
www.academicpress.com

Journal of Computer and System Sciences 65 (2002) 465–480

The longest common subsequence
problem for sequences with
nested arc annotations$

Guohui Lin,a,1 Zhi-Zhong Chen,b,2 Tao Jiang,c,*,3 and
Jianjun Wenc,4

aDepartment of Computing Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2E8
bDepartment of Mathematical Sciences, Tokyo Denki University, Hatoyama, Saitama 350-0394, Japan

cDepartment of Computer Science, University of California, Riverside, CA 92521, USA

Received 15 February 2001; received in revised form 04 September 2001

Abstract

Arc-annotated sequences are useful in representing the structural information of RNA and

protein sequences. The Longest Arc-Preserving Common Subsequence (LAPCS)

Problem has been introduced in Evans (Algorithms and complexity for annotated sequence

analysis, Ph.D. Thesis, University of Victoria, 1999) as a framework for studying the similarity

of arc-annotated sequences. Several algorithmic and complexity results on the LAPCS

problem have been presented in Evans (1999) and Jiang et al. (in: Proceedings of the 11th

Annual Symposium on Combinatorial Pattern Matching (CPM 2000), Lecture Note in

Computer Science, Vol. 1848, 2000, pp. 154–165). In this paper, we continue this line of

research and present new algorithmic and complexity results on the LAPCS problem restricted

to two nested arc-annotated sequences, denoted as LAPCS(nested, nested). The restricted

problem is perhaps the most interesting variant of the LAPCS problem and has important

applications in the comparison of RNA secondary structures. Particularly, we prove that

LAPCS(nested, nested) is NP-hard, which answers an open question in Evans (1999). We

then present a polynomial-time approximation scheme for LAPCS(nested, nested) with an

additional c-diagonal restriction. An interesting special case, Unary LAPCS(nested, nested),

$An extended abstract of a preliminary version of this paper appears in Proceedings of the

28th International Colloquium on Automata, Languages and Programming (ICALP’01), LNCS 2076,

pp. 444–455.

*Corresponding author.

E-mail addresses: ghlin@cs.ualberta.ca (G. Lin), chen@r.dendai.ac.jp (Z.-Z. Chen), jiang@cs.ucr.edu

(T. Jiang), wjianju@cs.ucr.edu (J. Wen).
1Work partially done while the author was a postdoctoral fellow in the Department of Computer

Science, University of Waterloo, and the Department of Computing and Software, McMaster University.

Supported in part by NSERC Research Grants OGP0046613 and OGP0046506, and a CITO grant.
2Supported in part by the Grant-in-Aid for Scientific Research of the Ministry of Education, Science,

Sports and Culture of Japan, under Grant No. 12780241. Work done on visiting at Department of

Computer Science, University of California, Riverside, CA 92521, USA.
3Supported in part by a UCR startup grant and NSF Grants CCR-9988353 and ITR-0085910.
4Supported in part by NSF Grant CCR-9988353.

0022-0000/02/$ - see front matter r 2002 Elsevier Science (USA). All rights reserved.

PII: S 0 0 2 2 - 0 0 0 0 (0 2) 0 0 0 0 4 - 1

is also investigated, for which we show the NP-hardness and present a better approximation

algorithm than the one for general LAPCS(nested, nested).

r 2002 Elsevier Science (USA). All rights reserved.

Keywords: Sequence annotation; Longest common subsequence; Book embedding; NP-hardness;

Approximation algorithm; Polynomial-time approximation scheme

1. Introduction

Given two sequences S and T over some fixed alphabet S; sequence T is said to be
a subsequence of S if T can be obtained from S by deleting some letters (also called
bases) from S: Notice that the order of the remaining letters of S must be preserved.
The length of a sequence S; denoted by jSj; is the number of letters therein. Given
two sequences S1 and S2 (over some fixed alphabet S), the classical Longest
Common Subsequence (LCS) problem asks for a longest sequence T that is a
subsequence of both S1 and S2: Suppose jS1j ¼ n1 and jS2j ¼ n2; then a longest
common subsequence of S1 and S2 can be found by dynamic programming in time
Oðn1n2Þ [17,23]. For simplicity, we use S½i� to denote the ith letter in sequence S; and
S½i1; i2� to denote the substring of S consisting of the i1th letter through the i2th letter
ð1pi1pi2pjSjÞ:
For any sequence S; an arc annotation set (or simply an arc set) P of S is a set of

unordered pairs of positions in S: Each pair ði1; i2ÞAP; where 1pi1oi2pjSj; is said to
connect the two letters at positions i1 and i2 and is called an arc annotation (or simply,
arc) between the two letters. Such a pair ðS;PÞ of sequence and arc annotation set is
referred to as an arc-annotated sequence [12]. Observe that a (plain) sequence without
any arc can be viewed as an arc-annotated sequence with an empty arc set.
Arc-annotated sequences are useful in describing the secondary and tertiary

structures of RNA and protein sequences [2,11,12,15,19,22,25]. For example,
one may use arcs to represent bonds between nucleotides in an RNA sequence (see
Fig. 1) or contact forces between amino acids in a protein sequence. Therefore, the
problem of comparing arc-annotated sequences has applications in the structural
comparison of RNA and protein sequences and has received much attention in the
literature recently [2,12,15,18,19,25]. In this paper, we follow the LCS approach
proposed in [12] and study the Longest Arc-Preserving Common Subsequence
(LAPCS) Problem for arc-annotated sequences.
Given two arc-annotated sequences S1 and S2 with arc sets P1 and P2; respectively,

if S1½i� ¼ S2½ j� for some pair of integers i and j; we name the pair /i; jS a base match;
and if S1½i1� ¼ S2½ j1�; S1½i2� ¼ S2½ j2�; ði1; i2ÞAP1; and ð j1; j2ÞAP2; for some integers
i1oi2 and j1oj2; we name the pair /ði1; i2Þ; ð j1; j2ÞS an arc match. A common
subsequence T of S1 and S2 induces a bijective mapping from a subset of
f1; 2;y; n1g to a subset of f1; 2;y; n2g; where n1 ¼ jS1j and n2 ¼ jS2j: Let M denote

Fig. 1. A transfer RNA and its corresponding arc-annotated sequence.

G. Lin et al. / Journal of Computer and System Sciences 65 (2002) 465–480466

this mapping and suppose that M ¼ f/ic; jcS; c ¼ 1; 2;y; jT jg; then we say that T

induces the base matches /ic; jcS; c ¼ 1; 2;y; jT j: The common subsequence T is
arc-preserving if the arcs induced by the mapping are preserved, i.e. for any
/ic1 ; jc1S; /ic2 ; jc2SAM:

ðic1 ; ic2 ÞAP1 3 ð jc1 ; jc2 ÞAP2;

and we say in this case that T induces the arc match /ðic1 ; jc2 Þ; ð jc1 ; jc2 ÞS if
ðic1 ; ic2ÞAP1 and ð jc1 ; jc2 ÞAP2 in addition. The LAPCS problem is to find a longest
common subsequence of S1 and S2 that is arc-preserving (with respect to the given
arc sets P1 and P2Þ [12].
It is shown in [12] that the LAPCS problem is NP-hard, if the arc annotation

structures are unrestricted. Since in the practice of RNA and protein sequence
comparisons arc sets are likely to satisfy some constraints (e.g. bond arcs usually do
not cross in the case of RNA, especially transfer RNA, sequences), it is of interest to
consider various restrictions on arc structures. The following four natural
restrictions on an arc set P have been discussed in the literature [12].

