a subgraph of a tricycle of G2. Note that the two odd cycles in a type-1

cherry of G2 are the back cycles of a tricycle of G2. A cherry of G2 is of type-2 if it is not of type-1.

Further note that there is no edge {u, v} in G such that u appears on an isolated odd-cycle of G2

and v appears on an odd cycle in a cherry of G2.

A lollipop of G2 is a subgraph L of G2 that consists of a leaf odd-cycle C of G2, a vertex

u 6∈ V (C), and an edge {u, v} with v ∈ V (C). For convenience, we call edge {u, v} the stick of

lollipop L and call vertex u the end vertex of lollipop L. A lollipop of G2 is special if it is neither a

subgraph of a cherry of G2 nor a subgraph of a bicycle of G2. A vertex u of G2 is free if no lollipop

of G2 has u as its end vertex. Because of Step 3, each vertex of degree at most 2 in G2 is free.

We next define two types of operations that will be performed on G2. An operation on G2 is

robust if it removes no edge of C, creates no new odd cycle, and creates no new isolated odd-cycle

of G2.

8

cycle
cherry Q

or path
cycle

or path

u
C

v
C'

cycle
or path

cycle
or path

u
C

v
C'

odd cycles

cycle
cherry Q

or path

C
v

odd cycles

u

cycle
or path

C
v

u

cycle
cherryor path

C
v

odd cycles
u

cycle
or path

C
v

u

C'

C'

(3)(2)(1)

Q

Figure 2: Three example cases of a type-1 operation, where the dotted lines are edges in E(G) −
E(G2).

Type 1: Suppose that C is an odd cycle of a cherry Q of G2 and u is a free vertex of G2 with

u 6∈ V (C) such that

• some vertex v of C is adjacent to u in G and

• if Q is a type-1 cherry of G2, then u is not an endpoint of a twig of Q.

Then, a type-1 operation on G2 using cherry Q and edge {u, v} modifies G2 by performing

the following steps (see Figure 2 for example cases):

(1) If u appears on a leaf odd cycle C ′ of G2 such that C ′ is not part of a bicycle of G2

and Q is not a type-1 cherry of G2 with u ∈ V (Q), then delete the stick of the lollipop

containing C ′ from G2.

(2) Delete the twig of Q incident to a vertex of C from G2.

(3) Add edge {u, v} to G2.

(Comment: A type-1 operation on G2 is robust and destroys at least one cherry of G2 without

creating a new cherry in G2.)

Type 2: Suppose that Q is a type-2 cherry of G2, B is a bicycle of G2, and {u, v} is an edge in

E(G1)− E(G2) such that u appears on an odd cycle C of Q and v appears on an odd cycle

of B. Then, a type-2 operation on G2 using cherry Q, bicycle B, and edge {u, v} modifies G2

by deleting the twig of Q incident to a vertex of C and adding edge {u, v}.

(Comment: A type-2 operation on G2 is robust. Moreover, when no type-1 operation on G2

is possible, a type-2 operation on G2 destroys a type-2 cherry of G2 and creates a new type-1

cherry in G2.)

9

Now, Step 9 of our algorithm is as follows.

9. While a type-1 or type-2 operation on G2 is possible, perform the following step:

(a) If a type-1 operation on G2 is possible, perform a type-1 operation on G2;

otherwise, perform a type-2 operation on G2.

Fact 4.4 After Step 9, the following statements hold:

1. There is no edge {u, v} in E(G) such that u appears on an odd cycle in a type-2 cherry of G2

and v appears on another odd cycle in a type-2 cherry of G2.

2. If {u, v} is an edge of G1 such that u appears on an odd cycle of a type-2 cherry of G2 and

no type-2 cherry of G2 contains v, then v is the end vertex of a special lollipop or the front

joint of a tricycle of G2.

Hereafter, G2 always refers to the graph obtained after the completion of Step 9.

Now, the final three steps of our algorithm are as follows:

10. Let U be the set of vertices that appear in type-2 cherries of G2.

11. If U = ∅, then perform the following steps:

(a) For each connected component K of G2, compute a maximum-sized edge-2-

colorable subgraph of K. (Comment: Because of the simple structure of K,

this step can be done in linear time by a standard dynamic programming.)

