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Abstract

We present an O(n3)-time randomized approximation algorithm for the maximum traveling
salesman problem whose expected approximation ratio is asymptotically 251

331 , where n is the
number of vertices in the input (undirected) graph. This improves the previous best.

1 Introduction

The maximum traveling salesman problem (Max TSP) is to compute a maximum-weight Hamil-
tonian circuit (called a tour) in a given edge-weighted (undirected) graph. The problem is known
to be Max-SNP-hard [1] and there have been a number of approximation algorithms known for it
[3, 4, 7]. In 1984, Serdyukov [7] gave an O(n3)-time approximation algorithm for Max TSP that
achieves an approximation ratio of 3

4 . Serdyukov’s algorithm is very simple and elegant, and it
tempts one to ask if a better approximation ratio can be achieved for Max TSP by a polynomial-
time approximation algorithm. Along this line, Hassin and Rubinstein [4] showed that with the
help of randomization, better approximation ratio for Max TSP can be achieved. More precisely,
they gave an O(n3)-time randomized approximation algorithm for Max TSP whose expected ap-
proximation ratio is asymptotically 25

33 . Their algorithm is basically a combination of Serdyukov’s
algorithm and an earlier algorithm of their own [3].

The asymptotic ratio 25
33 achieved by Hassin and Rubinstein’s algorithm is marginally better

than the ratio 3
4 achieved by Serdyukov’s algorithm. However, Hassin and Rubinstein said in

their paper [4]: “the better ratio at least demonstrates that the ratio of 3
4 can be improved and

further research along this line is encouraged”. Moreover, it is widely recognized that improving
approximation algorithms for TSP and its variants are not easy. In this paper, following and
improving Hassin and Rubinstein’s work, we give a new O(n3)-time randomized approximation
algorithm for Max TSP whose expected approximation ratio is asymptotically 251

331 . Hassin and
Rubinstein [4] show that each approximation algorithm for Max TSP can be translated into an
approximation algorithm for a problem called the maximum latency TSP which was first studied
by Chalasani and Motwani [2]. Using their translation, our new algorithm can be trivially turned
into a new randomized approximation algorithm for the maximum latency TSP whose expected
approximation ratio improves the previous best.

Like all previous approximation algorithms for Max TSP, our new algorithm starts by computing
a maximum-weight cycle cover C of the input graph G and then modify the cycles in C (somehow)
to a tour of G without losing much weight. All the previous algorithms modify the cycles in C in
an arbitrary order. In contrast, our algorithm modify the cycles in a carefully chosen order based
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on suitably constructed auxiliary graphs. Moreover, the way of modifying a cycle heavily depends
on how the previous cycles were modified. This is why our algorithm is complicated.

After giving some basic definitions in Section 2, we sketch Hassin and Rubinstein’s algorithm
in Section 3. In Section 4, we describe our ideas for improving their algorithm. Section 5 contains
an outline of our new algorithm. Section 6 details how to modify 4-cycles. Sections 7 and 8 detail
how to modify non-4-cycles. Section 9 contains an analysis of the improved approximation ratio
and the running time.

2 Basic Definitions

Throughout this paper, a graph means a simple undirected graph (i.e., it has neither parallel edges
nor self-loops), while a multigraph may have parallel edges but no self-loops.

Let G be a graph. We denote the vertex set of G by V (G), and denote the edge set of G by
E(G). In order to avoid confusion, we sometimes call the elements of V (G) the nodes of G (rather
than the vertices of G). For a subset U of V (G), G − U denotes the graph obtained from G by
removing the vertices in U (together with the edges incident to them). For a subset F of E(G),
G−F denotes the graph obtained from G by removing the edges in F . The degree of a vertex v in
G is the number of edges incident to v in G. Two edges of G are adjacent if they have a common
endpoint.

A cycle in G is a connected subgraph of G in which each vertex is of degree 2. A path in G
is either a single vertex of G or a connected subgraph of G in which exactly two vertices are of
degree 1 and the others are of degree 2. The length of a cycle or path C is the number of edges in
C. A cycle is called a k-cycle if its length is k. If the length of a cycle or path P is odd, then we
say that P is odd; otherwise, we say that P is even. A tour (also called a Hamiltonian cycle) of G
is a cycle C of G with V (C) = V (G). A cycle cover of G is a subgraph H of G with V (H) = V (G)
in which each vertex is of degree 2. A subtour of G is a subgraph H of G in which each connected
component is a path.

A matching of G is a (possibly empty) set of pairwise nonadjacent edges of G. A perfect matching
of G is a matching M of G such that each vertex of G is incident to an edge in M . An independent
set of G is a (nonempty) set U of vertices in G such that no two vertices in U are adjacent in G.
The distance between two vertices u and v in G is the length of the shortest path between u and v
in G.

For a random event A, Pr[A] denotes the probability that A occurs. For two random events A
and B, Pr[A | B] denotes the (conditional) probability that A occurs given the known occurrence
of event B. For a random variable X, E [X] denotes the expected value of X.

Throughout the rest of the paper, fix an instance (G,w) of Max TSP, where G is a complete
(undirected) graph and w is a function mapping each edge e of G to a nonnegative real number
w(e). For a subset F of E(G), w(F ) denotes

∑
e∈F w(e). The weight of a subgraph H of G is

w(H) = w(E(H)). Our goal is to compute a tour of large weight in G. For ease of explanation,
we assume that n = |V (G)| is even; the case where n is odd is similar. We first sketch Hassin and
Rubinstein’s algorithm (H&R-algorithm) for Max TSP in the next section, and then detail how to
improve it in the subsequent sections.

3 H&R-algorithm

H&R-algorithm starts by computing a maximum-weight cycle cover C. If C is a tour of G, then we
are done. Throughout the rest of the paper, we assume that C is not a tour of G. Suppose that
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T is a maximum-weight tour of G. Let Tint denote the set of all edges {u, v} of T such that some
cycle C in C contains both u and v. Let Text denote the set of edges in T but not in Tint. Let
α = w(Tint)/w(T ).

H&R-algorithm then computes three tours T1, T2, T3 of G and outputs the one of the largest
weight. Based on an idea in [3], T1 is computed by modifying the cycles in C as follows. Fix a
parameter ε > 0. For each cycle C in C, if |E(C)| > ε−1, then remove the minimum-weight edge;
otherwise, replace C by a maximum-weight path P in G with V (P ) = V (C). Then, C becomes
a subtour and we can extend it to a tour T1 in an arbitrary way. As observed by Hassin and
Rubinstein [4], we have:

Fact 3.1 w(T1) ≥ (1− ε)w(Tint) = (1− ε)αw(T ).

When w(Text) is large, w(Tint) is small and w(T1) may be small, too. The two tours T2 and T3

together are aimed at the case where w(Text) is large. By modifying Serdyukov’s algorithm, T2 and
T3 are computed as shown in Figure 1:

1. Compute a maximum-weight matching M in G. (Comment: Since |V (G)| is even, M is
perfect.)

2. Compute a maximum-weight matching M ′ in a graph H, where V (H) = V (G) and E(H)
consists of those {u, v} ∈ E(G) such that u and v belong to different cycles in C.

3. Let C1, . . . , Cr be an arbitrary ordering of the cycles in C.

4. For i = 1, 2, . . . , r (in this order), perform the following steps:

(a) Compute two disjoint nonempty matchings A1 and A2 in Ci such that each vertex
of Ci is incident to an edge in A1 ∪ A2 and both the graphs (V (G),M ∪ A1) and
(V (G),M ∪A2) are subtours of G.

(b) Select h ∈ {1, 2} uniformly at random, and move the edges in Ah from C to M .

5. Add those edges {u, v} ∈M ′ to C such that both u and v have degree 1 in C.

6. For each cycle C in C, select one edge in E(C)∩M ′ uniformly at random and delete it from
C.

7. Complete C to a tour T2 of G by adding some edges of G.

8. Complete the graph (V (G),M) to a tour T3 of G by adding some edges of G.

Figure 1. Computation of tours T2 and T3 in H&R-algorithm.