1. No two arcs share an endpoint:

8ði1; i2Þ; ði3; i4ÞAP; i1ai4; i2ai3; and i1 ¼ i3 3 i2 ¼ i4:

2. No two arcs cross each other:

8ði1; i2Þ; ði3; i4ÞAP; i1A½i3; i4� 3 i2A½i3; i4�:

3. No two arcs nest:

8ði1; i2Þ; ði3; i4ÞAP; i1pi3 3 i2pi3:

4. There are no arcs at all:

P ¼ |:
These restrictions are used progressively and inclusively to produce five distinct

levels of permitted arc structures for sequences in the LAPCS problem:

* unlimited—no restrictions.
* crossing—restriction 1.
* nested—restrictions 1 and 2.
* chain—restrictions 1, 2 and 3.
* plain—restriction 4.

In the following, we use the notation LAPCS(level-1, level-2) [18] to represent
the LAPCS problem where the arc structure of sequence S1 is of level level-1 and
the arc structure of sequence S2 is of level level-2. Without loss of generality, we
always assume that level-1 is at the same level of level-2 or higher than level-2.
Problem LAPCS(unlimited, level-2) is NP-hard [12] and is not approximable
within ratio ne; eAð0; 1

4
Þ [18], where n ¼ maxfn1; n2g: Problem LAPCS(crossing,

level-2) is also NP-hard [12], and is MAX SNP-hard [18], and admits a
2-approximation [18]. If level-1 is at most nested and level-2 is lower than
nested, then LAPCS(level-1, level-2) is solvable in polynomial time [12,17,18,23].
Prior to this work, the most interesting yet unsolved case is LAPCS(nested,
nested), except that it inherits the 2-approximation algorithm designed for
LAPCS(crossing, crossing) [18].
Notice that problem LAPCS(nested, nested) effectively models the similarity

between two RNA sequences and their secondary structures, and is generally
thought of as the most important variant of the LAPCS problem. For example, the

G. Lin et al. / Journal of Computer and System Sciences 65 (2002) 465–480 467

arc structure in Fig. 1 is nested. In this paper, we investigate the computational
complexity of this problem arm show its NP-hardness, answering an open question
in [12]. The hardness result in fact also holds for a rather special case of
LAPCS(nested, nested), denoted by 2-fragmented LAPCS(nested, nested),
where all base matches induced by an LAPCS are required to have the form /2i þ
1
27

1
2; 2i þ 1

27
1
2S: That is, the input sequences are fragmented into pairs of bases and

a pair of bases in one sequence are only permitted to match the corresponding pair of
bases in the other sequence. In the positive aspect, we present a polynomial-time
approximation scheme (PTAS) for a problem slightly more general than 2-frag-
mented LAPCS(nested, nested), called c-diagonal LAPCS(nested, nested).
Here, for any integral constant cX1; c-diagonal LAPCS(nested, nested) is
the special case of LAPCS(nested, nested) where base S1½i� (respectively,
S2½ j�Þ is allowed only to match a base in the range S2½i � c; i þ c� (respectively,
S1½ j � c; j þ c�Þ: The c-diagonal restriction has been studied extensively for
sequence alignment problems in the literature [16,20]. The c-diagonal
LAPCS(nested, nested) problem is relevant in the comparison of conserved
RNA sequences where we already have a rough idea about the correspondence
between bases in the two sequences. The PTAS is based on an interesting application
of the bounded treewidth decomposition technique for planar graphs due to
Baker [3].
The rest of the paper is organized as follows. Section 2 proves the hardness results.

Section 3 presents a PTAS for c-fragmented LAPCS(nested, nested), for any
constant cX2; and then extends it to a PTAS for c-diagonal LAPCS(nested,
nested), for any constant cX1: Section 3 also presents an efficient exact algorithm
for 1-fragmented LAPCS(crossing, crossing). Section 4 deals with an interesting
special case called Unary LAPCS(nested, nested), proves its NP-hardness, and
presents a 4

3
-approximation algorithm. Section 5 concludes the paper with some

future research topics.

2. Hardness results

In this section, we will prove that problem LAPCS(nested, nested) is NP-hard.
As byproducts, hardness results for several variants are also derived. We begin by
reviewing the hardness results of some graph-theoretic problems needed in our
proofs.

Lemma 2.1. The Maximum Independent Set (MIS) problem restricted to cubic

planar graphs is NP-hard [14]. On the other hand, it admits a PTAS [3].

A book embedding of a graph consists of an embedding of its vertices along
the spine of a book (i.e. a linear ordering of the vertices), and an embedding
of its edges onto the pages so that edges embedded on the same page do not
cross. (Fig. 3 (upper right) shows an embedding of K4; the complete graph
on 4 vertices, into two pages: the edges above the linear ordering of the vertices
are in one page, and the edges below are in the other page.) The objective of
the Book Embedding Problem is to minimize the number of pages used. The
minimum number of pages in which a graph can be embedded is called the
pagenumber of the graph. Computationally, the Book Embedding Problem is hard:
it is NP-complete to tell if a graph can be embedded in two pages [10]. The restricted
problem of embedding the edges optimally for a fixed vertex ordering is also NP-

G. Lin et al. / Journal of Computer and System Sciences 65 (2002) 465–480468

complete [13]. Nonetheless, we have the following positive results due to
Yannakakis.

Lemma 2.2 (Yannakakis [24]). Graphs with pagenumber 1 are exactly the outerplanar

graphs. Graphs with pagenumber 2 are the subhamiltonian planar graphs, i.e. the

subgraphs of Hamiltonian planar graphs. There exists an algorithm which embeds a

given planar graph in four pages in time linear in the number of edges in the graph.

Moreover, there exist planar graphs which cannot be embedded in three pages.

The ultimate goal of this section is to show that LAPCS(nested, nested) is NP-
hard, which answers an open question proposed in [12]. From Lemmas 2.1 and 2.2,
we can use the reduction technique in [12,18] to construct a simple reduction showing
the NP-hardness of the LAPCS problem for four nested arc-annotated sequences
(the definition is a straightforward extension of that of LAPCS(nested, nested)).
Theorem 2.8 below proves the hardness result for two nested arc-annotated
sequences. We need the following improvements on Lemmas 2.1 and 2.2 to prove
Theorem 2.8.

Lemma 2.3 (Biedl et al. [5]). The Vertex Cover (VC) problem restricted to cubic

triconnected planar graphs is NP-hard.

Corollary 2.4. The MIS problem restricted to cubic planar bridgeless connected graphs

is NP-hard.

Lemma 2.5. Any cubic planar bridgeless graph has a perfect matching [21], which can

be computed in linear time [4].