(b) Output the union of the edge-2-colorable subgraphs computed in Step 11a,

and halt.

12. If U 6= ∅, then perform the following steps:

(a) Obtain an edge-2-colorable subgraph R of G − U by recursively calling the

algorithm on G− U .

(b) For each type-2 cherry Q of G2, obtain an edge-2-colorable subgraph of Q

by removing one edge from each odd cycle C of Q that shares an endpoint

with a twig of Q.

(c) Let A1 be the union of R and the edge-2-colorable subgraphs computed in

Step 12b.

(d) For each connected component K of G2, compute a maximum-sized edge-2-

colorable subgraph of K. (Comment: Because of the simple structure of K,

this step can be done in linear time by a standard dynamic programming.)

(e) Let A2 be the union of the edge-2-colorable subgraphs computed in Step 12d.

(f) If |E(A1)| ≥ |E(A2)|, output A1 and halt; otherwise, output A2 and halt.

10

Lemma 4.5 Assume that G2 has no type-2 cherry. Then, the edge-2-colorable subgraph of G output

in Step 11b contains at least r|E(B)| edges.

Proof. Let C2 be the graph obtained from G2 by removing one edge from each isolated odd-cycle

of G2. By Lemma 4.3, |E(C2) ∩ E(C)| ≥ |E(B)|. Consider an arbitrary connected component K

of C2. To prove the lemma, it suffices to prove that K has an edge-2-colorable subgraph K ′ with

|E(K ′)| ≥ r|E(K) ∩ E(C)|. We distinguish several cases as follows:

Case 1: K is a bicycle of C2. To obtain an edge-2-colorable subgraph K ′ of K, we remove

one edge e from each odd cycle of K such that one endpoint of e is of degree 3 in K. Note that

|E(K ′)| = |E(K)|−2 = |E(K)∩E(C)|−1. Since |E(K)∩E(C)| ≥ 10, |E(K ′)| ≥ 9
10 |E(K)∩E(C)| >

r|E(K) ∩ E(C)|.
Case 2: K is a tricycle of C2. To obtain an edge-2-colorable subgraph K ′ of K, we first remove

one edge e from each back odd-cycle of K such that one endpoint of e is of degree 3 in K, and

then remove the two edges of the front odd-cycle incident to the vertex of degree 4 in K. Note that

|E(K ′)| = |E(K)|−4 = |E(K)∩E(C)|−2. Since |E(K)∩E(C)| ≥ 15, |E(K ′)| ≥ 13
15 |E(K)∩E(C)| >

r|E(K) ∩ E(C)|.
Case 3: K is neither a bicycle nor a tricycle of C2. If K contains no odd cycle of C, then K

itself is edge-2-colorable and hence we are done. So, assume that K contains at least one odd cycle

of C. Then, K is also a connected component of G2. Moreover, the connected component K ′′ of

G3 corresponding to K is either an edge or a star.

Case 3.1: K ′′ is an edge. To obtain an edge-2-colorable subgraph K ′ of K, we start with K,

delete the edge in E(K) − E(C), and delete one edge from the unique odd cycle of K. Note that

|E(K ′)| = |E(K)|−2 = |E(K)∩E(C)|−1. Moreover, |E(K)∩E(C)| ≥ 7 because of Step 3 and the

robustness of Type-1 or Type-2 operations. Hence, |E(K ′)| ≥ 6
7 |E(K) ∩ E(C)| > r|E(K) ∩ E(C)|.

Case 3.2: K ′′ is a star. Let C0 be the connected component of C corresponding to the center

of K ′′. Let C1, . . . , Ch be the odd cycles of C corresponding to the satellites of K ′′. If C0 is a path,

then K is a train graph and we are done by Lemma 3.1; otherwise, K is a starlike graph and we

are done by Lemma 3.2. 2

Corollary 4.6 If the maximum degree ∆ of a vertex in G is at most 3, then the ratio achieved by

the algorithm is at least 6
7 .