4 Ideas for Improving H&R-algorithm

A bottleneck of H&R-algorithm is that at the beginning of Step 6, there may exist many cycles
C in C with |E(C) ∩M ′| = 2. Let us call such cycles C bad cycles. Fix a bad cycle C. Observe
that if we remove the two edges in E(C) ∩M ′ from C, we are left with two paths P and Q such
that some cycle Cj in the original cycle cover C contains P and another cycle Ck in the original
cycle cover C contains Q, where j > k. When executing Step 4 with i = j, we know those pairs
({u1, v1}, {u2, v2}) of edges in M ′ such that {u1, u2} ⊆ V (Cj), {v1, v2} ⊆ V (Ck), and C has a
path between v1 and v2. Let us call such pairs ({u1, v1}, {u2, v2}) of edges in M ′ Cj-serious pairs.
Assume that when executing Step 4 with i = j, it were possible to compute two matchings A1 and
A2 in Cj such that for each Cj-serious pair ({u1, v1}, {u2, v2}) and for each h ∈ {1, 2}, Cj − Ah
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contains no path between u1 and u2. Then, we would have been able to avoid C. This is our main
idea for improving H&R-algorithm.

Unfortunately, not all bad cycles can be avoided. Another idea in our algorithm is to discard
a small-weighted subset R of edges in M ′ so that a large fraction of bad cycles can be avoided. In
order to realize this idea, we need to choose a suitable ordering of the cycles in the original cycle
cover C and process them in this order. In the course of processing the cycles, we will include some
edges of M ′ into R. Yet another idea in our algorithm is to let the random selection at Step 6 in
Figure 1 be sometimes nonuniform.

5 Outline of the New Algorithm

Like H&R-algorithm, our algorithm starts by computing a maximum-weight cycle cover C of G,
uses it to compute three tours T1, . . . , T3 of G, and outputs the one of the largest weight among
them. Our computation of T1 is the same as in H&R-algorithm. Our computation of T2 and T3 is
as shown in Figure 2:

1. Perform Steps 1 and 2 in Figure 1 in turn.

2. Let C1, . . . , Cr be an ordering of the cycles in C such that C1, . . . , C` are the 4-cycles in C.

3. Make a backup copy Mc of M .

4. Process C1, . . . , C` in a suitable order, by (1) coloring some edges {u, v} ∈M ′ with {u, v} ⊆
∪1≤i≤`V (Ci) red, and (2) moving exactly one suitable edge from each 4-cycle to M while
always maintaining that the graph (V (G),M) is a subtour of G.

5. Process C`+1, . . . , Cr one by one in this order, by (1) coloring some edges {u, v} ∈M ′ with
{u, v} ∩ (∪`+1≤i≤rV (Ci)) 6= ∅ red or green, and (2) moving one or more suitable edges in
each non-4-cycle to M while always maintaining that the graph (V (G),M) is a subtour
of G.

6. Add to C those edges {u, v} ∈M ′ −R such that both u and v have degree 1 in C, where R
is the set of red edges in M ′. (Comment: Let M ′6 denote the set of edges in M ′ that are
added to C at this step. Immediately after this step, |E(C) ∩M ′6| ≥ 2 for each cycle C
in C.)

7. For each cycle C in C, if |E(C) ∩M ′| = 2 and one edge in E(C) ∩M ′ is green, then delete
one edge in E(C) ∩M ′ from C at random in such a way that the green edge is deleted
with probability 2/3; otherwise, select one edge in E(C) ∩M ′ uniformly at random and
delete it from C. (Comment: Let M ′7 denote the set of edges in M ′ that remain in C
immediately after this step.)

8. Perform Steps 7 and 8 in Figure 1 in turn.

Figure 2. Computation of T2 and T3 in our algorithm. (Steps 4 and 5 are rough.)

Steps 4 and 5 in Figure 2 are rough; their details are very complicated and will be given in the
subsequent sections. An important property will be that w(R) is small compared with w(M ′).

Several definitions and three useful facts are in order. Throughout the rest of this paper, for
each integer i ∈ {1, . . . , r}, the phrase “at time i” means the time at which zero or more cycles in
C have been processed and Ci is the next cycle to be processed. A set F of edges in G is available
at time i if F is a matching in Ci, F ∩Mc = ∅, and the graph (V (G),M ∪ F ) is a subtour of G at
time i. An edge e in G is available at time i if {e} is available at time i. A maximal available set
at time i is an available set F at time i such that for every e ∈ E(Ci)− F , F ∪ {e} is not available
at time i.
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Lemma 5.1 Let F be an available set at time i. Suppose that e1 = {u1, u2} and e2 = {u2, u3} are
two adjacent edges in Ci such that F contains no edge incident to u1, u2, or u3. Then, F ∪ {e1}
or F ∪ {e2} is available at time i.

Proof. If F ∪ {e1} is available, then we are done. So, assume that F ∪ {e1} is not available.
Consider the subtour Hi,F = (V (G),M ∪F ) at time i. Since Mc is perfect and F contains no edge
incident to u1, u2, or u3, the degree of each uj ∈ {u1, u2, u3} in Hi,F is 1. In turn, since F ∪ {e1}
is not available, some connected component (a path) Q of Hi,F is a path between u1 and u2 (no
matter whether e1 ∈ Mc or not). Because a path can have at most two vertices of degree 1, u3 is
not a vertex of Q. So, {u2, u3} 6∈ Mc, and Hi,F remains to be a subtour even after e2 is added to
it. Consequently, F ∪ {e2} is available at time i. 2

The following corollary is immediate from Lemma 5.1:

Corollary 5.2 Suppose that F is a maximal available set at time i. Then, Ci − F is a collection
of vertex-disjoint paths each of length ≤ 3.

Lemma 5.3 Let F be an available set at time i. Suppose that e1 = {u1, u2}, e2 = {u2, u3},
e3 = {u3, u4}, and e4 = {u4, u5} are four distinct (consecutive) edges in E(Ci) − F such that no
ui ∈ {u1, . . . , u5} is incident to an edge in F and neither F ∪ {e1} nor F ∪ {e3} is available at
time i. Then, F ∪ {e2, e4} is available at time i.

Proof. As in the proof of Lemma 5.1, consider the subtour Hi,F = (V (G),M ∪ F ) at time i.
Since neither F ∪ {e1} nor F ∪ {e3} is available at time i, some connected component Q of Hi,F is
a path between u1 and u2, and another connected component Q′ of Hi,F is a path between u3 and
u4. So, even after we add e2 to Hi,F , u4 and u5 still belong to different connected components of
Hi,F and both u4 and u5 remain to have degree 1 in Hi,F . In turn, even after we add both e2 and
e4 to Hi,F , Hi,F still remains to be a subtour. In other words, F ∪ {e2, e4} is available at time i. 2

6 Processing 4-Cycles

We say that two distinct edges e1 = {u1, v1} and e2 = {u2, v2} in M ′ form a square pair, denoted
by {e1, e2}sp, if {u1, u2} is an edge in a 4-cycle Ci and {v1, v2} is an edge in another 4-cycle Cj .
We call Ci and Cj the dependent 4-cycles of the square pair. An edge e ∈ M ′ is a square edge if e
is contained in some square pair.

We construct a multigraph H1 from M ′ and C1, . . . , C` as follows. The nodes of H1 one-to-one
correspond to C1, . . . , C`. For convenience, we still use Ci (1 ≤ i ≤ `) to denote the node of H1

corresponding to it. The edges of H1 one-to-one correspond to the square pairs. In more detail,
corresponding to each square pair p, H1 has an edge between the dependent 4-cycles of p. H1 has
no other edges. For each edge f of H1, we denote the square pair corresponding to f by p(f).