Given a planar graph G and its planar embedding E; any simple cycle C in G

partitions the whole embedding plane into two regions. The finite region enclosed by
C is called the interior of C and denoted by IðCÞ; and the infinite region is called the
exterior of C and denoted by EðCÞ:

Lemma 2.6. Cubic planar bridgeless connected graphs are subhamiltonian. Moreover,
there is a linear-time algorithm that, given any cubic planar bridgeless connected graph

G; finds a Hamiltonian planar supergraph HðGÞ of G with maximum degree at most 5,
and finds a 2-page book embedding of G such that every vertex has a degree at least one

(and thus at most two) in each page.

Proof. Given a cubic planar bridgeless connected graph G ¼ ðV ;EÞ and its
planar embedding E; we construct HðGÞ in four steps as follows. Firstly, we
apply Lemma 2.5 to compute a perfect matching M of G: Let E 0 ¼ E\M and
G0 ¼ ðV ;E0Þ: Since every vertex in G0 has degree 2, G0 is a collection of
non-intersecting simple cycles (with respect to the embedding plane). Suppose
that G0 consists of k cycles. Then kpIn

3
m and there is a subset M 0CM of k � 1

edges which interconnect these k cycles, that is, graph G00 ¼ ðV ;E0,M 0Þ is
connected.
Secondly, we orient the cycles in G0 as follows. Starting with an arbitrary cycle

C1; orient it in the clockwise direction (i.e. applying the right-hand rule and
traversing on the boundary of IðC1ÞÞ: For each cycle C2 connected by an edge in M 0

to C1; if one of C1 and C2 is in the interior of the other, then C2 is oriented in the
same way as C1; i.e. clockwise; otherwise, it is oriented in the other way, i.e.
counterclockwise. By a Breadth First Search (BFS) through G00; we can orient all the

G. Lin et al. / Journal of Computer and System Sciences 65 (2002) 465–480 469

cycles without conflict. Every edge in E0 inherits an orientation from the cycle to
which it belongs.
Thirdly, for every edge ðu; vÞAM 0; define the red predecessor rpðuÞ of vertex u;

according to the following rules:

(R1) Some cycle C in G0 contains both rpðuÞ and u:
(R2) The edge in M incident to rpðuÞ lies in the interior of cycle C if and only if edge

ðu; vÞ lies in the interior of C:
(R3) Other than rpðuÞ and u; no vertex on the directed path in C from rpðuÞ to u

satisfies (R2).

Because of the bridgelessness property, rpðuÞau: Define the green predecessor

gpðuÞ of vertex u to be the direct successor of rpðuÞ in C: Notice that gpðuÞ may
happen to be u: However, clearly, rpðuÞagpðuÞ: The red predecessor and the green
predecessor of vertex v are similarly defined. It is trivial to notice that for any pair of
distinct vertices u and v in a cycle, if they both have red predecessors and green
predecessors, then rpðuÞarpðvÞ and gpðuÞagpðvÞ:
At the fourth step, for edge ðu; vÞAM 0; connect vertex rpðuÞ and vertex rpðvÞ by a

red edge ðrpðuÞ; rpðvÞÞ and embed it in the face of E whose boundary consists of the
edge in M incident to u; the (directed) path from rpðvÞ to u; edge ðu; vÞ; the (directed)
path from rpðvÞ to v; and the edge in M incident to vertex v: Similarly, connect vertex
gpðuÞ and vertex gpðvÞ by a green edge ðgpðuÞ; gpðvÞÞ and embed this edge in the same
face (without intersecting the embedded red edge ðrpðuÞ; rpðvÞÞÞ: See Fig. 2 for an
illustration.
Let

Mr ¼ fðrpðuÞ; rpðvÞÞ j ðu; vÞAM 0g;

Mg ¼ fðgpðuÞ; gpðvÞÞ j ðu; vÞAM 0g;

Md ¼ fðrpðuÞ; gpðuÞ; rpðvÞ; gpðvÞÞ j ðu; vÞAM 0g;

where Mr (or Mg) is a set of artificial red (or green, respectively) edges, and Md is a
subset of E0: We set HðGÞ ¼ ðV ;E,Mr,MpÞ: Obviously, ðV ; ðE0\MdÞ,Mr,MgÞ is
a Hamiltonian cycle, denoted by HC; in HðGÞ; graph HðGÞ has maximum degree 5,
as each vertex may be incident, additionally, to a green edge and/or a red edge; and
in HC the red edges and the green edges appear alternately.
Next, we construct a 2-page book embedding of graph HðGÞ as follows. By the

definition of red predecessors, any vertex incident to a red edge must be incident to
an edge in E which lies in IðHCÞ and an edge in E which lies in EðHCÞ: Break
arbitrarily an edge in HC and embed the resulting Hamiltonian path along the book
spine. The edges in E lying in IðHCÞ are embedded in page 1; and the edges in E

Fig. 2. An illustration: adding a red edge and a green edge.

G. Lin et al. / Journal of Computer and System Sciences 65 (2002) 465–480470

lying in EðHCÞ are embedded in page 2. Consider a segment of HC connecting a red
edge and a green edge containing no colored edges, i.e. the edges in this segment are
all in E: Let us focus on the head vertex of this segment connected to the green edge.
If it is incident to two edges in E that both lie in IðHCÞ (or EðHCÞ; respectively), then
alternately embed the edges in the segment, starting from this head, in page 2 and
page 1 (or page 1 and page 2, respectively). Since each edge in HC can be embedded
in either page, applying the above process for every such segment of HC results in a
valid 2-page book embedding of graph HðGÞ such that every vertex has degree at
least 1 in each page. &

Remark 2.7. In the proof of Lemma 2.6, we add 2kpI2n=3m edges to graph G to
obtain a Hamiltonian planar supergraph HðGÞ: We do not need to add so many
edges if our goal is only to obtain a Hamiltonian planar supergraph. Rather than
using the above procedure, we can obtain a Hamiltonian planar supergraph by
adding an edge ðu0; v0Þ to graph G for every edge ðu; vÞAM 0; where u0; v0 are the
directed predecessors of u; v in (directed) graph G0: In the resulting graph, the
maximum degree of a vertex is 4. Therefore, adding (at most) kpIn=3m edges makes
graph G Hamiltonian. A more dextrous analysis with a further improved bound of
Iðn � 4Þ=6m (edges) is given in [6].

Theorem 2.8. LAPCS(nested, nested) is NP-hard.

