
Heuristic Search in Constrained Bipartite Matching with

Applications to Protein NMR Backbone Resonance Assignment

Theodore Tegos ∗ Zhi-Zhong Chen † Guohui Lin ∗ ‡

Abstract

The constrained bipartite matching (CBM) problem is a variant of the classical bipartite
matching problem that has been well studied in the Combinatorial Optimization community.
The input to CBM is an edge-weighted complete bipartite graph in which there are a same
number of vertices on both sides and vertices on one side are sequentially ordered while vertices
on the other side are partitioned and connected into disjoint directed paths. In a feasible
matching a path must be mapped to consecutive vertices on the other side. The optimization
goal is to find a maximum or a minimum weight perfect matching. Such an optimization problem
has its applications to scheduling and protein Nuclear Magnetic Resonance peak assignment. It
has been shown to be NP-hard and MAX SNP-hard if the perfectness requirement is dropped.
In this paper, more results on the inapproximability are presented and IDA*, a memory efficient
variant of the well known A* search algorithm, is utilized to solve the problem. Accordingly,
search heuristics and a set of heuristic evaluation functions are developed to assist the search,
whose effectiveness is demonstrated by a simulation study using real protein NMR backbone
resonance assignment instances.

Keywords: Combinatorial Optimization, Constrained Bipartite Matching, Heuristic Search,
IDA* Search, Evaluation Function, Protein NMR Backbone Resonance Assignment

1 Introduction

Determining the 3D structure of a protein is of extreme importance since it is this structure that
largely defines the function of the protein. Although a huge amount of effort has been put into
computational structure prediction, Nuclear Magnetic Resonance (NMR) spectroscopy and X-Ray
crystallography, due to their accuracy, are still the dominant experimental techniques for deter-
mining protein structures at the atomic resolution. Typically, with the modern advents in NMR
spectroscopy [1, 6, 9, 15], this technique is expected to play a more important role in Structural
Genomics.

Protein NMR spectroscopy starts with the generation of spectral data which range from nuclei
resonance frequency “fingerprints” to dihedral angles (spin-spin couplings) and inter-nuclear orien-
tations (residual dipolar couplings). The local structural constraints have to be associated correctly
to their host chemical units in order to calculate the three-dimensional protein structure. Such an

∗Bioinformatics Research Group, Department of Computing Science, University of Alberta. Edmonton, Alberta

T6G 2E8, Canada.
†Department of Mathematical Science, Tokyo Denki University. Hatoyama, Saitama 350-0394, Japan.
‡To whom correspondence should be addressed. Tel: (780) 492-3737, Fax: (780) 492-1071, Email:

ghlin@cs.ualberta.ca

1

2 Tegos et al.

association can be done directly but due to the low accuracy it is usually guided by the NMR
backbone resonance sequential assignment, which maps the identified spectral resonance peaks to
the sets of nuclei that generate the peaks. Every resonance peak captures an atomic interaction,
represented by a chemical shift tuple, involving two or more nuclei that may be within the same
amino acid residue or a pair of neighboring amino acid residues. The peaks from a spectrum form a
peak list and in general there are multiple peak lists used in the assignment process. The underlying
principle making resonance peak assignment successful is that the chemical shift values for a specific
nucleus in the target protein are unique across multiple spectra, despite possible degeneracy and
reading errors. In fact, the chemical shift value of a nucleus depends only on the atomic type and
its local chemical environment. The resonance peak assignment process tries to take advantage of
such signature information to correctly associate resonance peaks, which can be regarded as vectors
of chemical shifts, to their host nuclei.

A single piece of chemical shift value often is not enough to distinguish the amino acid residue
type (out of 20 types) that the host nucleus resides in. One way to boost such signature information
is to group together the chemical shifts from nuclei in a common amino acid residue and then use
the sum of individual signature information to perform the assignment. Such a super vector of
chemical shifts is referred to as a spin system and resonance peak assignment can be viewed as spin
system assignment. The phase where spin systems are formed is referred to as peak grouping and it
is expected to generate the same number of spin systems as the number of amino acid residues in the
target protein. Mathematically, the spin system assignment can be cast into the classical Bipartite
Matching problem that has been well studied in the Combinatorial Optimization community.

In our case, an instance of the Bipartite Matching problem is an edge-weighted complete bipar-
tite graph G = (A,S,E), where vertex set A consists of the linearly ordered amino acid residues
in the target protein sequence, vertex set S consists of the identified spin systems and the weight
of an edge (ai, sj) represents the quantified signature information of mapping spin system sj to
amino acid residue ai. Note that we assume the ideal scenario where |A| = |S|, though in practice
some true spin systems might be missing and some fake spin systems might be present in set S.
Depending on the way of quantifying the spin system signature information, the desired perfect
matching should have either a maximum weight or a minimum weight. For example, if the weight
is the absolute logarithm of the probability of mapping a spin system to an amino acid residue
type, then it is a minimization problem; if the weight is the shifted logarithm (to all positives),
then it is a maximization problem.

The Bipartite Perfect Matching (BPM) problem (both the minimization and the maximization
objectives) can be solved efficiently by a variety of existing algorithms. One of the fastest algorithms
is CSA [8], developed by Goldberg and Kennedy, which is a cost-scaling push-relabel algorithm that
finds minimum or maximum weight matchings of maximum cardinality (in our case, the input graph
is complete and therefore the matching must be perfect).