Proof. When ∆ ≤ 3, G2 has no cherry because of Step 3. Moreover, Lemmas 3.1, 3.2, and 4.5

still hold even when we replace the ratio r by 6
7 . 2

In order to analyze the approximation ratio achieved by our algorithm when G2 has at least

one type-2 cherry after Step 9, we need to define several notations as follows:

• Let s be the number of special lollipops in G2.

• Let t be the number of tricycles in G2.

11

• Let c be the number of type-2 cherries in G2.

• Let ` be the total number of vertices that appear on odd cycles in the type-2 cherries in G2.

Lemma 4.7 Let E(B2) be the set of all edges e ∈ E(B) such that at least one endpoint of e appears

in a type-2 cherry of G2. Then, |E(B2)| ≤ `+ 2s+ 2t.

Proof. E(B2) can be partitioned into the following three subsets:

• E(B2,1) consists of those edges e ∈ E(B) such that at least one endpoint of e is the vertex of

a type-2 cherry of G2 that is a common endpoint of the two twigs of the cherry.

• E(B2,2) consists of those edges e ∈ E(B) such that each endpoint of e appears on an odd

cycle of a type-2 cherry of G2.

• E(B2,3) consists of those edges {u, v} ∈ E(B) such that u appears on an odd cycle of a type-2

cherry of G2 and no type-2 cherry of G2 contains v.

Obviously, |E(B2,1)| ≤ 2c. By Statement 1 in Fact 4.4, |E(B2,2)| ≤ ` − 2c because for each odd

cycle C, B2,2 can contain at most |V (C)| − 1 edges {u, v} with {u, v} ⊆ V (C). By Statement 2 in

Fact 4.4, |E(B2,3)| ≤ 2s+ 2t. So, |E(B2)| ≤ `+ 2s+ 2t. 2

Lemma 4.8 The ratio achieved by the algorithm is at least r.

Proof. The proof is by induction on |V (G)|, the number of vertices in the input graph G. If

|V (G)| ≤ 2, then our algorithm outputs a maximum-sized edge-2-colorable subgraph of G. So,

assume that |V (G)| ≥ 3. Then, after our algorithm finishes executing Step 10, the set U may be

empty or not. If U = ∅, then by Lemma 4.5, the edge-2-colorable subgraph output by our algorithm

has at least r|E(B)| edges and we are done. So, suppose that U 6= ∅.
First consider the case where s + t ≤ 1−r

2r `. In this case, `+r|E(B1)|
`+2s+2t+|E(B1)| ≥ r, where B1 is

a maximum-sized edge-2-colorable subgraph of G − U . Moreover, by the inductive hypothesis,

|E(A1)| ≥ `+r|E(B1)|. Furthermore, by Lemma 4.7, |E(B)| ≤ `+2s+2t+ |E(B1)|. So, the lemma

holds in this case.

Next consider the case where s+ t > 1−r
2r `. Let C2 be the graph obtained from G2 by removing

one edge from each isolated odd-cycle of G2. By Lemma 4.3, |E(C2)∩E(C)| ≥ |E(B)|. Let C3 be the

graph obtained from C2 by removing one twig from each type-2 cherry. Note that there are exactly

c isolated odd-cycles in C3. Moreover, since the removed twig does not belong to E(C), we have

|E(C3)∩E(C)| ≥ |E(B)|. Consider an arbitrary connected component K of C3. To prove the lemma,

we want to prove that K has an edge-2-colorable subgraph K ′ with |E(K ′)| ≥ r|E(K) ∩ E(C)|.
This goal can be achieved because of Lemma 4.5, when K is not an isolated odd-cycle. On the

other hand, this goal can not be achieved when K is an isolated odd-cycle (of length at least 5).

Our idea behind the proof is to charge the deficit in the edge numbers of isolated odd-cycles of C3

to the other connected components of K because they have surplus in their edge numbers.