Proof. The proof is a reduction from the MIS problem restricted to cubic planar
bridgeless connected graphs. Given a cubic planar bridgeless connected graph G; we
first use Lemma 2.6 to construct a 2-page book embedding E of G in linear time such
that in either page every vertex has degree at least 1 (and thus at most 2).
In book embedding E; suppose without loss of generality that, the vertices lying

along the spine of the book are in the ordering v1; v2;y; vn�1; vn: For the first page of
the book embedding, construct a segment of 8 letters ccccdbab for each vertex, and
for the second page, construct a segment ccccbdba for each vertex. The base
sequence for the first page is formed by concatenating the n segments followed by an
additional partial segment cccc, which is ðccccdbabÞncccc; the base sequence for the
second page is formed similarly, which is ðccccbdbaÞncccc:
In each page of the book embedding, if there are two edges incident to vertex vi;

then there are two arcs imposed on the corresponding constructed sequence each
having a letter b in the ith segment as an endpoint (as for which one, it depends on
the book embedding of the two edges to avoid arc crossing, i.e., inherits the non-
crossing property of the embedding of edges in one page). In page 1, if there is
exactly one edge incident to vertex vi; then there is an arc in P1 which has the second
letter b in the ith segment (that is S1½8i�Þ as an endpoint, and in P1 there are two more
arcs ð8i � 4; 8i � 3Þ and ð8i � 2; 8i � 1Þ; associated with this edge. In page 2, if there is
exactly one edge incident to vertex vi; then there is an arc in P2 which has the first
letter b in the ith segment (that is S2½8i � 3�Þ as an endpoint, and in P2 there are two
more arcs ð8i � 2; 8i � 1Þ and ð8i; 8i þ 1Þ; associated with this edge. This forms the
two nested arc-annotated sequences ðS1;P1Þ and ðS2;P2Þ:
Fig. 3 illustrates a small example of the above construction. The cubic graph in

this example is K4: The graph on the upper right shows a 2-page book embedding
satisfying the conditions in Lemma 2.6, where the edges above the linear ordering of
the vertices are in page 1, and the others are in page 2. Notice that every vertex has
degree either 1 or 2 in each page. For each edge, there is a corresponding arc
connecting two bases b, from the segments constructed for the endpoints of the edge,
respectively. For instance, arc ð6; 32ÞAP1 corresponds to edge ðv1; v4Þ: Basing on the

G. Lin et al. / Journal of Computer and System Sciences 65 (2002) 465–480 471

arc connecting rules in the last paragraph, since vertex v1 has degree 2 in page 1, the
two letters b are both endpoints of some arcs corresponding to graph edges; While
since v2 has degree 1 in page 1, only the second letter b is the endpoint of some graph
edge. But, two arcs ð12; 13Þ; ð14; 15ÞAP1 are created to correspond to this situation.
Recall that vertex vi has degree 2 in page 1 (or page 2) if and only if it has degree 1 in
page 2 (or page 1, respectively). The lower part of the figure shows the two
constructed nested arc-annotated sequences with respect to the book embedding.
Define a base match /i; jS with ji � jjp4 to be a good base match; otherwise a bad

base match. Also call each base match /i; jS a S1½i �-match (or equivalently S2½ j�-
match because S1½i � ¼ S2½ j�Þ:
One can check that every LAPCS of the above-constructed instance induces no

bad base matches, since otherwise it is always possible to replace the first several bad
base matches with their endpoints residing in some segment along one sequence with
more good matches, contradicting the maximality of the LAPCS. Furthermore,
every LAPCS induces no arc match and thus it can be transformed to induce all
the 4ðn þ 1Þ good c-matches of form /i; iS: Call this kind of LAPCS’s good. It is not
hard to check that for every vertex index i; there are at most two good base matches
(but at least one) from the ith segment which could co-exist in a good LAPCS;
and if there are two, then they both are b-matches. In other words, two b-matches
/8i � 2; 8i � 3S and /8i; 8i � 1S are included in a good LAPCS if and only if vertex
vi is in the maximum independent set of graph G: Since no LAPCS can include an
arc-match, if we let vj1 ; vj2 ; vj3 be the three neighbors of vi in G; then the good LAPCS
does not contain 2 good b-matches from segments j1; j2; j3: By the construction, when
a good LAPCS includes just one good b-match from segment j; then it can be
replaced by either the good a-match or the good d-match, for any j: Therefore, graph
G has a maximum independent set of cardinality k if and only if the constructed
instance of LAPCS(nested, nested) has a (good) LAPCS of length exactly 4ðn þ
1Þ þ 2k þ ðn � kÞ ¼ 5n þ k þ 4: This proves the theorem. &

In fact, the proof of Theorem 2.8 can be made much simpler by employing a
reduction similar to those in [12,18]. The reason why we prefer a more complicated
reduction is that this reduction actually shows the NP-hardness of the problem
of finding a good LAPCS in two given nested arc-annotated sequences.
Here, in a good LAPCS, the allowed forms of base matches are /2i � 1; 2i � 1S;
/2i � 1; 2iS; /2i; 2i � 1S; and /2i; 2iS: We use 2-fragmented LAPCS(nested,
nested) to denote the problem of finding a good LAPCS in two given nested arc-
annotated sequences. Generally, we can define c-fragmented LAPCS(nested,
nested) for any positive integer c; in which the two given sequences are

Fig. 3. Mapping a cubic planar bridgeless graph to an instance of LAPCS(nested, nested).

G. Lin et al. / Journal of Computer and System Sciences 65 (2002) 465–480472

chopped into fragments of lengths at most c; and the allowed base matches
are those between fragments at the same location. Notice that c-fragmented
LAPCS(nested, nested) is actually a further restriction of ðc � 1Þ-diagonal
LAPCS(nested, nested). Therefore, the proof of Theorem 2.8 and the above
discussion justify the following:

Theorem 2.9. c-fragmented LAPCS(nested, nested) is NP-hard when cX2:
c-diagonal LAPCS(nested, nested) is NP-hard when cX1:

3. c-fragmented LAPCS and c-diagonal LAPCS

In this section, we investigate the c-fragmented LAPCS and the c-diagonal
LAPCS problems for arc-annotated sequences. We first give a simple efficient
algorithm for solving 1-fragmented LAPCS(crossing, crossing) (which is
equivalent to 0-diagonal LAPCS(crossing, crossing)) and then PTAS’s for
c-fragmented LAPCS(nested, nested) when cX2 and for c-diagonal LAPCS
(nested, nested) when cX1:

3.1. 1-fragmented LAPCS(crossing, crossing)

Let ðS1;P1Þ; ðS2;P2Þ be an instance of 1-fragmented LAPCS(crossing, cross-
ing). Assume without loss of generality that n ¼ jS1j ¼ jS2j: Clearly, ignoring the
arcs we may compute a classical LCS T of S1 and S2 by a linear scan in OðnÞ time.
We construct a graph G associated with T as follows. If T induces base match /i; iS;
then create a vertex vi: If T induces a pair of base matches /i; iS and /j; jS and ði; jÞ
is an arc in either P1 or P2 but not both, then we impose an edge connecting vi and vj

in G: It is clear that G has maximum degree 2, and thus every independent set of G

one-to-one corresponds to an arc-preserving common subsequence of ðS1;P1Þ and
ðS2;P2Þ: Therefore, by computing a maximum independent set of G; which can be
done in linear time since G is composed of a collection of disjoint cycles and paths,
we get an LAPCS for ðS1;P1Þ and ðS2;P2Þ:

Theorem 3.1. The 1-fragmented LAPCS(crossing, crossing) problem is solvable

in OðnÞ time.