However, spin system assignment through the BPM formulation is far from being solved and
better mathematical models are still in need. What complicates things in the assignment is the
existence of multiple copies of a type of amino acid residue in the target protein. Notice that
there are only 20 types of amino acid residues while the length of target proteins, measured by the
number of amino acid residues therein, is in the hundreds and approaching the thousands (in our
experiments, protein lengths vary from 66 to 215). Since the signature information does not contain
residual position, there are usually too many optimal matchings, in terms of matching weight, for
a BPM instance and simply returning one by some algorithm doesn’t satisfy the near completeness

Heuristic Search in Constrained Bipartite Matching 3

requirement in structure calculation. Recall that some peaks capture atomic interaction among
nuclei from two neighboring amino acid residues. At the peak grouping stage, these peaks provide
evidence that some pair of spin systems should map to adjacent amino acid residues in the target
protein. This is the so-called adjacency information among the spin systems and it has been
noticed that adjacency information is crucial to the success of the resonance peak assignment
[20] (for reviews of existing research taking advantage of modern triple resonance three- and four-
dimensional NMR experiments for extracting adjacency information, see [1, 9, 15]). This adjacency
information encapsulates information about proximity of residues in the protein sequence, not
spatial closeness in 2D or 3D space. As a consequence, while the amino acid residues in vertex set
A follow the sequential order as they show up in the target protein sequence, vertex set S contains
groups of consecutive spin systems. The consecutive spin systems in a group form a directed string
and they should be mapped to consecutive amino acid residues in vertex set A. Note that there are
multiple strings and some strings might consist of only one spin system, due to missing adjacency
information. Consequently, the spin system assignment problem has to be cast as a Constrained
Bipartite Perfect Matching (CBPM) problem, with either the maximization or the minimization
objective (denoted as max-CBPM or min-CBPM, respectively):

Instance:

An edge-weighted complete bipartite graph G = (A,S,E), where vertex
set A consists of linearly ordered amino acid residues in the target protein
sequence and vertex set S consists of strings of spin systems;

Goal:

Find a perfect matching satisfying the adjacency constraint and achieving
the maximum/minimum weight.

In the problem definitions of BPM and CBPM the input bipartite graph is required to be
complete. Nonetheless, in practice, edge weights could be set to negative (for the maximization
objective) or positive infinity (for the minimization objective) to indicate an infeasible mapping
between a spin system and an amino acid residue. In such a case, the input bipartite graph
becomes actually not complete (where the missing edges correspond to the infeasible mappings).
For this reason, we will hereafter drop the completeness requirement from the problem definitions,
unless otherwise specified.

Lemma 1 [21] Given an instance G = (A,S,E) of the CBPM problem, it is NP-hard to decide if
G has a perfect matching satisfying the adjacency constraint.

We note that in the application of NMR spin system assignment, instances of the CBPM
problem constructed out of real (or simulated) NMR spectral data often do have a perfect matching
(consisting of feasible mappings). Therefore, we are mostly interested in the special case of the
CBPM problem where a perfect matching of the input graph G satisfying the adjacency constraint
is guaranteed. However, theoretically, the CBPM problem is unbelievably hard. We prove that
even approximating this special case within a polynomial factor is NP-hard. Therefore, heuristics
(with no worst-case guarantees) are essential for tackling the problem. There has already been
a considerable amount of effort to solve the spin system assignment problem using the CBPM
representation or its variants. This includes an expert system [23], a statistical method [10], a two-
layer search heuristic [21], a few approximation algorithms (with proven worst-case guarantees)

4 Tegos et al.

[3, 4, 5], and a branch-and-bound technique combined with greedy filtering [14]. An existing exact
algorithm, branch-and-bound, has been described in [14] with its real performance not completely
reported because of its high complexity.

We have taken a different approach and decided to use heuristic search to tackle the CBPM
problem. After a theoretical analysis of the inapproximability of the CBPM problem with the
maximization objective and the minimization objective (Section 2), we will present the use of
the popular iterative-deepening A* (IDA*) algorithm [12] to find the minimum weight perfect
matching in a min-CBPM instance (Section 3). Towards our goal, we have developed a set of
pruning heuristics that reduce the size of the search tree built by IDA* and consequently make the
search more efficient. We have also developed four different heuristic evaluation functions to guide
the search that provide different degrees of accuracy and speed (Section 3). The previous method
most similar to ours would be the expert system described in [23], which also uses best-first search.
However, the multi-step constraint satisfaction approach in that model may propagate assignment
errors, so (contrary to our approach) it does not target globally optimal assignments. To verify the
strength of our search method, we applied it to a test suite of 70 instances on 14 proteins obtained
from [21] using the quantified spin system signature information from [3] (Section 4). In relation
to the approximate methods [3, 14, 21] designed for the CBPM problem, our approach was able
to retrieve more correct mappings (i.e. assignment edges). More significantly, our method was able
to solve most of the instances faster than existing approaches that target optimal matchings and
some existing approaches targeting only near optimal matchings [14]. We conclude the paper in
Section 5 with some of our future work.

Throughout the remainder of the paper we will be referring to those groups containing more
than one spin system as strings, whereas standalone spin systems will be called singletons. Note
that a singleton can also be viewed as a string of size one. We will also use run to denote a maximal
number of consecutive amino acid residues that have not been mapped to any spin systems yet.

2 Theoretical Inapproximability Results

Here we consider the special cases of the max-CBPM and the min-CBPM problems where a con-
strained perfect matching of the input graph G (i.e. a perfect matching of G satisfying the adjacency
constraint) is given.

Let Π be a maximization (respectively, minimization) problem and let f(n) be a function
mapping each positive integer n to a positive real number. An algorithm A is said to be a factor-
f(n) approximation algorithm for Π if, on each instance I of Π, A outputs a solution of I whose
weight is at least 1/f(n) times the optimal (respectively, at most f(n) times the optimal), where
n = |I| measures the size of the instance.

Theorem 2 If for some constant ε > 0 the above special case of the max-CBPM problem has a
factor-nε polynomial-time approximation algorithm, then P = NP .

Proof. The proof is done via a reduction from the Constrained max-3-Dimensional Matching
(max-C3DM) problem defined as follows: An instance of the problem is a triple (M,M0,M1), where
M ⊆ W ×X × Y (W , X, and Y are disjoint sets having the same number q of elements), M0 is a
matching of M (i.e. M0 is a subset of M such that |M0| = q and no two elements of M0 agree in
any coordinate), and M1 ⊆ M . Given (M,M0,M1), the objective is to compute a matching M∗ of

Heuristic Search in Constrained Bipartite Matching 5

M such that |M∗ ∩M1| is maximized over all matchings of M . Zuckerman [24] showed that if for
some ε > 0 max-C3DM has a factor-nε polynomial-time approximation algorithm, then P = NP .