An edge {u, v} ∈ M ′ is 4-cycle-closed if there are two 4-cycles Ci and Cj in C with u ∈ V (Ci)
and v ∈ V (Cj). An edge e ∈ M ′ is 4-cycle-pendent if for exactly one endpoint u of e, there is a
4-cycle Ci in C with u ∈ V (Ci). Let Q be a connected subgraph of H1. An edge {u, v} ∈ M ′ is
Q-closed if there are two nodes Ci and Cj in Q with u ∈ V (Ci) and v ∈ V (Cj). An edge e ∈M ′ is
Q-pendent if for exactly one endpoint u of e, there is a node Ci in Q with u ∈ V (Ci). The weight
of Q is the total weight of Q-closed edges in M ′, and is denoted by w(Q).

Obviously, we can classify the connected components Q of H1 into ten types as follows:

Type 1: Q is a single node.
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Type 2: Q is a bunch of four parallel edges between two nodes.
Type 3: Q is an odd cycle.
Type 4: Q is an even cycle of length 4 or more.
Type 5: Q is a path of length 1 or more, and Q has an endpoint Ci (a 4-cycle in C) such that

neither a Q-pendent edge nor a Q-closed non-square edge is incident to a vertex of Ci.
(Comment: We call Ci a dead end of Q. Note that if there is a Q-closed non-square edge,
then Q has no dead end.)

Type 6: Q is a path of length 3 or more, and Q has no dead end.
Type 7: Q is a 2-cycle.
Type 8: Q is a path of length 1 and Q has no dead end.
Type 9: Q is a path of length 2, Q has no dead end, and there is no Q-closed non-square edge.
Type 10: Q is a path of length 2 and there is a Q-closed non-square edge.

The following two facts are obvious and help the reader understand the above definitions.

Fact 6.1 Let M ′4c be the set of all 4-cycle-closed edges in M ′. Let C be a cycle in the graph
(V (G), E(C) ∪M ′4c) with |E(C) ∩M ′| = 2. Let e1 and e2 be the two edges in E(C) ∩M ′. Let
Ci be the 4-cycle containing an endpoint u1 of e1 and an endpoint u2 of e2. Let Cj be the 4-cycle
containing the other endpoint v1 of e1 and the other endpoint v2 of e2. Suppose that the two edges
e1 and e2 in E(C) ∩M ′ do not form a square pair. Then, we cannot remove exactly one edge e3

from Ci and exactly one edge e4 from Cj so that each vertex in {u1, v1, u2, v2} is an endpoint of e3

or e4.

Fact 6.2 Let Q be a connected component of H1. Then, the following hold:

1. If Q is of Type-2, 3, or 4, then there is no Q-pendent edge in M ′ and every Q-closed edge in
M ′ is a square edge.

2. If Q is of Type-5 or 7, then there are at most two Q-pendent edges in M ′ and every Q-closed
edge in M ′ is a square edge.

3. Suppose that Q is of Type 6, 8, 9, or 10. Then, the following hold:

(a) For each Q-pendent edge {u, v}, the node Ci of Q with {u, v}∩V (Ci) 6= ∅ is an endpoint
of Q.

(b) There are at most four Q-pendent edges in M ′ and there is at most one Q-closed non-
square edge in M ′.

(c) If there is a Q-closed non-square edge {u, v} in M ′, then there are at most two Q-pendent
edges in M ′ and the two 4-cycles containing u or v are the endpoints of Q.

The following two simple results are very useful for processing 4-cycles.

Lemma 6.3 Suppose that our algorithm has processed zero or more 4-cycles and that Ci and Cj
are two distinct 4-cycles not yet processed. Let e1 and e2 be two nonadjacent edges in Ci such that
for each ek ∈ {e1, e2}, ek 6∈ Mc and the graph (V (G),M ∪ {ek}) is a subtour of G. Then, we can
choose two nonadjacent edges e3 and e4 in E(Cj) −Mc such that for each ex ∈ {e1, e2} and for
each ey ∈ {e3, e4}, the graph (V (G),M ∪ {ex, ey}) is a subtour of G.
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Proof. Consider the graph H2 = (V (G),M ∪ {e1, e2}). The degree of each vertex in H2 is at
most 2 and the degree of each vertex of Cj in H2 is 1. Moreover, if H2 contains a cycle, then both
e1 and e2 appear on the cycle. If Cj has no edge e such that e ∈ Mc or adding e to H2 creates a
new cycle in H2, then we can choose e3 and e4 to be any two nonadjacent edges in Cj . On the other
hand, if Cj has an edge e = {v1, v2} such that e ∈Mc or adding e to H2 creates a new cycle in H2,
then we can choose e3 and e4 to be the two edges incident to exactly one of v1 and v2 because for
each ey ∈ {e3, e4} adding ey to H2 does not create a new cycle in H2. 2

Corollary 6.4 For every 4-cycle Ci in C, there are two nonadjacent edges available at time i.

Proof. The first 4-cycle Ci processed by the algorithm must have two nonadjacent edges available
at time i. So, Lemma 6.3 implies this corollary. 2

To process the 4-cycles in C, our algorithm considers the connected components of H1 one by
one. When considering a connected component Q of H1, our algorithm processes those 4-cycles (in
a row) that are nodes of Q. Since the details heavily depend on the type of Q, we describe the
Type-1 case immediately and describe the other cases in six separate subsections.

1. Let Ci be the node of Q (a 4-cycle of G).

2. Choose two nonadjacent edges e1 and e2 available at time i. (Comment: By Corollary 6.4,
e1 and e2 exist.)

3. Select an e′′ ∈ {e1, e2} uniformly at random, and move e′′ from Ci to M .

Figure 3. Steps for processing a Type-1 connected component Q of H1.

In general, immediately after considering a connected component Q of H1 and processing the
4-cycle(s) that are nodes of Q, the following three invariants hold:

(I1) The graph (V (G),M) remains to be a subtour of G.

(I2) Let Ci be a 4-cycle that is a node of Q. Then, exactly one edge of Ci was moved from Ci to
M during considering Q.

(I3) Let u be a vertex in a 4-cycle Ci that is a node of Q. Suppose that no Q-closed edge in M ′ is
incident to u. Then, with probability at least 1/2, exactly one edge of Ci incident to u was
moved from Ci to M during considering Q.

Obviously, immediately after considering a Type-1 connected component Q of H1, Invari-
ants (I1) through (I3) hold.

6.1 Type-2, Type-3, or Type-4 Connected Components

Let Q be a Type-2, Type-3, or Type-4 connected component of H1. Then, there is no Q-pendent
edge in M ′, and there is no Q-closed non-square edge in M ′, either. So, immediately after consider-
ing Q, Invariant (I3) is trivially true. In detail, to process Q, our algorithm performs the following
steps:

1. If Q is of Type-2, then perform the following steps:

(a) Let Ci and Cj be the nodes of Q (4-cycles of G). Let e1, . . . , e4 be the four edges in M ′

each of which has one endpoint in Ci and the other in Cj .
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(b) Compute an edge e ∈ {e1, . . . , e4} such that w(e) ≥ w(ex) for all x ∈ {1, . . . , 4}.
(c) Color e blue. (Comment: The total weight of Q-closed edges in M ′ is at most 4 times

the weight of the edge colored blue at this step.)
(d) Find an edge e′ ∈ E(Ci)−Mc incident to an endpoint of e such that the graph (V (G),M∪
{e′}) is a subtour of G; further move e′ from Ci to M . (Comment: By Corollary 6.4, e′

exists.)
(e) Find an edge e′′ ∈ E(Cj) − Mc incident to an endpoint of e such that the graph

(V (G),M ∪ {e′′}) is a subtour of G; further move e′′ from Cj to M . (Comment: By
Corollary 6.4, e′′ exists. Moreover, Invariants (I1) through (I3) still hold after this step.)

(f) Color all uncolored Q-closed edges red.