3.2. c-fragmented LAPCS(nested, nested)

Before describing the PTAS, we review the notions of tree decomposition of a
graph and k-outerplanar graph, which play important roles in our construction.
A tree decomposition of a graph G ¼ ðV ;EÞ is a pair D ¼ ðT ;XÞ where T ¼ ðU ;F Þ

is a tree and X ¼ fXu j uAUg is a family of jU j subsets of V such that the following
hold:

*

S
uAU Xu ¼ V :

* For each edge ðv1; v2ÞAE; there is a vertex uAU such that fv1; v2gDXu:
* If u2AU is on the path connecting u1 and u3 in T ; then Xu1-Xu3DXu2 :

The treewidth associated with this tree decomposition is twðG;DÞ ¼ maxuAU jXuj � 1:
The treewidth of G; denoted by twðGÞ; is the minimum twðG;DÞ taken over all tree
decompositions D of G:
The following lemma is widely known in the literature (see, e.g. [1]):

G. Lin et al. / Journal of Computer and System Sciences 65 (2002) 465–480 473

Lemma 3.2. Given a graph G and a tree decomposition D of G; we can compute a

maximum independent set of G in Oð2kk2jGjÞ time, where k ¼ twðG;DÞ and jGj is the

total number of vertices and edges in G:
The notion of k-outerplanar graphs was introduced by Baker [3]. These graphs

are defined inductively as follows. 1-outerplanar graphs are exactly outerplanar
graphs. For kX2; k-outerplanar graphs are those planar graphs G that have a
planar embedding such that deleting all vertices on the exterior face of the
embedding and all edges incident to them from the embedding yields a ðk � 1Þ-
outerplanar graph.

Lemma 3.3 (Bodlaender [7]). For kX1; k-outerplanar graphs have treewidth less than

or equal to 3k � 1:

By Lemmas 3.2 and 3.3, the MIS problem restricted to k-outerplanar graphs is
solvable in linear time. This result was originally due to Baker [3] but based on a
different approach.
For any integer kX2; a k-cover of a graph G ¼ ðV ;EÞ is a family F of k subsets

of V such that each vertex of G appears in at least k � 1 subsets in F: The notion
of k-covers of graphs was introduced by Chen [9]. The idea behind Baker’s
PTAS [3] for the MIS problem restricted to planar graphs is to compute a k-cover F
of a given planar graph G such that each subset in F induces a ðk � 1Þ-outerplanar
subgraph of G: Extending this idea and applying Lemma 3.2, Chen [9] proved the
following:

Lemma 3.4 (Chen [9]). Suppose that C is a class of graphs G ¼ ðV ;EÞ such that given

G and an integer kX2; we can compute a k-cover F of G and a tree decomposition DU

of the subgraph GU of G induced by each subset UAF in Tðk; jGjÞ total time such that

twðGU ;DU Þ is bounded from above by a number f ðkÞ independent of G: Then, given a

graph G in C and an integer kX2; we can compute an independent set of G in

Tðk; jGjÞ þ Oð2f ðkÞðf ðkÞÞ2kjGjÞ time whose size is at least k�1
k

times the optimum.

Consequently, the MIS problem restricted to graphs in C admits a PTAS.

Now we are ready to present the PTAS for c-fragmented LAPCS(nested,
nested).

Theorem 3.5. Given an instance of c-fragmented LAPCS(nested, nested), say

ðS1;P1Þ and ðS2;P2Þ; and an integer kX2; we can compute an arc-preserving common

subsequence of ðS1;P1Þ and ðS2;P2Þ in Oð2ð3k�4Þc2k3c5ðjS1j þ jS2jÞÞ time whose length is

at least k�1
k

times the optimum. Consequently, the c-fragmented LAPCS(nested,
nested) problem admits a PTAS.

Proof. Given an instance of c-fragmented LAPCS(nested, nested), say ðS1;P1Þ
and ðS2;P2Þ; and an integer k; we are asked to compute an arc-preserving common
subsequence whose length is at least k�1

k
times the optimum. Without loss of

generality, we assume that jS1j ¼ jS2j ¼ mc; and let S
j
i denote the jth fragment of

length c in Si: We construct two graphs G and H in the following.
Let Vj ; 1pjpm; denote the set of vertices each corresponding to a base match

/ð j � 1Þc þ c1; ð j � 1Þc þ c2S in the jth fragment (i.e. S1½ð j � 1Þc þ c1� ¼ S2½ð j �
1Þc þ c2�Þ; where 1pc1; c2pc: Clearly, jVj jpc2 for all j: Let V ¼

S
1pjpm Vj : Two

vertices in V are connected via an edge if and only if they are conflicting base
matches (i.e. they cross each other or violate the arc-preserving constraint). This
forms a graph G: Observe that an independent set in G one-to-one corresponds to an

G. Lin et al. / Journal of Computer and System Sciences 65 (2002) 465–480474

arc-preserving common subsequence of ðS1;P1Þ and ðS2;P2Þ (with the c-fragmented
restriction).
Consider an integer kX2: We obtain a new graph H from G by merging the

vertices in each subset Vj into a super-vertex vj and keeping at most one edge
between each pair of super-vertices. Since both P1 and P2 are nested, H is a simple
planar graph. Notice that the number of vertices in H is 2m:
Since H is planar, we can emulate Baker [3] to compute a k-cover FH of H in

OðmkÞ time such that each subset in FH induces a ðk � 1Þ-outerplanar subgraph of
G: Let FH ¼ fU1;y;Ukg: For each UiAFH ; we can compute a tree decomposition
Di ¼ ðTi;XiÞ of the subgraph Hi of H induced by Ui with twðHi;DiÞp3k � 4; in
OðjUi jÞ time [8].
For each UiAFH ; let Wi be the subset of V obtained from Ui by replacing each

super-vertex vAUi with the original vertices merged into v: Similarly, for each
1pipk and each subset Xi;jAXi; we obtain a subset Zi;j of V from Xi;j by replacing
each super-vertex vAXi;j with the original vertices merged into v: One can verify that
(1) fW1;y;Wkg is a k-cover of G and (2) each Di ¼ ðTi; fZi;j j Xi;jAXigÞ is a tree
decomposition of the subgraph of G induced by Wi: Note that the treewidth of each
Di is less than or equal to ð3k � 4Þc2: Moreover, the k-cover fW1;y;Wkg and the
tree decompositions D1 through Dk can be computed in OðkjGjÞ ¼ Oðkmc2Þ total
time. So, by Lemma 3.4, given G and k; we can compute an independent set of G in
Oð2ð3k�4Þc2k3c4jGjÞ time whose size is at least k�1

k
times the optimum. In turn, Given

ðS1;P1Þ; ðS2;P2Þ; and k; we can compute an arc-preserving common subsequence of
ðS1;P1Þ and ðS2;P2Þ in Oð2ð3k�4Þc2k3c5ðjS1j þ jS2jÞÞ time whose length is at least k�1

k

times the optimum. This finishes the proof of the theorem. &

3.3. c-diagonal LAPCS(nested, nested)

The PTAS in Section 3.2 can be easily extended to a PTAS for c-diagonal
LAPCS(nested, nested) as shown below.

Theorem 3.6. Given an instance of c-diagonal LAPCS(nested, nested), say

ðS1;P1Þ and ðS2;P2Þ; and an integer kX2; we can compute an arc-preserving

common subsequence of ðS1;P1Þ and ðS2;P2Þ in Oð2ð3ck�4Þðck�1Þ2c9k9ðjS1j þ S2jÞÞ time

whose length is at least k�1
k

times the optimum. Consequently, the c-diagonal
LAPCS(nested, nested) problem admits a PTAS.