Our reduction needs another intermediate problem, namely, the 4-Partitioning problem. An
instance of this problem is a pair (U,B), where U is a finite set of 4p positive integers, B is a positive
integer,

∑
u∈U u = pB, and every u ∈ U satisfies B/5 < u < B/3. Given (U,B), the objective

is to decide if U has a 4-partition, i.e. a partition of U into p disjoint sets U1, . . . , Up such that∑
u∈Ui

u = B for each 1 ≤ i ≤ p. Note that each set Ui in a 4-partition of U must contain exactly
four elements. The 4-Partitioning problem is strongly NP-complete [7], i.e. it remains NP-complete
even if all the input integers are provided in unary.

We describe our reduction next. Let (M,M0,M1) be an instance of the max-C3DM problem.
Let W = {w1, . . . , wq}, X = {x1, . . . , xq}, and Y = {y1, . . . , yq}. Let M = {e1, . . . , em}. From M ,
we construct an instance (U,B) of the 4-Partitioning problem in the same way as in the proof of the
strong NP-completeness of the 4-Partitioning problem described in [7, Pages 96–99]. Let us review
some details in this typical construction. U consists of 4m integers, one for each triple in M and one
for each occurrence of an element of W ∪X ∪ Y in a triple in M . The integers of U corresponding
to a particular element z ∈ W ∪ X ∪ Y are denoted by z[1], . . . , z[nz], where nz is the number
of triples from M in which z occurs. For convenience, z[1] is regarded as the “actual” element
corresponding to z, while z[2] through z[nz] are regarded as the “dummy” elements corresponding
to z. Moreover, we abuse the notation to let each e` ∈ M denote the integer (of U) corresponding
to e`. By setting up the values as in [7, Page 97], (U,B) has the following two properties:

P1: Suppose M has a matching M ′. Then, a 4-partition U of U can be computed easily from M ′

as follows:

P1a: for each e` = (wi, xj , yk) ∈ M ′, the corresponding set in U is {e`, wi[1], xj [1], yk[1]};
P1b: for each e` = (wi, xj , yk) /∈ M ′, the corresponding set in U contains e` and three

“dummy” elements corresponding to wi, xj , yk.

P2: Suppose U = {U1, . . . , Um} is a 4-partition of U . For every set Uh ∈ U , we conclude that

P2a: either it consists of an e` and the “actual” elements corresponding to the elements of
e`;

P2b: or it consists of an e` and three “dummy” elements corresponding to the elements of e`.

Consequently, those Uh ∈ U satisfying property (P2a) form a matching of M .

Next, from (M,M0,M1) and its associated (U,B), we construct an instance G = (A,S,E) of the
max-CBPM problem and a constrained perfect matching N0 of G as follows. A is a sequence of
mB amino acid residues a1, a2, . . . , amB ordered in this order. S consists of 4m (ordered) strings
C1, . . . , C4m of spin systems. The strings in S one-to-one correspond to the integers of U and the
string Ci (1 ≤ i ≤ 4m) corresponding to u ∈ U has length |Ci| = u. Without loss of generality, we
may assume that each Ci with 1 ≤ i ≤ m corresponds to ei ∈ M and each Cj with m+1 ≤ j ≤ m+3q

corresponds to an “actual” element of U .
For convenience, we divide sequence A into m subsequences A1, . . . , Am each of which con-

sists of B consecutive amino acid residues. We call A1, . . . , Aq the primary subsequences and call
Aq+1, . . . , Am the secondary subsequences. We say that an ai ∈ A and a Cj ∈ S are matchable if

Q1: the subsequence Ak with ai ∈ Ak has at least |Cj | − 1 amino acid residues following ai,

and exactly one of the following three conditions holds (where u is the element of U corresponding
to Cj):

6 Tegos et al.

Q2a: u ∈ M (u is an integer for a triple);

Q2b: Ak is primary and u is an “actual” element of U ;

Q2c: Ak is secondary and u is a “dummy” element of U .

For each ai ∈ A and for each Cj ∈ S, if they are matchable, then for each 1 ≤ h ≤ |Cj |, G has
an edge between ai+h−1 and the h-th spin system of Cj . G has no other edges. For each edge
(ah, s`) of G, if the subsequence Ak with ah ∈ Ak is primary and the string Cj ∈ S with s` ∈ Cj

corresponds to a triple er ∈ M1, then edge (ah, s`) has weight 1/|Cj |; otherwise, edge (ah, s`) has
weight 0. This completes the construction of G = (A,S,E).

Suppose M ′ is a matching of M . We can use M ′ to construct a constrained perfect matching N of
G as follows. First, we use M ′ to construct a 4-partition U of U satisfying properties (P1a) and (P1b)
above. Then, for each e` = (wi, xj , yk) ∈ M ′ and its corresponding set {e`, wi[1], xj [1], yk[1]} in
U , we pick a primary subsequence Ah and one-to-one match its amino acid residues to the spin
systems in the strings corresponding to e`, wi[1], xj [1], and yk[1]. We then do the same for each
e` = (wi, xj , yk) ∈ M − M ′ and its corresponding set in U , except that we pick a secondary
subsequence Ah this time. This results in a constrained perfect matching N of G whose weight is
exactly |M ′ ∩M1|. In particular, this results in our desired N0 when M ′ = M0.

Conversely, suppose N is a constrained perfect matching of G. For each (primary or secondary)
subsequence Ah, the integers of U corresponding to the strings matched to Ah form a subset of U .
By condition (Q1) above, these subsets altogether form a 4-partition U of U . Now, by property (P2)
and conditions (Q2a, Q2b, Q2c) above, we can use the subsets in U corresponding to the primary
subsequences of A to construct a matching M ′ of M such that |M ′ ∩M1| is exactly the weight of
N . 2

Theorem 3 If for some polynomial-time computable function f(n) the above special case of the
min-CBPM problem has a factor-f(n) polynomial-time approximation algorithm, then P = NP .

Proof. The proof is done via a similar reduction from the 4-Partitioning problem. Given
an instance (U,B) of the 4-Partitioning problem, we construct an instance G = (A,S,E) of the
min-CBPM as follows. A and S are constructed and divided into subsequences and strings as in
the proof of Theorem 2 except that the integer m is replaced by t/B where t =

∑
u∈U u. E is

constructed so that G is a complete bipartite graph. For each (a, s) ∈ E, if the subsequence Ak of
A with a ∈ Ak has at least |C| − 1 amino acid residues following a where C is the string in S with
s ∈ C, then the weight of edge (a, s) is 1; otherwise, the weight of (a, s) is f(|G|)t. This completes
the reduction.