12

The deficit in the edge number of each isolated odd-cycle of C3 is at most 5r − 4. So, the

total deficit in the edge numbers of the isolated odd-cycles of C3 is at most (5r − 4)c. We charge

a penalty of 6 − 7r to each non-isolated odd-cycle of C3 that is also an odd cycle in a type-2

cherry of G2 or is also the odd cycle in a special lollipop of G2. We also charge a penalty of
6−7r

3 to each odd cycle of C3 that is part of a tricycle of G2. Clearly, the total penalties are

(6−7r)c+(6−7r)(s+ t) > (6−7r)c+ (6−7r)(1−r)
2r `. Note that ` ≥ 10c. The total penalties are thus

at least (6− 7r)c+ 5(6−7r)(1−r)
r c = 30−59r+28r2

r c ≥ (5r − 4)c, where the last inequality follows from

the equation 23r2 − 55r + 30 = 0. So, the total penalties are at least as large as the total deficit

in the edge numbers of the isolated odd-cycles of C3. Therefore, to prove the lemma, it suffices to

prove that for every connected component K of C3, we can compute an edge-2-colorable subgraph

K ′ of K such that |E(K ′)| − p(K) ≥ r|E(K) ∩E(C)|, where p(K) is the total penalties of the odd

cycles in K. As in the proof of Lemma 4.5, we distinguish several cases as follows:

Case 1: K is a bicycle of C2. In this case, p(K) = 0. Moreover, we can compute an edge-

2-colorable subgraph K ′ of K such that |E(K ′)| ≥ 9
10 |E(K) ∩ E(C)| (cf. Case 1 in the proof of

Lemma 4.5). So, |E(K ′)| − p(K) ≥ r|E(K) ∩ E(C)| because r ≤ 9
10 .

Case 2: K is a tricycle of C2. In this case, p(K) = 6 − 7r. Moreover, we can compute an

edge-2-colorable subgraph K ′ of K such that |E(K ′)| = |E(K)∩E(C)| − 2 (cf. Case 2 in the proof

of Lemma 4.5). So, |E(K ′)| − p(K) ≥ r|E(K) ∩ E(C)| because |E(K) ∩ E(C)| ≥ 15 and r ≤ 7
8 .

Case 3: K is neither a bicycle nor a tricycle of C2. We may assume that K contains at least one

odd cycle of C. Then, K is also a connected component of G2. Moreover, the connected component

K ′′ of G3 corresponding to K is either an edge or a star.

Case 3.1: K ′′ is an edge. In this case, p(K) ≤ 6 − 7r. Moreover, we can compute an edge-2-

colorable subgraph K ′ of K such that |E(K ′)| = |E(K) ∩ E(C)| − 1 (cf. Case 3.1 in the proof of

Lemma 4.5). So, |E(K ′)| − p(K) ≥ r|E(K) ∩ E(C)| because |E(K) ∩ E(C)| ≥ 7.

Case 3.2: K ′′ is a star. Let C0 be the connected component of C corresponding to the center

of K ′′. Let C1, . . . , Ch be the odd cycles of C corresponding to the satellites of K ′′. If C0 is a path,

then K is a train graph and we are done by Lemma 3.1; otherwise, K is a starlike graph and we

are done by Lemma 3.2. 2

Clearly, each step of our algorithm except Step 12a can be implemented in O(n2m) time. Since

the recursion depth of the algorithm is O(n), it runs in O(n3m) total time. In summary, we have

shown the following theorem:

Theorem 4.9 There is an O(n3m)-time approximation algorithm for Max Simple Edge 2-

Coloring that achieves a ratio of roughly 0.842.

5 An Application

Let G be a graph. An edge cover of G is a set F of edges of G such that each vertex of G is

incident to at least one edge of F . For a natural number k, a [1,∆]-factor k-packing of G is a

collection of k disjoint edge covers of G. The size of a [1,∆]-factor k-packing {F1, . . . , Fk} of G is

13

|F1|+ · · ·+ |Fk|. The problem of deciding whether a given graph has a [1,∆]-factor k-packing was

considered in [7, 8]. In [10], Kosowski et al. defined the minimum [1,∆]-factor k-packing problem

(Min-k-FP) as follows: Given a graph G, find a [1,∆]-factor k-packing of G of minimum size or

decide that G has no [1,∆]-factor k-packing at all.