Proof. Given an instance of c-diagonal LAPCS(nested, nested), say ðS1;P1Þ and
ðS2;P2Þ; and an integer kX2; we are asked to compute an arc-preserving common
subsequence whose length is at least k�1

k
times the optimum. Without loss of

generality, we assume that jS1j ¼ jS2j: The algorithm uses the PTAS designed for c-
fragmented LAPCS(nested, nested) as a subroutine.
Fix a constant b (to be specified later). For every iA½1; b�; let Qi denote the

b-fragmented LAPCS(nested, nested) problem for ðS1;P1Þ and ðS2;P2Þ
where the first fragment has length i; each of the others but the last fragment
has length b: Let cni denote the length of an LAPCS, say Ti; for problem Qi: Suppose
that R is an LAPCS for the original problem. Then, every base match in R is a
legal base match in at least ðb � c þ 1Þ out of b problems Q1;Q2;y;Qb: Therefore,
the maximum among cn1 ; c

n

2 ;y; cnb is at least as large as b�cþ1
b

jRj: Notice that by
Theorem 3.5 we may compute an arc-preserving common subsequence Ci for
problem Qi in Oð2ð3b�1Þb2b8ðjS1j þ jS2jÞÞ time such that the length of Ci is at least as
large as b

bþ1c
n

i :

G. Lin et al. / Journal of Computer and System Sciences 65 (2002) 465–480 475

Let C be the longest one among C1;y;Cb: By the discussions in the previous
paragraph, jCjX b

bþ1
b�cþ1

b
jRj ¼ b�cþ1

bþ1 jRj: By setting b ¼ ck � 1; we have jCjXk�1
k
jRj:

Thus, the algorithm that outputs C on input ðS1;P1Þ; ðS2;P2Þ and k runs in
Oð2ð3ck�4Þðck�1Þ2c9k9ðjS1j þ jS2jÞÞ time and hence is a PTAS for the c-diagonal
LAPCS(nested, nested) problem. &

4. Unary LAPCS(nested, nested)

In this section, we consider the Unary LAPCS(nested, nested) problem, a
special case where all the bases are the same. We show that Unary LAPCS(nested,
nested) is also NP-hard, and design a 4

3
-approximation algorithm for it.

Theorem 4.1. The Unary LAPCS(nested, nested) problem is NP-hard.

Proof. The reduction is again from the MIS problem for cubic planar bridgeless
connected graphs. We also begin with the 2-page book embedding E of a given cubic
planar bridgeless connected graph G; obtained by employing Lemma 2.6. This time,
each of the sequences S1 and S2 consists of 12n þ 8 bases. The arc sets P1 and P2

both contain arcs fð12i þ j; 12i þ 9� jÞ j 1pjp4; 0pipng: But, in addition, P1

also includes arcs of form ð12i þ 11; 12i þ 12Þ and P2 includes arcs of form
ð12i þ 9; 12i þ 10Þ:
If there are two edges incident to vertex vi in page 1 of the book embedding E; then

we include two arcs in P1; each of which has an endpoint at position 12ði � 1Þ þ 9 or
12ði � 1Þ þ 10 in the segment constructed for vi (as for which arc ends at which
position, it depends on the book embedding of the two edges). If there is exactly one
edge incident to vertex vi; then we define an arc in P1 with position 12ði � 1Þ þ 10 as
an endpoint. Similarly, in page 2, if there are two edges incident to vertex vi; then P2

has two arcs, each of which has an endpoint 12ði � 1Þ þ 11 or 12ði � 1Þ þ 12: If there
is exactly one edge incident to vertex vi in page 2, then P2 has an arc with
12ði � 1Þ þ 11 as an endpoint. This forms two nested arc-annotated sequences
ðS1;P1Þ and ðS2;P2Þ:
See Fig. 4 for a small example of the construction. The cubic graph in this example

again is K4; and a 2-page book embedding satisfying the conditions in Lemma 2.6 is
shown on the right hand side, where the edges above the line of vertices are in page 1,
and the others are in page 2. Each edge of the graph corresponds to an arc
connecting two bases from the segments constructed for the endpoints of the edge.
For instance, arc ð9; 46ÞAP1 corresponds to edge ðv1; v4Þ:

Fig. 4. Mapping a cubic planar bridgeless graph to an instance of Unary LAPCS(nested, nested).

G. Lin et al. / Journal of Computer and System Sciences 65 (2002) 465–480476

Similarly to the proof of Theorem 2.8, it is not hard to check that every LAPCS
can be transformed to include all the matches f/12i þ j; 12i þ jS j 1pjp8; 0pipng:
Again, call such an LAPCS good, and let us focus on a good LAPCS. In such an
LAPCS, ðS1½12i þ 1; 12i þ 8�;P1½12i þ 1; 12i þ 8�Þ serves as separating blocks such
that all other base matches must be between S1½12i þ 9; 12i þ 12�: and S2½12i þ
9; 12i þ 12�: Hence, there are either 2 or 3 co-existing base matches between S1½12i þ
9; 12i þ 12� and S2½12i þ 9; 12i þ 12�; for every i: Moreover, when there are 2 base
matches we can make them to have the forms /12i þ 11; 12i þ 9S and /12i þ
12; 12i þ 10S; since /ð12i þ 11; 12i þ 12Þ; ð12i þ 9; 12i þ 10ÞS is an arc match. Also,
3 base matches are possible if and only if bases S1½12i þ 9�; S1½12i þ 10�; S2½12i þ
11� and S2½12i þ 12� can be matched, since in this case the LAPCS cannot induce the
arc match /ð12i þ 11; 12i þ 12Þ; ð12i þ 9; 12i þ 10ÞS: From this observation, if ðvi; vjÞ
is an edge in graph G; then it is impossible that there are 3 co-existing base matches
between S1½12i þ 9; 12i þ 12� and S2½12i þ 9; 12i þ 12�; and there are 3 co-existing
base matches between S1½12j þ 9; 12j þ 12� and S2½12j þ 9; 12j þ 12�: In other words,
two bases of the arc corresponding to an edge in G cannot both enter the LAPCS.
Therefore, the vertices vi satisfying the condition that there are 3 co-existing base
matches between S1½12i þ 9; 12i þ 12� and S2½12i þ 9; 12i þ 12� form an independent
set of graph G: So, the graph G has an independent set of cardinality k if and only if
the constructed instance of Unary LAPCS(nested, nested) has a (good) LAPCS
of length 8ðn þ 1Þ þ 3k þ 2ðn � kÞ ¼ 10n þ k þ 8: This proves the theorem. &

The following corollary follows from the above construction.

Corollary 4.2. c-fragmented Unary LAPCS(nested, nested) when cX4 and c-
diagonal Unary LAPCS(nested, nested) when cX3 are NP-hard.

Theorem 4.3. Unary LAPCS(nested, nested) admits a 4
3
-approximation algorithm.