2. If Q is of Type-3, then perform the following steps:

(a) Find an edge f1 of Q such that maxe∈p(f1)w(e) ≤ maxe∈p(f2)w(e) for all edges f2 of Q.
(b) Partition E(Q)− {f1} into two disjoint matchings N1 and N2.
(c) Compute an integer h ∈ {1, 2} such that

∑
f∈Nh maxe∈p(f)w(e) ≥

∑
f∈Nh′ maxe∈p(f)w(e),

where h′ is the integer in {1, 2} − {h}.
(d) For each edge f ∈ Nh, perform the following steps:

i. Let Ci and Cj be the dependent 4-cycles of p(f).
ii. Compute an edge e ∈ p(f) such that w(e) = maxe′∈p(f)w(e′).
iii. Perform Steps 1c through 1e.
(Comment: The total weight of Q-closed edges in M ′ is at most 6 times the total weight
of edges colored blue at Step 2(d)iii.)

(e) Color all uncolored Q-closed edges red.
(f) For each node Ci of Q incident to no edge in Nh, select an arbitrary edge e′′ ∈ E(Ci)−Mc

such that the graph (V (G),M ∪ {e′′}) is a subtour of G; further move e′′ from Ci to M .
(Comment: By Corollary 6.4, e′′ exists. Moreover, Invariants (I1) through (I3) still hold
after this step.)

3. If Q is of Type-4, then perform the following steps:

(a) Partition E(Q) into two disjoint matchings N1 and N2.
(b) Perform Steps 2c through 2e. (Comment: Invariants (I1) through (I3) still hold after

this step.)

The following lemma should be clear from the comments on Step 1c and 2(d)iii:

Lemma 6.5 Immediately after the above steps for Q, Invariants (I1) through (I3) and the following
hold:

1. The total weight of Q-closed edges in M ′ is at most 6 times the total weight of blue Q-closed
edges in M ′.

2. Let C′ be the graph obtained from C by adding all non-red edges in M ′. Then, for each blue
Q-closed edge in M ′, the degree of each endpoint of e in C′ is at most 2 and no cycle in C′
contains e.

The following corollary follows from Lemma 6.5 immediately:

Corollary 6.6 Recall M ′7 in the comment on Step 7 in Figure 2. Let S be the set of Q-closed edges
in M ′. Then, E [w(S ∩M ′7)] ≥ w(S)/6.
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6.2 Type-5 Connected Components

Let Q be a Type-5 connected component of H1. In order to maintain Invariant (I3), we need to
carefully deal with the endpoint of path Q that is not a dead end of Q. In detail, to process Q, our
algorithm performs the following steps:

1. Let Ci1 and Ci2 be the endpoints of path Q, where node Ci2 is a dead end of Q. Let
f1 = {Ci1 , Ci3} be the edge of Q incident to node Ci1 . (Comment: If |E(Q)| = 1, then
i3 = i2.)

2. Let Ei1 be a set of two nonadjacent edges in E(Ci1) −Mc such that for each ex ∈ Ei1 , the
graph (V (G),M ∪ {ex}) is a subtour of G. (Comment: By Corollary 6.4, Ei1 exists.)

3. Partition E(Q) into two disjoint matchings N1 and N2.

4. Select an h ∈ {1, 2} uniformly at random.

5. If f1 ∈ Nh, then perform the following steps:

(a) Select an e ∈ p(f1) uniformly at random.

(b) Color e purple, and color the other edge in p(f1) red.

(c) Move the edge in Ei1 adjacent to e from Ci1 to M .

(d) Find an edge e′ ∈ E(Ci3)−Mc adjacent to e such that the graph (V (G),M ∪ {e′}) is a
subtour of G; further move e′ from Ci3 to M . (Comment: By Corollary 6.4, e′ exists.)

6. If f1 6∈ Nh, then perform the following step:

(a) If there is an edge e′ ∈ Ei1 such that no edge in p(f1) is adjacent to e′, then move e′

from Ci1 to M ; otherwise, select an e′′ ∈ Ei1 uniformly at random, and move e′′ from
Ci1 to M .

(Comment: Obviously, Invariant (I3) still holds after this step.)

7. If node Ci2 is incident to no edge in Nh, then move an edge e ∈ E(Ci2) −Mc from Ci2 to
M such that the graph (V (G),M ∪ {e}) is a subtour of G. (Comment: By Corollary 6.4, e
exists.)

8. For each edge f ∈ Nh − {f1}, perform the following steps:

(a) Let Ci and Cj be the dependent 4-cycles of p(f).

(b) Select an e ∈ p(f) uniformly at random.

(c) Color e purple, and color the other edge in p(f) red.

(d) Perform Steps 1d and 1e in Section 6.1.

(Comment: After this step, Invariants (I1) and (I2) hold.)

9. Color all uncolored Q-closed edges red.

The following lemma should be clear:

Lemma 6.7 Immediately after the above steps for Q, Invariants (I1) through (I3) and the following
hold:
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1. For each Q-closed square edge e in M ′, the probability that e was colored purple during
considering Q is at least 1/4.

2. Let C′ be the graph obtained from C by adding all non-red edges in M ′. Then, for each edge
e ∈M ′ colored purple during considering Q, the degree of each endpoint of e in C′ is at most 2
and no cycle in C′ contains e.

Since Q is of Type-5, there is no Q-closed non-square edge. So, the following corollary follows
from Lemma 6.7 immediately:

Corollary 6.8 Let S be the set of Q-closed edges in M ′. Then, E [w(S ∩M ′7)] ≥ w(S)/4.

6.3 Type-6 Connected Components

Let Q be a Type-6 connected component of H1. In order to maintain Invariant (I3), we need to
carefully deal with both endpoints of path Q. This is the difficulty. To overcome this difficulty, the
idea is to delete a light edge f from Q and then apply the steps in Section 6.2 or the steps in Figure 3
to each connected component (a path) of Q. Here, the word “light” means that

∑
e∈p(f)w(e) is the

smallest among all edges of Q. Because f is light and Q was originally long (of length 3 or more),
the weight of Q is at least two thirds of its original weight.

In detail, to process Q, our algorithm performs the following steps:

1. Find an edge f1 of Q such that
∑
e∈p(f1)w(e) ≤

∑
e∈p(f2)w(e) for all edges f2 of Q.

(Comment: We call the two edges in p(f1) Q-closed sacrifice edges. Note that the total weight
of Q-closed square edges is at least three times the total weight of Q-closed sacrifice edges.)

2. Color the edges in p(f1) red.

3. Let Q1 and Q2 be the connected components (paths) of Q− {f1}.

4. For each Qh (h ∈ {1, 2}), if |E(Qh)| = 0, then apply the steps in Figure 3 to Qh (by replacing
each occurrence of Q there with Qh here); otherwise, apply the steps in Section 6.2 to Qh (by
replacing each occurrence of Q there with Qh here).

5. If there is a Q-closed non-square edge e = {u, v} in M ′, then perform the following step:

(a) If both an edge of C incident to u and an edge of C incident to v were moved to M at
Step 4, then color e yellow; otherwise, color e red.

The following lemma should be clear:

Lemma 6.9 Immediately after the above steps for Q, Invariants (I1) through (I3) still holds, and
Statements 1 and 2 in Lemma 6.7 hold here, too.

Corollary 6.10 Let S be the set of Q-closed edges in M ′. Then, E [w(S ∩M ′7)] ≥ w(S)/6.

Proof. Let S1 be the set of Q-closed square edges in M ′. Let S2 be the set of Q-closed sacrifice
edges. Then, by our choice of Q-closed sacrifice edges, w(S1−S2) ≥ 2w(S1)/3. On the other hand,
E [w((S1 − S2) ∩M ′7)] ≥ w(S1 − S2)/4 by Lemma 6.9. So, E [w((S1 − S2) ∩M ′7)] ≥ w(S1)/6. It
remains to prove that for every e ∈ S − S1, Pr[e ∈M ′7] ≥ 1

6 .

10



Suppose e ∈ S − S1. By Lemma 6.7 and Invariant (I3), e is colored yellow at Step 5 above
with probability at least 1

4 , and in turn Pr[e ∈ M ′6] ≥ 1
4 (recall M ′6 in the comment on Step 6 in

Figure 2). Moreover, Pr[e ∈ M ′7 | e ∈ M ′6] ≥ 2
3 , because Fact 6.1 guarantees that after Step 6 in

Figure 2, no cycle C in C can satisfy both e ∈ E(C) and |E(C) ∩M ′| = 2. Hence, Pr[e ∈M ′7] ≥ 1
6 .