Obviously, if U has a 4-partition, then G has a constrained perfect matching of weight t;
otherwise, the weight of each constrained perfect matching of G must be at least f(|G|)t+(t−1) >

f(|G|)t. This completes the proof. 2

3 IDA* Search for Optimal Solutions

Previous search-based approaches for solving the CBPM problem optimally (typically, max-CBPM),
rely on branch-and-bound techniques [14]. While branch-and-bound methods employ heuristic

Heuristic Search in Constrained Bipartite Matching 7

estimates [3] to cut off unpromising nodes in the search tree, they still have to explore the whole
tree in order to find the optimal solution. This makes them inefficient for large search trees [14].
In many cases, best-first searches are a better alternative because they lead to a solution faster
(possibly at the expense of increased memory requirements). We have chosen to follow a best-first
search approach for the assignment problem, in order to make search more efficient (i.e. faster). In
the following we will present in detail how search is applied to min-CBPM.

One of the most popular best-first heuristic search algorithms is A* [11]. It has been used
extensively in many areas of Artificial Intelligence and has been successfully applied to various
bioinformatics problems, the most notable of which is probably multiple sequence alignment [17].
For each state (which is a partial solution to min-CBPM, i.e. a partial matching), A* uses both
the exact distance (which is the sum of weights of edges in the partial solution) from the start
state (which is the empty solution, i.e. null matching), denoted as g, and a heuristic estimate of the
remaining distance (estimated by the heuristic evaluation function) to the goal (which is a perfect
matching), denoted as h. The state with the smallest (g+h) value is always expanded next and the
algorithm is guaranteed to find the optimal (i.e. minimum weight) solution provided that h never
overestimates the true distance to the goal state.

The main disadvantage of the A* algorithm is that it requires a lot of memory. Taking this
into account, we turned to a more memory-efficient variant of A*, namely Iterative-Deepening A*
(IDA*) [12], partly because its recursive implementation is fairly straightforward without requiring
a lot of bookkeeping. Instead of a best-first search, IDA* performs a series of depth-first searches
that are bounded by a distance threshold, which is increased successively. A node in the search
tree is cut off if its (g + h) value exceeds the current threshold.

We present the details of our implementation of IDA* in pseudocode form in Figure 1, but
the reader may also refer to [16] for a more detailed account of the main components of IDA*.
In the following two subsections we describe our main contributions to heuristic search for the
min-CBPM problem, which are the development of a search-enhancing heuristic and four different
heuristic evaluation functions.

3.1 Search Heuristic

The effectiveness of a search method depends on the size of the search tree that gets built. Assuming
a solution of length ` and an average branching factor b, the size of the search tree built by IDA* is
O(b`). We have developed a pruning technique that produces a smaller search tree and consequently
a faster search.

The CBPM problem is computationally hard due to the existence of adjacency information
among the spin systems, though it is informative in terms of identifying correct mappings. The
pruning heuristic is based on the fact that once a state that contains only singleton spin systems
has been encountered, there is no need to continue with the IDA* search. Instead, we can calculate
the corresponding minimum weight unconstrained bipartite perfect matching, which can be done
very efficiently by existing algorithms. This way, we are not only able to skip whole subtrees of the
search tree but we also get an accurate evaluation distance for the root node of those subtrees.

In order to utilize the full power of this heuristic, we generate all the states corresponding to
string mappings first, ignoring singleton mappings. Note that individual string/singleton assign-
ments are independent of each other, so we can enforce this special way of building the tree without
losing optimality. In fact, this way of building the search tree also reduces the running time by
at least one order of magnitude. In the resulting search tree, all the internal nodes correspond

8 Tegos et al.

function Iterative Deepening A Star()

thresh = h(root);
repeat

thresh = DFS(root, thresh);
until Solution found()

function DFS(state, thresh)
if Solution found()

return 0;
new depth = ∞;
for each successor ui of state do

if cost(state, ui) + h(ui) ≤ thresh

if ui contains no strings
depth = cost(state, ui) + CSA();

else

depth = cost(state, ui) + DFS(ui, thresh− cost(state, ui));
else

depth = cost(state, ui) + h(ui);
if Solution found()

return depth;

new depth = min(new depth, depth);
return new depth;

Figure 1: IDA* implementation for the min-CBPM problem. thresh is the distance threshold, which
is updated iteratively; Function Solution found() checks if a solution has been found; Function
cost(state, ui) returns the exact distance of going from node state to node ui; Function h() is
the heuristic evaluation function; Function CSA() calls the minimum weight bipartite matching
algorithm CSA [8]. Our implementation also uses a transposition table for efficiency but the code
has been left out for simplicity.

to mappings of strings and all the leaf nodes contain only singleton spin systems. Thus, heuristic
search stops at those leaf nodes and we get an accurate evaluation for them very fast by calling the
CSA algorithm to calculate the minimum weight unconstrained bipartite perfect matching. Our
experimental results show that the application of this heuristic has reduced the running time of the
algorithm by more than 2 orders of magnitude.

3.2 Evaluation Functions

The heuristic evaluation function is the most important component of an IDA* implementation
since it can possibly provide orders of magnitude of savings. The ideal combination is an evaluation
function that is accurate and at the same time inexpensive to compute. We have developed four
different heuristic evaluation functions for the min-CBPM problem, which are described in the
following paragraphs. The adjacency information implies that in a feasible matching the edges
incident at a string must be parallel. For clarity, we will be referring to these parallel edges as
forming a compound edge.

Heuristic Search in Constrained Bipartite Matching 9

3.2.1 MIN WEIGHTS EVAL

Let s be a string (or a singleton); Let ws be the minimum weight of the compound edge (or
normal edge, respectively) incident at s. Then obviously, the summation of ws over all strings
and singletons,

∑
s ws, is a lower bound on the optimal solution. Note that these edges might not

constitute a feasible solution since some amino acid residues might be incident to more than one of
them. This evaluation function may not be very accurate but it is inexpensive (about linear time)
to compute. So accuracy is compensated for by speed.