Proof. Given a pair of Unary sequences with nested arcs ðS1;P1Þ and ðS2;P2Þ; where
jS1j ¼ n1pn2 ¼ jS2j; an arc-preserving common subsequence T satisfies left-priority

if for every arc ði1; i2ÞAP1;T does not contain S1½i2� unless it contains S1½i1�: For the
ease of exposition, we call such an arc-preserving common subsequence satisfying
left-priority a Lep-APCS. A longest Lep-APCS is denoted for short by Lep-LAPCS.
A key ingredient of our approximation algorithm is a polynomial-time algorithm for
computing a Lep-LAPCS, as shown below.
The basic idea is dynamic programming. For every pair of integers i and i0; where

1pipi0pn1; let S̃1½i; i0� denote the subsequence of S1½i; i0� by deleting the bases that
are the right endpoints of arcs whose left endpoints are not in the interval ½i; i0�;5 *ı (or
*ı 0) the index of the base to the right (or left, respectively) of S1½i� (or S1½i0�;
respectively) in S̃1½i; i0�; and P1½i; i0� the subset of arcs whose both endpoints are in the
interval ½i; i0�:
Let DPði; i0; j; j0Þ denote the length of a Lep-LAPCS for the subsequences

ðS̃1ði; i0�;P1½i; i0�Þ and ðS2½ j; j0�;P2½ j; j0�Þ; where 1pipi0pn1 and 1pjpj0pn2: Here we
require that the pair j and j0 satisfy that there is no arc in P2 such that its one
endpoint is in the interval ½ j; j0� while the other is not. The solution to our original
Lep-LAPCS problem would be stored in DPð1; n1; 1; n2Þ: In the following, when we
say that S1½k� (or S2½k�Þ is free, it is not an endpoint of any arc in P1½i; i0� (or P2½ j; j0�;
respectively). The dynamic programming is a two-step computation.

5Note: We may assume without loss of generality that S1½i� and S1½i0� are both in S̃1½i; i0�: Otherwise, if,
for example, S1½i� is not in S̃i½i; i0�; then S̃1½i; i0� ¼ S̃1½i þ 1; i0�:

G. Lin et al. / Journal of Computer and System Sciences 65 (2002) 465–480 477

Step 1: For every ð j1; j2ÞAP2; we do the following two-phase pre-computation.
Phase 1: If j2 � j1 > 1; then let j ¼ j1 þ 1: Let j0 be a position in range ½ j1 þ 1; j2 �

1� such that ð j; j0ÞeP2 and no arc in P2 has exactly one endpoint in range ½ j; j0�: The
recurrence relation for the computation of entry DPði; i0; j; j0Þ is defined for several
cases.
If S2½ j0� is free, then in the case that S1ði0Þ is free,

DPði; i0; j; j0Þ ¼ max

DPði; i0; j; j0 � 1Þ;

DPði;*ı 0; j; j0Þ;

DPði;*ı 0; j; j0 � 1Þ þ 1:

8><
>:

In the other case, i.e. S1½i0� is the right endpoint of some arc in P1½i; i0�;

DPði; i0; j; j0Þ ¼ max
DPði; i0; j; j0 � 1Þ;

DPði; *ı 0; j; j0Þ:

(

If ð j00; j0ÞAP2 for some j00A½ j þ 1; j0 � 1�; then

DPði; i0; j; j0Þ ¼ max
ipi00pi0

fDPði; i00 � 1; j; j00 � 1Þ þ DPði00; i0; j00j0Þg:

Phase II: If S1½i� is free but S1½i0� is not, then

DPði; i0; j1; j2Þ ¼ max

DPð*ı; i0; j1; j2Þ;

DPð*ı; i0; j1 þ 1; j2 � 1Þ þ 1;

DPði; *ı 0; j1; j2Þ:

8><
>:

Similarly, if S1½i0� is free, then no matter whether or not S1½i� is free,

DPði; i0; j1; j2Þ ¼ max

DPð*ı; i0; j1; j2Þ;

DPð*ı; i0; j1 þ 1; j2 � 1Þ þ 1;

DPði; *ı 0; j1; j2Þ;

DPði0; *ı; j1 þ 1; j2 � 1Þ þ 1:

8>>><
>>>:

If ði; i0ÞAP1½i; i0�; then

DPði; i0; j1; j2Þ ¼ DPð*ı;*ı 0; j1 þ 1; j2 � 1Þ þ 2:

If neither of S1½i� and S1½i0� is free, but ði; i0ÞeP1½i; i0�; then

DPði; i0; j1; j2Þ ¼ max

DPði; i0; j1 þ 1; j2 � 1Þ;

DPð*ı; i0; j1 þ 1; j2 � 1Þ þ 1;

DPði; *ı 0; j1; j2Þ;

DPð*ı; i0; j1; j2Þ:

8>>><
>>>:

Step 2: Let j0 be a position in range ½1; n2� such that ð1; j0ÞeP2 and no arc in P2 has
exactly one endpoint in range ½1; j0�: The recurrence relation for the computation of
entry DPði; i0; 1; j0Þ is defined for several cases.
If S2½ j0� is free, then in the case that S1½i0� is free,

DPði; i0; 1; j0Þ ¼ max

DPði; i0; 1; j0 � 1Þ;

DPði;*ı 0; 1; j0Þ;

DPði;*ı 0; 1; j0 � 1Þ þ 1:

8><
>:

In the other case, i.e. S1½i0� is the right endpoint of some arc in P1½i; i0�;

DPði; i0; 1; j0Þ ¼ max
DPði; i0; 1; j0 � 1Þ;

DPði; *ı 0; 1; j0Þ:

(

G. Lin et al. / Journal of Computer and System Sciences 65 (2002) 465–480478

If ð j00; j0ÞAP2 for some j00A½2; j0 � 1�; then

DPði; i0 : 1; j0Þ ¼ max
ipi00pi0

fDPði; i00 � 1; 1; j00 � 1Þ þ DPði00; i0; j00; j0Þg:

Therefore, DPð1; n1; 1; n2Þ can be computed in Oðn31n2Þ time, since there are Oðn21n2Þ
entries and each entry is obtained by checking at most Oðn1Þ terms. Employing a
standard back-tracing technique, a Lep-LAPCS can be recovered in Oðn1n2Þ time.
Let nn

1 denote the length of a Lep-LAPCS.
We may similarly define arc-preserving common subsequences satisfying right-

priority, and denote the longest ones as Rip-LAPCS’s. Using the same computation
technique as in the above, a Rip-LAPCS and its length can be computed in Oðn31n2Þ
time too. Let nn

2 denote the length of a Rip-LAPCS.
Let T0 denote a longest APCS under the constraint that it contains no arc-match

at all, and nn
0 ¼ jT0j: Such a T0 can be computed by deleting all bases which are right

endpoints of arcs in P1 and P2 from both sequences and then taking the shorter one.
Let nn denote the length of a (genuine) LAPCS Tn for ðS1;P1Þ and ðS2;P2Þ; and
mn denote the number of arc-matches in Tn: If mnp1

4
nn; then we conclude that

nn
0Xnn � mn

X
3
4
nn: Otherwise, the number of base-matches in Tn which do not

form arc-matches is less than 1
2
nn: Therefore, maxfnn

1 ; n
n
2g > 3

4
nn: It follows that by

taking the longest one among T0; a Lep-LAPCS, and a Rip-LAPCS, as the
approximate solution, its length is guaranteed to be at least 3