2

6.4 Type-7 or Type-8 Connected Components

LetQ be a Type-7 or Type-8 connected component ofH1. Again, in order to maintain Invariant (I3),
we need to carefully deal with the two nodes of Q. Moreover, since Q has very few edges, we cannot
afford to delete any edge of Q. Fortunately, since Q has only two nodes, things turn out to be easy.
In detail, to process Q, our algorithm performs the following steps:

1. Let Ci and Cj be the nodes of Q (4-cycles of G).

2. If Q is of Type-7, then perform the following steps:

(a) Let {{u1, v1}, {u2, v2}}sp and {{u2, v2}, {u3, v3}}sp be the square pairs corresponding to
the edges of Q, where {u1, u2, u3} ⊆ V (Ci) and {v1, v2, v3} ⊆ V (Cj).

(b) Let u4 be the vertex in V (Ci)−{u1, u2, u3}. Let v4 be the vertex in V (Ci)−{v1, v2, v3}.
(c) Let e1 and e2 be two nonadjacent edges in E(Ci)−Mc such that the graphs (V (G),M ∪
{e1}) and (V (G),M ∪ {e2}) are subtours of G. (Comment: By Corollary 6.4, e1 and e2

exist.)

(d) Choose two nonadjacent edges e3 and e4 of Cj as stated in Lemma 6.3.

(e) Let Ω be the set of all (ordered) pairs (ex, ey) such that (1) ex ∈ {e1, e2}, (2) ey ∈ {e3, e4},
and (3) there is a k ∈ {1, 2, 3, 4} such that both uk and vk are of degree 1 in the graph
C − {ex, ey}. (Comment: By a simple case-analysis where one looks at which edges of
Ci are in {e1, e2} and which edges of Cj are in {e3, e4}, we can prove that either |Ω| = 2
or |Ω| = 4.)

(f) Select a pair (ex, ey) from Ω uniformly at random.

(g) Move ex from Ci to M , and move ey from Cj to M .

(Comment: After this step, Invariants (I1) through (I3) still hold. In particular, Invari-
ant (I3) can be seen by a simple case-analysis where one looks at which edges of Ci are
in {e1, e2} and which edges of Cj are in {e3, e4}.)

(h) If there is a unique k ∈ {1, 2, 3} such that both uk and vk have just become of degree 1
in C, then color edge {uk, vk} yellow.

(i) If there are two integers k ∈ {1, 2, 3} such that both uk and vk have just become of
degree 1 in C, then select one of them uniformly at random and color it yellow.

(Comment: For each Q-closed edge e, the probability that e is colored yellow at Step 2h
or 2i is at least 1/4. This can be seen by a simple case-analysis where one looks at which
edges of Ci are in {e1, e2} and which edges of Cj are in {e3, e4}.)

(j) Color all uncolored Q-closed edges red.

3. If Q is of Type-8, then perform the following steps:

(a) Let {{u1, v1}, {u2, v2}}sp be the square pair corresponding to the edge of Q, where
{u1, u2} ⊆ V (Ci) and {v1, v2} ⊆ V (Cj).
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(b) Let u3, u4 be an ordering of the two nodes in V (Ci)−{u1, u2} and v3, v4 be an ordering
of the two nodes in V (Cj)− {v1, v2} such that if there is a Q-closed non-square edge in
M ′, then that edge is {u3, v3}. (Comment: See Statement 3b in Fact 6.2.)

(c) Perform Steps 2c through 2g.

(d) If there is a unique k ∈ {1, 2, 3} such that both uk and vk have just become of degree 1
in Ci and {uk, vk} is a Q-closed edge in M ′, then color edge {uk, vk} yellow.

(e) If there are two integers k ∈ {1, 2, 3} such that both uk and vk have just become of
degree 1 in C and {uk, vk} is a Q-closed edge in M ′, then select one of them uniformly
at random and color it yellow.

(Comment: For each Q-closed edge e, the probability that e is colored yellow at Step 3d
or 3e is at least 1/4. This can be seen by a simple case-analysis where one looks at which
edges of Ci are in {e1, e2} and which edges of Cj are in {e3, e4}.)

(f) Color all uncolored Q-closed edges red.

The following should be clear from the comments on Steps 2i and 3e.

Lemma 6.11 Immediately after the above steps for Q, Invariants (I1) through (I3) and the fol-
lowing hold:

1. For each Q-closed edge e in M ′, the probability that e was colored yellow during considering
Q is at least 1/4.

2. Let C′ be the graph obtained from C by adding all non-red edges in M ′. Then, for each edge
e ∈M ′ colored yellow during considering Q, the degree of each endpoint of e in C′ is at most 2
and each cycle in C′ containing e contains at least three edges in M ′.

Corollary 6.12 Let S be the set of Q-closed edges in M ′. Then, E [w(S ∩M ′7)] ≥ w(S)/6.

Proof. It suffices to prove that for every e ∈ S, Pr[e ∈ M ′7] ≥ 1
6 . Suppose e ∈ S. By

Lemma 6.11, Pr[e ∈M ′6] ≥ 1
4 . Moreover, Pr[e ∈M ′7 | e ∈M ′6] ≥ 2

3 by Statement 2 in Lemma 6.11.
Thus, Pr[e ∈M ′7] ≥ 1

6 . 2

6.5 Type-9 Connected Components

Let Q be a Type-9 connected component of H1. Yet again, in order to maintain Invariant (I3), we
need to carefully deal with the endpoints of Q. This is not difficult because there is no Q-closed
non-square edge. In detail, to process Q, our algorithm performs the following steps:

1. Let Ci1 and Ci2 be the endpoints of path Q. Let Ei1 be a set of two nonadjacent edges in
E(Ci1) −Mc such that for each ex ∈ Ei1 , the graph (V (G),M ∪ {ex}) is a subtour of G.
(Comment: By Corollary 6.4, Ei1 exists.)

2. Choose a set Ei2 of two nonadjacent edges in E(Ci2)−Mc such that for each ex ∈ Ei1 and for
each ey ∈ Ei2 , the graph (V (G),M ∪ {ex, ey}) is a subtour of G. (Comment: By Lemma 6.3,
Ei2 exists.)

3. Let Ci3 be the other node of Q than Ci1 and Ci2 .
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4. Select a Q-closed square edge e = {u, v} uniformly at random. (Comment: Since there are
exactly four Q-closed square edges in M ′, each Q-closed square edge is selected at this step
with probability 1/4.)

5. Color e purple and color the other Q-closed square edges in M ′ red.

6. Let i4 be the integer in {i1, i2} with {u, v} ∩ V (Ci4) 6= ∅. Let i5 be the other integer in
{i1, i2} − {i4}.

7. If there is an edge e′ ∈ Ei5 adjacent to no Q-closed square edge in M ′, then move e′ from Ci5
to M ; otherwise, select an e′ ∈ Ei5 uniformly at random, and move e′ from Ci5 to M .

8. Move the edge in Ei4 incident to u or v from Ci4 to M . (Comment: After this step, (V (G),M)
remains to be a subtour of G by our choice at Step 2.)

9. Move an edge e′′ of Ci3 incident to u or v from Ci3 to M such that the graph (V (G),M)
remains to be a subtour of G.

(Comment: By Corollary 6.4, e′′ exists. Moreover, after this step, Invariants (I1) through (I3)
still hold. In particular, Invariant (I3) can be seen by a simple case-analysis where one looks
at which edges of Ci1 are in Ei1 and which edges of Ci2 are in Ei2 .)

The following lemma should be clear:

Lemma 6.13 Immediately after the above steps for Q, Invariants (I1) through (I3) still holds, and
Statements 1 and 2 in Lemma 6.7 hold here, too.