3.2.2 UBM EVAL

We have mentioned earlier that it is the adjacency constraint that complicates the problem. One
natural consideration would be to drop the adjacency constraint in order to design an efficient
evaluation function. It is easy to see that the minimum weight perfect matching of the corresponding
unconstrained problem is always a lower bound on the minimum weight perfect matching of the
min-CBPM problem. This is because the adjacency constraint in the spin systems can only prevent
the selection of some of the edges in the unconstrained matching and thus increase the total weight
of the constrained matching (or leave it the same). So we let this evaluation function return the
weight of the unconstrained perfect matching, which can be calculated in polynomial time by a
variety of existing algorithms. Typically, in our implementation we choose the CSA algorithm by
Goldberg and Kennedy [8], which runs in about cubic time.

3.2.3 COLLAPSED UBM EVAL

Both the MIN WEIGHTS EVAL and the UBM EVAL heuristic have flaws that make them inaccurate. In
particular, MIN WEIGHTS EVAL does not resolve conflicts between the edges whereas UBM EVAL does
not use any information about strings. The COLLAPSED UBM EVAL heuristic was developed in order
to remedy those drawbacks by incorporating string information into the UBM EVAL heuristic. This
is done by replacing parallel edges with compound edges. Let si,i+k denote a string (of length
k + 1) that can be matched to a run of amino acid residues aj through aj+k. The compound edge
is created to connect si+k and aj+k with its weight being the sum of the weights of those k + 1
parallel edges. Subsequently, those k parallel edges connecting si+p and aj+p, for 0 ≤ p < k, are
set to have weight 0. The edges out of singleton spin systems remain unchanged. The weight of
every other edge in the graph (i.e. one that hasn’t been processed in the steps just described) is set
to infinity. This transformed edge-weighted bipartite graph is then passed to UBM EVAL.

We want to remark that the weights of the parallel edges are set to zero in order not to affect
the weight of the matching returned by UBM EVAL. Also, if any edges with a weight of infinity are
selected in the matching, it is an indication that the corresponding tree branch is a dead-end and
we have a cut-off in the search. Notice that we could remove the edges with infinite weight from
the graph altogether. However, the current implementation of CSA requires the existence of a
perfect matching otherwise it goes into an infinite loop. Removing the edges with infinite weight
may exclude the presence of a perfect matching when there is a dead-end.

3.2.4 PARTIAL UBM EVAL

This fourth heuristic implements another way to combine MIN WEIGHTS EVAL and UBM EVAL. It
first asks MIN WEIGHTS EVAL to get the weight for a partial matching involving some of the strings

10 Tegos et al.

(typically, long strings) and then asks UBM EVAL to get the weight for the matching in the remaining
bipartite graph. In more detail, some of the strings are selected and MIN WEIGHTS EVAL is used to
find the minimum weight edges coming out of them in the usual fashion. The weights of these
(compound) edges are then added together, producing a distance Wm. The next step is to set the
weight of all edges that are incident at the spin systems in strings that have been processed by
MIN WEIGHTS EVAL to 0. This is necessary since we do not want these edges to affect the matching
calculated for the remaining bipartite graph. UBM EVAL is then applied to the remaining graph to
produce another distance Wu. The final evaluation distance is equal to Wm + Wu.

4 Experimental Results and Discussions

In order to evaluate our implementation we have used a test suite of 70 instances. These consist of
14 proteins extracted from BioMagResBank (http://www.bmrb.wisc.edu) without solved atomic
structures and 5 adjacency information densities for each protein. The adjacency densities range
from 50% to 90%, which together with the protein length represent the size of the search space.
Note that the protein data obtained from BioMagResBank contains complete (i.e. 100%) adjacency
information. For our simulation purposes, we created instances with different levels of adjacency
densities, where a density of p% indicates that p% of the adjacent spin system pairs are randomly
retained while (100− p)% are left out to mimic missing adjacency.

In detail, the min-CBPM instances were generated in the following way: We obtained the
backbone chemical shifts of H, N, Cα, and Cβ for each of those 14 proteins from BioMagResBank
to generate the bipartite graphs using the scoring scheme trained in [19] and used the five levels of
pseudo-adjacency densities presented in [21]. We used this typical combination of chemical shifts
only because they can be obtained from three NMR spectra HSQC, HNCACB, and CBCACONH,
which are typically done in most NMR labs. We remark that these 14 proteins were not used
to derive the scoring scheme so as to avoid any possible bias. This specific scoring scheme uses
extra information, additional to the spin systems, to better differentiate between residue types and
has been typically designed to handle missing chemical shifts. All experiments were performed on
an AIX IBM cluster with 32GB of memory and 16 PowerPC processors running at 1.7GHz. The
running times reported here are all user times in seconds.

From a computational complexity point of view, 0% adjacency density is an easy case (i.e. the
BPM problem). The complexity increases as the adjacency density rises but decreases after the
adjacency density passes some limit and eventually becomes another easy case when the adjacency
density reaches 100% (i.e. the CBPM problem with a single string of all spin systems). In this sense,
we might claim that for each protein, instances with higher adjacency density (for example 90%) are
easier than instances with lower adjacency density (for example 50%). This has been verified by the
computational experiments. Table 1 presents the detailed results for the spin system assignment
instances. In summary, our IDA* algorithm was able to solve 65 out of 70 instances and 43 of them
were solved in less than 15 seconds. The remaining 5 instances could not be solved within the time
allocated for each instance, which was 2 days. These instances are the most difficult instances for
the proteins involved and their adjacency densities are 50% and 60%. In practice, the percentage
of adjacency information available to NMR labs is usually 70% or more, for example, from the
three NMR spectra HSQC, HNCACB, and CBCACONH. Therefore, these unsolved instances do
not diminish the power of our approach. On the contrary, we have re-run the branch-and-bound
algorithm [14] on the same computer and within the same 2-day time limit, the number of instances