4 times the optimum.
Notice that the overall algorithm runs in Oðn31n2Þ time. &

5. Concluding remarks

We have completely answered an open question proposed in [12] on whether or
not it is NP-hard to compute an LAPCS for two nested arc-annotated sequences. In
particular, we have shown that 2-fragmented LAPCS(nested, nested) is already
NP-hard. In the positive aspect, we designed a PTAS for c-diagonal LAPCS
(nested, nested) for any integer cX1: However, does the general LAPCS(nested,
nested) admit a PTAS? We leave it as an open question. A special case, Unary

LAPCS(nested, nested) has also been investigated. Besides its hardness result,
we have presented an approximation algorithm with a ratio better than the best ratio
known for the general LAPCS(nested, nested). Investigating this special case,
although may not be of practical interest, could provide some insight into the general
problem LAPCS(nested, nested).
Another interesting research topic would be to design better (than 2) approxima-

tion algorithms for LAPCS (crossing, crossing), which also has interesting
applications in protein threading and RNA tertiary structure comparison.

Acknowledgments

The authors thank Therese Biedl, Erik Demaine, Paul Kearney, Bin Ma, and
Jinbo Xu for many valuable discussions. In particular, Therese pointed out Lemma
2.3 to us which directly leads to Corollary 2.4 and the discussions with Therese
simplified the proof of the first part (subhamiltonian) of Lemma 2.6, which is a key
(i.e. 2-page book embedding) to the proof of Theorem 2.8. They also thank the
anonymous referee for many helpful comments.

G. Lin et al. / Journal of Computer and System Sciences 65 (2002) 465–480 479

References

[1] S. Arnborg, Efficient algorithms for combinatorial problems on graphs with bounded decomposa-

bility: a survey, BIT 25 (1985) 2–23.

[2] V. Bafna, S. Muthukrishnan, R. Ravi, Computing similarity between RNA strings, in: Proceedings of

the 6th Annual Symposium on Combinatorial Pattern Matching (CPM’95), Helsinki, Finland,

Lecture Note in Computer Science, Vol. 937, 1995, pp. 1–16.

[3] B.S. Baker, Approximation algorithms for NP-complete problems on planar graphs, J. ACM 41

(1994) 153–180.

[4] T.C. Biedl, P. Bose, E.D. Demaine, A. Lubiw, Efficient algorithms for Peterson’s matching theorem,

in: Proceedings of the 10th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’99),

Baltimore, MD, 1999, pp. 130–139.

[5] T.C. Biedl, G. Kant, M. Kaufmann, On triangulating planar graphs under the four-connectivity

constraint, Algorithmica 19 (1997) 427–446.

[6] T.C. Biedl, G.-H. Lin, Planar cubic graphs are subhamiltonian, Manuscript, Department of

Computer Science, University of Waterloo, March 2000.

[7] H.L. Bodlaender, Planar graphs with bounded treewidth, Technical Report RUU-CS-88-14,

Department of Computer Science, Utrecht University, The Netherlands, March 1988.

[8] H.L. Bodlaender, A linear time algorithm for finding tree-decompositions of small treewidth, SIAM

J. Comput. 25 (1996) 1305–1317.

[9] Z.-Z. Chen, Efficient approximation schemes for maximization problems on K3;3-free or K5-free

graphs, J. Algorithms 26 (1998) 166–187.

[10] F.R.K. Chung, F.T. Leighton, A.L. Rosenberg, Embedding graphs in books: a graph layout problem

with applications to VLSI design, SIAM J. Algebraic Discrete Methods 8 (1987) 33–58.

[11] F. Corpet, B. Michot, RNAling program: alignment of RNA sequences using both primary and

secondary structures, Comput. Appl. Bio-sci. 10 (1994) 389–399.

[12] P.A. Evans, Algorithms and complexity for annotated sequence analysis, Ph.D. Thesis, University of

Victoria, 1999.

[13] M.R. Garey, D.S. Johnson, G.L. Miller, C.H. Papadimitriou, The complexity of coloring circular

arcs and chords, SIAM J. Algebraic Discrete Methods 1 (1980) 216–227.

[14] M.R. Garey, D.S. Johnson, L. Stockmeyer, Some simplified NP-complete graph problems, Theoret.

Comput. Sci. 1 (1976) 237–267.

[15] D. Goldman, S. Istrail, C.H. Papadimitriou, Algorithmic aspects of protein structure similarity, in:

IEEE Proceedings of the 40th Annual Conference of Foundations of Computer Science (FOCS’99),

1999, pp. 512–521.

[16] D. Gusfield, Algorithms on Strings, Trees, and Sequences, Cambridge University Press, New York,

1997.

[17] D.S. Hirschberg, The longest common subsequence problem, Ph.D. Thesis, Princeton University,

1975.

[18] T. Jiang, G.-H. Lin, B. Ma, K. Zhang, The longest common subsequence problem for arc-annotated

sequences, in: Proceedings of the 11th Annual Symposium on Combinatorial Pattern Matching (CPM

2000), Lecture Note in Computer Science, Vol. 1848, 2000, pp. 154–165. Full paper accepted by

Journal of Discrete Algorithms.

[19] H. Lenhof, K. Reinert, M. Vingron, A polyhedral approach to RNA sequence structure alignment,

in: Proceedings of the Second Annual International Conference on Computational Molecular Biology

(RECOMB’98), New York, NY, 1998, pp. 153–159.

[20] M. Li, B. Ma, L. Wang, Near optimal multiple sequence alignment within a band in polynomial time,

in: ACM Proceedings of the 32nd Annual Symposium on Theory of Computing (STOC’00),

Portland, OR, 2000, pp. 425–434.

[21] J. Peterson, Die theorie der regulären graphs (the theory of regular graphs), Acta Math. 15 (1891)

193–220.

[22] D. Sankoff, Simultaneous solution of the RNA folding, alignment, and protosequence problems,

SIAM J. Appl. Math. 45 (1985) 810–825.

[23] R.A. Wagner, M.J. Fischer, The string-to-string correction problem, J. ACM 21 (1974) 168–173.

[24] M. Yannakakis, Embedding planar graphs in four pages, J. Comput. System Sci. 38 (1989) 36–67.

[25] K. Zhang, L. Wang, B. Ma, Computing similarity between RNA structures, in: Proceedings of the

10th Annual Symposium on Combinatorial Pattern Matching (CPM’99), Warwick, UK, Lecture

Note in Computer Science, Vol. 1645, 1999, pp. 281–293.

G. Lin et al. / Journal of Computer and System Sciences 65 (2002) 465–480480

	The longest common subsequence problem for sequences with nested arc annotations
	Introduction
	Hardness results
	Yannakakis [24]
	Biedl et™al. [5]
	c-fragmented LAPCS and c-diagonal LAPCS
	1-fragmented LAPCS(crossing, crossing)
	c-fragmented LAPCS(nested, nested)
	Bodlaender [7]
	Chen [9]
	c-diagonal LAPCS(nested, nested)

	Unary LAPCS(nested, nested)
	Concluding remarks
	Acknowledgements
	References