Corollary 6.14 Let S be the set of Q-closed edges in M ′. Then, E [w(S ∩M ′7)] ≥ w(S)/4.

6.6 Type-10 Connected Components

Let Q be a Type-10 connected component of H1. Let e1 be the unique Q-closed non-square edge
in M ′. Still again, in order to maintain Invariant (I3), we need to carefully deal with the endpoints
of Q. This is not easy because of the existence of e1. Fortunately, since there are only five Q-
closed edges in M ′, things turn out to be easy. In detail, to process Q, our algorithm performs the
following steps:

1. Perform Steps 1 through 3 in Section 6.5 in turn.

2. If w(e1) ≤ w(Q)/3, then color e1 red; otherwise, find an edge f1 of Q with
∑
e∈p(f1)w(e) ≤

w(Q)/3, and color the two edges in p(f1) red.

(Comment: We call the edge(s) colored red at Step 2 Q-closed sacrifice edge(s).)

3. If e1 is red, then perform Steps 4 through 9 in Section 6.5 in turn. (Comment: See Lemma 6.13.)

4. If e1 is uncolored and Ei1 or Ei2 contains an edge adjacent to a Q-closed square edge in M ′,
then perform Steps 3 through 5 in Section 6.3 in turn. (Comment: See Lemma 6.9.)

5. If e1 is uncolored and both Ei1 and Ei2 contain an edge adjacent to no Q-closed square edge
in M ′, then perform the following steps:

(a) Select an uncolored Q-closed edge e2 at random in such a way that e2 = e1 with proba-
bility 1/2 and each of the two uncolored Q-square edges is e2 with probability 1/4.
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(b) If e2 = e1, then color e1 orange, move the two edges in Ei1 ∪ Ei2 adjacent to e1 from C
to M , and move an edge e′ of Ci3 from C to M such that the graph (V (G),M) remains
to be a subtour of G. (Comment: By Corollary 6.4, e′ exists.)

(c) If e2 6= e1, then color e2 purple, move the two edges in Ei1 ∪Ei2 not adjacent to e1 from
C to M , and move an edge e′ of Ci3 from C to M such that the graph (V (G),M) remains
to be a subtour of G. (Comment: By Corollary 6.4, e′ exists.)

(d) Color all uncolored edges red.

The following lemma should be clear:

Lemma 6.15 Immediately after the above steps for Q, Invariants (I1) through (I3) still holds, and
Statements 1 and 2 in Lemma 6.7 hold here, too.

Corollary 6.16 Let S be the set of Q-closed edges in M ′. Then, E [w(S ∩M ′7)] ≥ w(S)/6.

Proof. Let S1 be the set of Q-closed square edges in M ′. Let S2 be the set of Q-closed sacrifice
edges. Then, by our choice of Q-closed sacrifice edges, w(S − S2) ≥ 2w(S)/3. Thus, it suffices to
prove that for each edge e ∈ S − S2, Pr[e ∈ M ′7] ≥ 1

4 . By Lemma 6.15, Pr[e ∈ M ′7] ≥ 1
4 for every

e ∈ S1 − S2. So, it remains to prove that if the unique Q-closed non-square edge e1 is in S − S2,
then Pr[e1 ∈M ′7] ≥ 1

4 .
Suppose e1 ∈ S − S2. Then, either the condition in Step 4 or the condition in Step 5 is true.

We distinguish two cases as follows:
Case 1: The condition in Step 4 is true. Then, as observed in the proof of Corollary 6.10, e1 is

colored yellow at Step 4 (more precisely at Step 5 in Section 6.3) with probability at least 1
4 , and

hence Pr[e1 ∈M ′6] ≥ 1
4 . A crucial observation is that if the event e1 ∈M ′6 occurs, then after Step 6

in Figure 2, no cycle of C contains e1 and so e1 ∈M ′7. This can be seen from the condition in Step 4
by a simple case-analysis where one looks at which edges of Ci1 are in Ei1 and which edges of Ci2
are in Ei2 . Thus, Pr[e1 ∈M ′7 | e1 ∈M ′6] = 1 and in turn Pr[e1 ∈M ′7] ≥ 1

4 .
Case 2: The condition in Step 5 is true. Then, by Steps 5a and 5b, e1 is colored orange at

Step 5b with probability 1
2 , and in turn Pr[e1 ∈ M ′6] ≥ 1

2 . Moreover, if the event e1 ∈ M ′6 occurs,
then after Step 6 in Figure 2, each cycle C in C with e ∈ E(C) satisfies |E(C)∩M ′| ≥ 3 by Fact 6.1.
This implies that Pr[e1 ∈M ′7 | e1 ∈M ′6] ≥ 2

3 . Thus, Pr[e1 ∈M ′7] ≥ 1
4 in this case, too. 2

6.7 A Main Lemma

We are now ready to prove the following:

Lemma 6.17 Immediately after Step 4 in Figure 2 (i.e., immediately after processing the 4-cycles
C1, . . . , C`), the following hold:

1. The graph (V (G),M) is a subtour of G.

2. Each Ci (1 ≤ i ≤ `) becomes a path in C.

3. Let e be a 4-cycle-pendent edge in M ′. Then, with probability at least 1/2, the endpoint of e
in a Ci (1 ≤ i ≤ `) is of degree 1 in C.

4. Let S be the set of 4-cycle-closed edges in M ′. Then, E [w(S ∩M ′7)] ≥ w(S)/6.
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Proof. The first three statements are obviously true from Invariants (I1) through (I3) and the
lemmas in Sections 6.1 through 6.6. To see Statement 4, let S1 be the set of Q-closed edges where
Q ranges over all connected components of H1. Then, by the corollaries in Sections 6.1 through 6.6,
E [w(S1 ∩M ′7)] ≥ w(S1)/6. So, it suffices to show that for each e ∈ S − S1, Pr[e ∈M ′7] ≥ 1

6 .
Suppose that e = {u, v} is an edge in S − S1. Then, with probability at least 1

4 , both u and v
are of degree 1 in C immediately after Step 4 in Figure 2. This follows from Invariant (I3) and the
lemmas in Sections 6.1 through 6.6 immediately. So, Pr[e ∈M ′6] ≥ 1

4 . Moreover, if the event e ∈M ′6
occurs, then after Step 6 in Figure 2, each cycle C in C with e ∈ E(C) satisfies |E(C)∩M ′| ≥ 3 by
Fact 6.1. This implies that Pr[e ∈M ′7 | e ∈M ′6] ≥ 2

3 . Thus, Pr[e ∈M ′7] ≥ 1
6 . 2

7 Ideas for Processing Non-4-Cycles

For convenience, we transform each edge {u, v} ∈ M ′ to an ordered pair (u, v), where the Ci with
u ∈ V (Ci) and the Cj with v ∈ V (Cj) satisfy that i > j.

Let i be an integer in {`+1, . . . , r}. A Ci-settled edge is an edge (u, v) ∈M ′ such that u ∈ V (Ci)
(and so v ∈ V (Cj) for some j < i). A Ci-settled edge (u, v) is active at time i if the degree of v in
C at time i is 1. A Ci-settled vertex is a vertex of Ci incident to a Ci-settled edge.

A matching-pair in Ci is an (unordered) pair {A1, A2} such that both A1 and A2 are (possibly
empty) matchings in Ci. An available matching-pair at time i is a matching-pair {A1, A2} in Ci
such that both A1 and A2 are available at time i. A maximal available matching-pair at time i is
a matching-pair {A1, A2} in Ci such that both A1 and A2 are maximal available sets at time i.

To break the cycles C`+1, . . . , Cr, our algorithm processes them in this order. While pro-
cessing Ci, our algorithm colors zero or more Ci-settled vertices red and computes an available
matching-pair {A1, A2} at time i satisfying the following two conditions (and additionally some
other conditions to be specified later):

(C1) Both A1 and A2 are nonempty.

(C2) Each non-red vertex of Ci is incident to at least one edge in A1 ∪A2.