http://www.bmrb.wisc.edu

Heuristic Search in Constrained Bipartite Matching 11

|A| WM TIDA∗ TBnB TGF−BnB MIDA∗ MGF−BnB HEF

bmr4027 9 158 10366 1 1 1 158 156 MW
bmr4144 9 78 6556 1 1 1 78 78 MW
bmr4288 9 105 7923 1 1 1 105 105 MW
bmr4302 9 115 7736 1 1 1 115 115 MW
bmr4309 9 178 8056 1 170 1 178 178 MW
bmr4316 9 89 4704 1 1 1 89 89 MW
bmr4318 9 215 14674 1 5 1 215 215 MW
bmr4353 9 126 8068 1 1 1 126 126 MW
bmr4391 9 66 4858 1 1 1 66 66 MW
bmr4393 9 156 5781 1 120 1 156 156 MW
bmr4579 9 86 5418 1 1 1 86 86 MW
bmr4670 9 120 7892 1 1 1 120 120 MW
bmr4752 9 68 4094 1 1 1 68 68 MW
bmr4929 9 114 7113 1 2 1 114 114 MW

bmr4027 8 158 10366 1 41 4 158 156 MW
bmr4144 8 78 6556 1 1 1 78 76 MW
bmr4288 8 105 7923 1 1 1 105 105 MW
bmr4302 8 115 7694 1 70 1 112 112 MW
bmr4309 8 178 8038 12 17233 42 172 173 MW
bmr4316 8 89 4704 1 7 1 89 89 MW
bmr4318 8 215 14667 5 * 12 213 211 MW
bmr4353 8 126 8068 1 149 1 126 126 MW
bmr4391 8 66 4858 1 1 1 66 66 MW
bmr4393 8 156 5773 13 * 3 139 144 (5784) MW
bmr4579 8 86 5418 1 1 1 86 86 MW
bmr4670 8 120 7892 1 366 1 120 120 MW
bmr4752 8 68 4094 1 1 1 68 68 MW
bmr4929 8 114 7113 1 57 2 114 114 MW

bmr4027 7 158 10341 11 * 18528 149 150 MW
bmr4144 7 78 6554 1 245 36 70 68 MW
bmr4288 7 105 7921 2 34 35 99 97 MW
bmr4302 7 115 7683 7 * 495 106 106 MW
bmr4309 7 178 7853 496 * * 150 142 (8304) MW
bmr4316 7 89 4704 1 73 1 89 87 MW
bmr4318 7 215 14661 1028 * * 212 168 (15233) MW

|A| WM TIDA∗ TBnB TGF−BnB MIDA∗ MGF−BnB HEF

bmr4353 7 126 8066 2 * 6 124 122 MW
bmr4391 7 66 4858 1 114 1 66 64 MW
bmr4393 7 156 5718 38355 * 122963 111 112 (5771) MW
bmr4579 7 86 5418 1 48 7 86 86 MW
bmr4670 7 120 7880 2 * 695 118 116 MW
bmr4752 7 68 4094 1 1 1 68 68 MW
bmr4929 7 114 7111 1 425 47 112 112 MW

bmr4027 6 158 10321 779 * 518400 144 131 (10971) MW
bmr4144 6 78 6504 27 2558 177989 73 69 PART
bmr4288 6 105 7921 65 * 696182 99 76 (8282) PART
bmr4302 6 115 7635 111 * * 101 100 PART
bmr4309 6 178 - * * 355450 - 100 (8530) -
bmr4316 6 89 4704 1 1062 66 89 84 MW
bmr4318 6 215 14438 123896 * 355913 178 143 (15957) COLL
bmr4353 6 126 8063 258 * * 121 109 (8155) MW
bmr4391 6 66 4847 1 * 9 60 51 (4876) MW
bmr4393 6 156 - * * * - 77 (6245) -
bmr4579 6 86 5407 211 * 72 79 80 MW
bmr4670 6 120 7773 9 * 381454 113 114 MW
bmr4752 6 68 4094 2 * 482 68 66 MW
bmr4929 6 114 7068 8 * 109082 105 103 MW

bmr4027 5 158 10211 24645 * 355912 121 103 (11518) COLL
bmr4144 5 78 6440 40 * * 64 21 (9214) PART
bmr4288 5 105 7914 169 * 432000 97 50 (12107) PART
bmr4302 5 115 7621 1782 * 355897 95 83 (8089) PART
bmr4309 5 178 - * * 255874 - 61 (9044) -
bmr4316 5 89 4703 1 * * 87 76 PART
bmr4318 5 215 - * * 355874 - 89 (18454) -
bmr4353 5 126 7919 2090 * * 91 76 (8958) COLL
bmr4391 5 66 4811 14 * 708 52 51 (4815) MW
bmr4393 5 156 - * * 355837 - 65 (6325) -
bmr4579 5 86 5310 2223 * * 57 52 (5635) PART
bmr4670 5 120 7736 6442 * 172800 108 65 (9488) MW
bmr4752 5 68 4090 4 * 77233 60 58 UBM
bmr4929 5 114 7003 810 * 432000 104 73 (8330) MW

Table 1: Computational results for all 70 instances. The number beside the underscore in the
instance name indicates the adjacency information (e.g. 5 indicates an adjacency density of 50%).
‘|A|’ is the number of amino acid residues (the length of the protein), while ‘WM ’ is the weight
of an optimal matching (from IDA*). ‘Talgorithm’ is the running time, in seconds, for the first
solution found by the corresponding algorithm and ‘Malgorithm’ is the number of correct matching
edges retrieved accordingly. Note that a * in the ‘Talgorithm’ column indicates that the algorithm
didn’t terminate in 2 days and the numbers inside the parentheses in the MGF−BnB column are the
distances returned by GF-BnB (not optimal). Finally, ‘HEF’ is the name of the evaluation function
that performed the best for that instance. ‘MW’ stands for MIN WEIGHTS EVAL, ‘UBM’ stands for
UBM EVAL, ‘COLL’ stands for COLLAPSED UBM EVAL and ‘PART’ stands for PARTIAL UBM EVAL.

solved was only 35 out of 70; even worse, there were 2 8 instances and 7 7 instances that couldn’t
be solved. The average running times for different levels of adjacency densities of our method
and the branch-and-bound algorithm are plotted in Figure 2(a), where the running times for those
unsolved instances were all set to 7 days (i.e. 604800 seconds). It should be noted that our method
is several orders faster than the branch-and-bound algorithm, something that becomes even more
significant when the adjacency density drops.