According to [10], Min-2-FP is of special interest because it can be used to solve a fault tolerant

variant of the guards problem in grids (which is one of the art gallery problems [11, 12]). Indeed,

they proved the NP-hardness of Min-2-FP and the following lemma:

Lemma 5.1 If Max Simple Edge 2-Coloring admits an approximation algorithm A achieving

a ratio of α, then Min-2-FP admits an approximation algorithm B achieving a ratio of 2 − α.

Moreover, if the time complexity of A is T (n), then the time complexity of B is O(T (n)).

So, by Theorem 4.9, we have the following immediately:

Theorem 5.2 There is an O(n3m)-time approximation algorithm for Min-2-FP achieving a ratio

of roughly 1.158.

6 Open Problems

One obvious open question is to ask whether one can design a polynomial-time approximation

algorithm for Max Simple Edge 2-Coloring that achieves a ratio significantly better than 0.842.

Assuming P 6= NP, the APX-hardness proof of the problem given in [3] implies a lower bound of

roughly 0.999937 on the ratio achievable by a polynomial-time approximation algorithm. It seems

interesting to prove a significantly better lower bound.

Acknowledgments

We thank the referees for helpful comments.

References

[1] Z.-Z. Chen and R. Tanahashi. Approximating Maximum Edge 2-Coloring in Simple Graphs

via Local Improvement. Theoretical Computer Science (special issue on AAIM 2008), 410

(2009) 4543-4553. A preliminary version appeared in Proceedings of 4th International Confer-

ence on Algorithmic Aspects in Information and Management (AAIM 2008), Lecture Notes in

Computer Science, 5034 (2008) 84-96.

[2] Z.-Z. Chen, R. Tanahashi, and L. Wang. An Improved Approximation Algorithm for Maximum

Edge 2-Coloring in Simple Graphs. Journal of Discrete Algorithms, Vol. 6, No. 2, pp. 205-

215, 2008. A preliminary version appeared in Proceedings of 3rd International Conference on

Algorithmic Aspects in Information and Management, Lecture Notes in Computer Science,

4508 (2007) 27-36.

14

[3] U. Feige, E. Ofek, and U. Wieder. Approximating Maximum Edge Coloring in Multigraphs.

Proceedings of the 10th International Conference on Integer Programming and Combinatorial

Optimization (IPCO), Lecture Notes in Computer Science, 2462 (2002) 108-121.

[4] H. Gabow. An Efficient Reduction Technique for Degree-Constrained Subgraph and Bidirected

Network Flow Problems. Proceedings of the 15th Annual ACM Symposium on Theory of Com-

puting (STOC’83), pp. 448-456, ACM, 1983.

[5] D. Hartvigsen. Extensions of Matching Theory. Ph.D. Thesis, Carnegie-Mellon University,

1984.

[6] D. Hochbaum. Approximation Algorithms for NP-Hard Problems. PWS Publishing Company,

Boston, 1997.

[7] D.P. Jacobs and R.E. Jamison. Complexity of Recognizing Equal Unions in Families of Sets.

Journal of Algorithms, 37 (2000) 495-504.

[8] K. Kawarabayashi, H. Matsuda, Y. Oda, and K. Ota. Path Factors in Cubic Graphs. Journal

of Graph Theory, 39 (2002) 188-193.

[9] A. Kosowski. Approximating the Maximum 2- and 3-Edge-Colorable Subgraph Problems. Dis-

crete Applied Mathematics, 157 (2009) 3593-3600.

[10] A. Kosowski, M. Malafiejski, and P. Zylinski. Packing [1,∆]-Factors in Graphs of Small Degree.

Journal of Combinatorial Optimization, 14 (2007) 63-86.

[11] J. O’Rourke. Art Gallery Theorems and Algorithms. Oxford University Press, 1987.

[12] J. Urrutia. Art Gallery and Illumination Problems. Handbook on Computational Geometry,

Elsevier Science, Amsterdam, 2000.

15