The details of coloring Ci-settled vertices and computing {A1, A2} will be given later. After com-
puting {A1, A2}, our algorithm then selects an integer h ∈ {1, 2} uniformly at random, and move
the edges of Ah from Ci to M . Since we only color some Ci-settled vertices red and move the edges
of Ah to M while processing Ci, we indeed maintain the following invariants:

(I4) At time i (` + 1 ≤ i ≤ r), M −Mc consists of some edges of C1, . . . , Ci−1, and the graph
(V (G),M) is a subtour of G.

(I5) For each i ∈ {` + 1, . . . , r} and for each Ci-settled edge e, the probability that e is active at
time i is at least 1/2.

Note that Invariants (I4) and (I5) hold at time `+ 1 by Lemma 6.17.

7.1 Serious Pairs, Critical Pairs, and Dangerous Pairs

Throughout this subsection, fix a Ci with `+ 1 ≤ i ≤ r.
A serious pair at time i is an unordered pair {(u1, v1), (u2, v2)} of Ci-settled edges satisfying

the following condition:
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• At time i, some connected component of C is a path between v1 and v2. (Comment: By this
condition, both (u1, v1) and (u2, v2) are active at time i.)

Obviously, no edge in M ′ is contained in two or more serious pairs at time i.
A matching-pair {A1, A2} in Ci covers a vertex u of Ci if at least one edge in A1∪A2 is incident

to u. A matching-pair {A1, A2} in Ci favors a vertex u of Ci if A1 contains an edge e1 ∈ E(Ci)
incident to u and A2 contains an edge e2 ∈ E(Ci) incident to u (possibly e1 = e2). A matching-pair
{A1, A2} in Ci is good for a serious pair p = {(u1, v1), (u2, v2)} at time i if {A1, A2} satisfies at least
one of the following three conditions:

(G1) For each h ∈ {1, 2}, Ci − Ah has no path from u1 to u2 or at least one of u1 and u2 has
degree 2 in Ci −Ah.

(G2) {A1, A2} favors both u1 and u2.

(Comment: If Condition (G1) or (G2) is satisfied, we say that {A1, A2} is strongly good for
p.)

(G3) {A1, A2} favors exactly one of u1 and u2.

(Comment: If this condition is satisfied but Condition (G1) is not, we say that {A1, A2} is
weakly good for p.)

A critical pair at time i is a serious pair p = {(u1, v1), (u2, v2)} at time i such that there is a
path Q from u1 to u2 in Ci with |E(Q)| ≤ 3. We call the path Q a witness path of the critical pair
p. Obviously, if |E(Ci)| ≥ 5 and {u1, u2} ∈ E(Ci), then Q is unique. Similarly, if |E(Ci)| ≥ 7, then
Q is unique. Hereafter, when |E(Ci)| ≥ 5 and p is a critical pair at time i with a unique witness
path, we will use the following notations and definitions:

• Q(p) denotes the unique witness path of p.

• Q̃(p) denotes the extended witness path of p, i.e., the path obtained from Q(p) by adding the
two edges in E(Ci)− E(Q(p)) incident to an endpoint of Q(p).

• If |E(Q(p))| = 1, then a matching-pair {A1, A2} in Ci is harmful for p if either A1∩E(Q̃(p)) =
{e1, e2} and A2 ∩ E(Q̃(p)) = ∅, or A2 ∩ E(Q̃(p)) = {e1, e2} and A1 ∩ E(Q̃(p)) = ∅, where e1

and e2 are the two edges in E(Q̃(p))− E(Q(p)).

• If |E(Q(p))| = 3, then a matching-pair {A1, A2} in Ci is harmful for p if either A1∩E(Q̃(p)) =
{e1, e2} and A2∩E(Q̃(p)) = {e3}, or A2∩E(Q̃(p)) = {e1, e2} and A1∩E(Q̃(p)) = {e3}, where
e1 and e2 are the two edges in E(Q̃(p))−E(Q(p)) and e3 is the edge of Q(p) not incident to
an endpoint of Q(p).

Lemma 7.1 An arbitrary maximal available matching-pair at time i is strongly good for every
serious but not critical pair at time i.

Proof. Immediate from Corollary 5.2 and Condition (G1). 2

Using Corollary 5.2, we can prove the following lemma by a simple case-analysis:

Lemma 7.2 Suppose that either |E(Ci)| ≥ 5 and p = {(u1, v1), (u2, v2)} is a critical pair at time i
with {u1, u2} ∈ E(Ci), or |E(Ci)| ≥ 7 and p = {(u1, v1), (u2, v2)} is a critical pair at time i with
{u1, u2} 6∈ E(Ci). Then, the following hold:

16



1. Suppose that a maximal available matching-pair {A1, A2} at time i covers all vertices of Q(p)
but is not good for p. Then, {A1, A2} is harmful for p.

2. If a matching-pair {A1, A2} in Ci covers all vertices of Q(p) and is not harmful for p, then
every matching-pair {B1, B2} in Ci with A1 ⊆ B1 and A2 ⊆ B2 covers all vertices of Q(p)
and is not harmful for p.

Lemma 7.3 Let p be a critical pair at time i having a witness path Q with |E(Q)| = 2. Let
{A1, A2} be a matching-pair in Ci covering all vertices of Q. Then, {A1, A2} is good for p.

Proof. The lemma is obvious if |E(Ci)| = 3. So, suppose |E(Ci)| ≥ 5. If {A1, A2} satisfies
Condition (G1) for p, then we are done. So, assume that {A1, A2} does not satisfy Condition (G1)
for p. Then, for some h ∈ {1, 2}, Ah contains both the edge in E(Ci) − E(Q) incident to u1 and
the edge in E(Ci) − E(Q) incident to u2. Moreover, since {A1, A2} covers all vertices of Q, one
edge in Q is in A1 ∪A2. Thus, {A1, A2} is weakly good for p. 2

Lemma 7.4 Suppose that |E(Ci)| ≥ 5. Let p = {(u1, v1), (u2, v2)} be a critical pair at time i
having no witness path Q satisfying the following condition:

(C3) {e1, e2} is an available set at time i, where e1 and e2 are the two edges in E(Ci) − E(Q)
incident to an endpoint of Q.

Let {A1, A2} be a maximal available matching-pair at time i covering all vertices of Q. Then,
{A1, A2} is good for p.

Proof. By Lemma 7.3, we may assume that p has no witness path of length 2. In turn, if
{u1, u2} ∈ E(Ci) or |E(Ci)| ≥ 7, then {A1, A2} cannot be harmful for p (because the unique
witness path Q of p does not satisfy Condition (C3)), and hence is good for p by Lemmas 7.2. So,
it suffices to consider only the case where |E(Ci)| = 6 and the distance between u1 and u2 in Ci
is 3. In this case, one can easily verify that {A1, A2} is good for p. 2

Because of Lemmas 7.3 and 7.4, we define a dangerous pair at time i to be a critical pair at
time i that has a witness path Q of length 1 or 3 satisfying Condition (C3). A dangerous edge at
time i is a Ci-settled edge contained in a dangerous pair at time i. A dangerous vertex at time i is
a vertex u of Ci incident to a dangerous edge at time i.

7.2 A Useful Procedure

Figure 4 shows a procedure useful for computing an available matching-pair at time i that covers
the vertices of a given subgraph P of Ci. In most cases, we call FindMatch(i, ∅, ∅, Ci, e), where e
is an available edge at time i.
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Procedure FindMatch(i, Y1, Y2, P, e)

Input: An integer i ∈ {`+1, . . . , r}; an available matching-pair {Y1, Y2} at time i with Y1∩Y2 =
∅; a subgraph P of Ci and an edge e of P such that |E(P )| ≥ 2, E(P )∩Y1 = E(P )∩Y2 = ∅,
Y1 ∪ {e1} is available at time i, and either P = Ci or P is a path in Ci beginning with e.

1. Let e1, . . . , et be the edges in P (appearing in P in this order) where e1 = e. Let u1 be
the endpoint of e1 not incident to e2. Let u2 be the endpoint of et not incident to et−1.
(Comment: If P = Ci, then u1 = u2.)