The above comparison is made to demonstrate the efficiency of our IDA* algorithm in searching
for optimal solutions to the min-CBPM problem. The following comparison presents the advantage
of searching for optimal solutions over near-optimal solutions, quantified by the number of spin
systems correctly mapped to their host amino acid residues in the target protein. This comparison
also shows the strength of the CBPM formulation of the NMR resonance assignment problem.

12 Tegos et al.

The solutions found by IDA* were compared to those produced by greedy filtering followed by
branch-and-bound (GF-BnB) [14]. The results show that our method succeeded in retrieving more
correct mappings for every instance. This should come as no surprise though since the use of the
greedy heuristics — greedy filtering — degrades the quality of the solution in terms of assignment
confidence. More importantly though, in most instances our approach ran faster even compared
to GF-BnB, as can be seen in Table 1. The statistics in this table were obtained by re-running
the GF-BnB algorithm on the same computer. The average percentages of correct edges recovered
for different levels of adjacency densities by our method and by the GF-BnB algorithm are plotted
in Figure 2(b), where those instances not solved by our method were excluded from the statistics.
From that, we might be able to claim that, prior to our method, there existed no approach for the

 0

 43200

 86400

 129600

 172800

 216000

 259200

 302400

 345600

 388800

 432000

 475200

 518400

 561600

 604800

50% 60% 70% 80% 90%

A
ve

ra
ge

 r
un

ni
ng

 ti
m

e
in

 s
ec

on
ds

Adjacency information percentage

IDA*

BnB

(a) Average running time comparison between IDA*

and BnB: IDA* significantly outperforms BnB when

the adjacency density decreases.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

50% 60% 70% 80% 90%

A
ve

ra
ge

 c
or

re
ct

 e
dg

e
pe

rc
en

ta
ge

Adjacency information percentage

IDA*

GF-BnB

(b) Average percentage of correct edges recovered by

IDA* and GF-BnB: GF-BnB performs much worse

than IDA* when the adjacency density decreases.

Figure 2: Performance comparison between IDA* and (GF-)BnB.

NMR resonance assignment problem that combined optimality of solutions with such small running
times.

As mentioned above, for the same protein, the instances get harder as the number of strings
increases while their length decreases, i.e. the adjacency density decreases. The instances not
solved by our method in 2 days are the ones with the largest number of amino acid residues and
contain more strings and singletons than other instances in their group. We have modified the
search algorithm to continue searching after finding the first solution so that all optimal solutions
are retrieved. For the unsolved instances, the solved instances in the same category (that is,
constructed for the same protein but with higher adjacency densities) have a very large number
of optimal solutions. This evidence may provide an additional explanation for the difficulty of a
particular instance. It is an indication that sometimes the scoring scheme does not differentiate
very well between alternative matchings (something that might be inherent in the spectra data),
so the search effort needed to produce the optimal solution is much greater. Nonetheless, as the
reader can imagine, using the same greedy filtering as in [14], our IDA* search algorithm can easily
find the conditional optimal solutions for those five unsolved instances too. So far we don’t have
the complete set of results on this aspect, so more experimental results will be reported later.

Coming back to the IDA* algorithm itself, it is characteristic that no single evaluation function

Heuristic Search in Constrained Bipartite Matching 13

outperforms all the others in the experiments. It is clear though that MIN WEIGHTS EVAL, although
rather simplistic, cannot be beaten for the easy instances, (that is, instances with adjacency density
≥ 70%). However, the performance of the evaluation functions changes as the instances become
more difficult. This is due to the fact that the strings increase in number but become shorter,
so UBM EVAL-based evaluations become more accurate. By keeping track of the computations
within the 2-day period, we have observed that COLLAPSED UBM EVAL and PARTIAL UBM EVAL clearly
outperform the other evaluation functions in the unsolved instances. It is characteristic that in
some of the hard instances MIN WEIGHTS EVAL appeared to be faster initially but other evaluation
functions proved more efficient in the long-run.

Our model focuses mainly on string mappings since they have a higher degree of confidence.
Singleton mappings are not as reliable but can affect the subsequent structure determination, so
our implementation offers a few options to handle them better. Users can specify either that no
singletons be mapped (and just get a list of all singletons and remaining residues) or that all
possible singleton mappings be returned (currently we use IDA* together with CSA to enumerate
them, another alternative enumerating algorithm would be from [18]). The latter is aimed at
providing extra aid in the manual mapping of singletons. Moreover, in a parallel work of research,
we have developed an evaluation model [13] that can assign confidence levels to the mapping edges
contained in the optimal assignment, thus providing a quantified measure for the quality of the
proposed mappings.

5 Future Work

Although our current work focuses mainly on the computational side of the NMR backbone res-
onance assignment problem, one of our objectives is to develop a fully automated tool for NMR
backbone resonance assignment that will be both robust and efficient. This will considerably speed
up the protein structure determination process via NMR spectroscopy and it will transform it from
a time-consuming method to a high-throughput technique.

With this in mind, we are currently trying to extend our approach into a more general framework
that will be oriented more towards full protein structure determination. One step towards this is the
integration of side-chain nuclei into the backbone assignment, as our experiments do not currently
take full advantage of them. Moreover, we have been examining the possibility of utilizing structural
constraints (i.e. NOE spectral peaks, J-coupling constants, Residual Dipolar Coupling constants) in
order to improve the assignment. We are aware though that this might introduce “false” adjacency
information, possibly requiring a modification of the CBM model.

On the computational side, we believe the most promising area of improvement lies in the search
algorithm. We are currently in the process of implementing other variants of the A* algorithm, such
as Partial-Expansion A* [22], to see how they perform on this particular problem, especially on the
unsolved instances. On the other hand, we are always looking into developing better evaluation
functions. There is existing work [3, 4] on approximating the max-CBM problem. We are currently
pursuing how we may take advantage of it.

Another direction we would like to follow is to better evaluate our approach against existing
approximate methods, as well as methods proposed for other formulations of the NMR resonance
assignment problem [2, 10, 23]. Such an evaluation becomes necessary when they are applied to
real peak assignment instances where the correct solutions are unknown to us. Along this line, we
are in the process of acquiring some real peak assignment data to facilitate our experiments. We

14 Tegos et al.

are also planning to conduct an extensive study on greedy filtering [3, 4] followed by IDA*.

Acknowledgments

The authors are grateful to two referees for their many helpful suggestions and comments. The
research of TT and GL was supported by NSERC, PENCE, AICML, and CFI. The research of ZZC
was supported in part by the Grant-in-Aid for Scientific Research of the Ministry of Education of
Japan, under Grant No. 14580390.

References

[1] M. C. Baran, Y. J. Huang, H. N. Moseley, and G. T. Montelione. Automated analysis of
protein NMR assignments and structures. Chemical Reviews, 104:3541–3556, 2004.

[2] C. Bartels, P. Güntert, M. Billeter, and K. Wüthrich. GARANT - A general algorithm for
resonance assignment of multidimensional nuclear magnetic resonance spectra. Journal of
Computational Chemistry, 18:139–149, 1997.

[3] Z.-Z. Chen, T. Jiang, G.-H. Lin, J. J. Wen, D. Xu, J. Xu, and Y. Xu. Approximation algorithms
for NMR spectral peak assignment. Theoretical Computer Science, 299:211–229, 2003.

[4] Z.-Z. Chen, T. Jiang, G.-H. Lin, J. J. Wen, D. Xu, and Y. Xu. Improved approximation algo-
rithms for NMR spectral peak assignment. In Proceedings of the 2nd Workshop on Algorithms
in Bioinformatics (WABI 2002), LNCS 2452, pages 82–96, 2002.

[5] Z.-Z. Chen, G.-H. Lin, R. Rizzi, J. J. Wen, D. Xu, Y. Xu, and T. Jiang. More reliable protein
NMR peak assignment via improved 2-interval scheduling. Journal of Computational Biology,
12(2):129–146, 2005.

[6] A. E. Ferentz and G. Wagner. NMR spectroscopy: a multifaceted approach to macromolecular
structure. Quarterly Review Biophysics, 33:29–65, 2000.

[7] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-completeness. W. H. Freeman and Company, San Francisco, 1979.

[8] A. V. Goldberg and R. Kennedy. An efficient cost scaling algorithm for the assignment problem.
Mathematical Programming, 71:153–178, 1995.

[9] W. Gronwald and H. R. Kalbitzer. Automated structure determination of proteins by NMR
spectroscopy. Progress in Nuclear Magnetic Resonance Spectroscopy, 44:33–96, 2004.

[10] P. Güntert, M. Salzmann, D. Braun, and K. Wüthrich. Sequence-specific NMR assignment
of proteins by global fragment mapping with the program Mapper. Journal of Biomolecular
NMR, 18:129–137, 2000.

[11] N. J. Hart, P. E. Nilsson, and B. Raphael. A formal basis for the heuristic determination
of minimum cost paths. IEEE Transactions on Systems Science and Cybernetics, 4:100–107,
1968.

Heuristic Search in Constrained Bipartite Matching 15

[12] R. E. Korf. Depth-first iterative deepening: an optimal admissible tree search. Artificial
Intelligence, 27:97–109, 1985.

[13] G.-H. Lin, X. Wan, T. Tegos, and Y. Li. Statistical evaluation of NMR backbone resonance
assignment. International Journal of Bioinformatics Research and Applications, 2005. In press.

[14] G.-H. Lin, D. Xu, Z. Z. Chen, T. Jiang, J. J. Wen, and Y. Xu. An efficient branch-and-
bound algorithm for the assignment of protein backbone NMR peaks. In Proceedings of the
First IEEE Computer Society Bioinformatics Conference (CSB 2002), pages 165–174. IEEE
Computer Society Press, 2002.

[15] D. Malmodin, C. H. Papavoine, and M. Billeter. Fully automated sequence-specific resonance
assignments of hetero-nuclear protein spectra. Journal of Biomolecular NMR, 27:69–79, 2003.

[16] A. Reinefeld and T. A. Marsland. Enhanced iterative-deepening search. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 16(7):701–710, 1994.

[17] I. Takahiro and I. Hiroshi. Fast A* algorithms for multiple sequence alignment. In Genome
Informatics Workshop 94, pages 90–99, 1994.

[18] T. Uno. Algorithms for enumerating all perfect, maximum and maximal matchings in bipartite
graphs. In Processings of the 8th International Symposium on Algorithms and Computation
(ISAAC 1997), LNCS 1350, pages 92–101, 1997.

[19] X. Wan, D. Xu, C. M. Slupsky, and G.-H. Lin. Automated protein NMR resonance assign-
ments. In Proceedings of the Second IEEE Computer Society Bioinformatics Conference (CSB
2003), pages 197–208. IEEE Computer Society Press, 2003.

[20] K. Wüthrich. NMR of Proteins and Nucleic Acids. Wiley, John & Sons, New York, 1986.

[21] Y. Xu, D. Xu, D. Kim, V. Olman, J. Razumovskaya, and T. Jiang. Automated assignment of
backbone NMR peaks using constrained bipartite matching. IEEE Computing in Science &
Engineering, 4:50–62, 2002.

[22] T. Yoshizumi, T. Miura, and T. Ishida. A* with partial expansion for large branching factor
problems. In National Conference on Artificial Intelligence (AAAI-00), pages 923–929, 2000.

[23] D. E. Zimmerman, C. A. Kulikowski, Y. Huang, W. F. M. Tashiro, S. Shimotakahara, C. Chien,
R. Powers, and G. T. Montelione. Automated analysis of protein NMR assignments using
methods from artificial intelligence. Journal of Molecular Biology, 269:592–610, 1997.

[24] D. Zuckerman. NP-complete problems have a version that’s hard to approximate. In Proceed-
ings of the 8th IEEE Conference on Structure in Complexity Theory, pages 305–312, 2003.

	Introduction
	Theoretical Inapproximability Results
	IDA* Search for Optimal Solutions
	Search Heuristic
	Evaluation Functions
	MIN_WEIGHTS_EVAL
	UBM_EVAL
	COLLAPSED_UBM_EVAL
	PARTIAL_UBM_EVAL

	Experimental Results and Discussions
	Future Work