2. Initialize Z1 = Y1, Z2 = Y2, and j = h = 1.

3. While j < t, perform the following two steps:

(a) If Zh ∪ {ej} is available at time i, then add ej to Zh and further increase j by 1;
otherwise, add ej+1 to Zh and further increase j by 2. (Comment: Immediately
after this step, if either j <= t, or j = t+ 1 but only one edge in Zh is incident to
u2, then by Lemma 5.1, both Z1 and Z2 are available at time i.)

(b) If h = 1, then set h = 2; otherwise, set h = 1.

4. If some Zk with k ∈ {1, 2} contains both edges of Ci incident to u2, then (et−1 6∈ Z1 ∪ Z2

and so) perform the following two steps:

(a) Let e′ be the edge in E(Ci)−{et} incident to u2. Let e′′ be the edge in E(Ci)−{et, e′}
adjacent to e′.

(b) If e′′ ∈ Z1 ∪ Z2, then delete e′ from Zk.

(c) If e′′ 6∈ Z1∪Z2, then move a suitable edge in {et, e′} from Zk to Zk′ while maintaining
that Zk′ is available at time i, where k′ is the integer in {1, 2} − {k}. (Comment:
By Lemma 5.1, this step can be done.)

Output: The ordered pair (Z1, Z2).

Figure 4. A procedure useful for computing A1 and A2.

Lemma 7.5 For the output (Z1, Z2) of FindMatch(i, Y1, Y2, P, e), the following hold:

1. {Z1, Z2} is an available matching-pair at time i with Z1 ∩ Z2 = ∅.

2. {Z1, Z2} covers all vertices in V (P )− {u2}.

3. {Z1, Z2} does not cover u2 only if P is a path and {Y1, Y2} does not cover u2.

4. If P = Ci or |E(P )| ≥ 4, then neither Z1 − Y1 nor Z2 − Y2 is empty.

5. If P 6= Ci (i.e., P is a path), then e ∈ Z1.

6. For every h ∈ {1, 2}, if Yh−Zh 6= ∅, then Yh−Zh consists of only the edge e′ ∈ E(Ci)−E(P )
incident to u2 and {Z1, Z2} covers the other endpoint of e′ than u2.

7. If P 6= Ci, then there is no j ∈ {1, 2, . . . , t − 2 − b} such that for some h ∈ {1, 2}, Zh ∩
{ej , ej+1, ej+2} = {ej , ej+2} and Zh′ ∩ {ej , ej+1, ej+2} = ∅, where h′ is the integer in {1, 2} −
{h}, b = 0 if the edge e′ ∈ E(Ci)−E(P ) incident to u2 does not belong to Y1 ∪ Y2, and b = 1
if e′ ∈ Y1 ∪ Y2.

8. If P = Ci and |E(Ci)| ≥ 5, then there is no j ∈ {2, 3, . . . , t−3} such that for some h ∈ {1, 2},
Zh ∩ {ej , ej+1, ej+2} = {ej , ej+2} and Zh′ ∩ {ej , ej+1, ej+2} = ∅, where h′ is the integer in
{1, 2} − {h}.
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9. If |E(P )| ≥ 6, then it is impossible that Z1 ∩ {e1, . . . , e5} = {e3} and Z2 ∩ {e1, . . . , e5} =
{e1, e5}.

10. If P = Ci, |E(Ci)| ≥ 6, and e4 is available at time i, then it is impossible that Z1 ∩
{e1, . . . , e5} = {e1, e5} and Z2 ∩ {e1, . . . , e5} = {e3}.

Proof. The first six statements are obvious. Statements 7 and 8 follows from Step 3b immediately.
To see Statement 9, suppose that |E(P )| ≥ 6. For a contradiction, assume that Z1∩{e1, . . . , e5} =

{e3} and Z2 ∩ {e1, . . . , e5} = {e1, e5}. Then, since e1 was put to Z1 at Step 3a, it holds that at the
beginning of Step 4, Z1 ∩ {e1, . . . , e3} = {e1, e3} and Z2 ∩ {e1, . . . , e3} = ∅, which is impossible by
Step 3b.

To see Statement 10, suppose that P = Ci and |E(Ci)| ≥ 6. For a contradiction, assume that
Z1 ∩ {e1, . . . , e5} = {e1, e5} and Z2 ∩ {e1, . . . , e5} = {e3}. Since P = Ci, we have Y1 = Y2 = ∅.
So, by procedure FindMatch, neither {e2} nor {e1, e4} is available at time i. For each ej with
1 ≤ j ≤ 4, let vj and vj+1 be the endpoints of ej . Let H3 be the graph (V (G),M) at time i.
Note that the degree of each vj (1 ≤ j ≤ 5) in H3 is 1. Since {e2} is not available at time i, some
connected component of H3 is a path between v2 and v3. On the other hand, since both e1 and e4

are available at time i but {e1, e4} is not, some connected component of H3 is a path between v2

and some vj ∈ {v4, v5}. This leads to a contradiction because no path can have three endpoints. 2

8 Details of Processing Non-4-Cycles

If there is no dangerous pair at time i, then our algorithm colors no vertex of Ci red and processes
Ci as shown in Figure 5.

1. Find an available edge e at time i, and let (A1, A2) be the output of FindMatch(i, ∅, ∅, Ci, e).
(Comment: By Lemma 5.1, e exists. Moreover, by the first four statements in Lemma 7.5,
{A1, A2} is a matching-pair satisfying Conditions (C1) and (C2).)

2. Extend {A1, A2} to a maximal available matching-pair at time i.

3. For each critical pair {(u1, v1), (u2, v2)} at time i for which {A1, A2} is weakly good, if
{A1, A2} favors u1, then color (u1, v1) green and color (u2, v2) black; otherwise, color
(u1, v1) black and color (u2, v2) green.

4. Select an h ∈ {1, 2} uniformly at random.

5. Move the edges in Ah from Ci to M .

Figure 5. Processing Ci when there is no dangerous pair at time i.

Lemma 8.1 Let S be the set of Ci-settled edges. Suppose that there is no dangerous pair at time i
and our algorithm processes Ci as shown in Figure 5. Recall M ′7 in the comment on Step 7 in
Figure 2. Then, E [w(S ∩M ′7)] ≥ w(S)/6.

Proof. Let S1 be the set of edges in S that are active at time i. Let S2 be the set of edges in S1

that are serious at time i. Consider an edge e = (u, v) in S. By Invariant (I5), Pr[e ∈ S1] ≥ 1
2 . So,

it remains to show that Pr[e ∈M ′7 | e ∈ S1] ≥ 1
3 . To this end, we distinguish four cases as follows:

Case 1: e ∈ S1 − S2. In this case, the event e ∈ M ′6 occurs with probability at least 1
2 (recall

M ′6 in the comment on Step 6 in Figure 2). Moreover, if the event e ∈ M ′6 occurs, then after
Step 6 in Figure 2, each cycle C in C with e ∈ E(C) satisfies |E(C) ∩M ′| ≥ 3. This implies that
Pr[e ∈M ′7 | e ∈M ′6] ≥ 2

3 . Thus, Pr[e ∈M ′7 | e ∈ S1 − S2] ≥ 1
3 .
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Case 2: e ∈ S2. Let D1 be the event that {A1, A2} satisfies Condition (G1) for the serious pair
p = {e, e′} at time i containing e. Let D2 be the event that {A1, A2} satisfies Condition (G2) for
p. Let D3 be the event that {A1, A2} satisfies Condition (G3) for p. By Lemmas 7.1, 7.3, and 7.4,
at least one of the following three cases occurs:

Case 2.1: Event D1 occurs. In this case, the event e ∈M ′6 occurs with probability 1
2 . Moreover,

if the event e ∈M ′6 occurs, then after Step 6 in Figure 2, each cycle C in C with e ∈ E(C) satisfies
|E(C)∩M ′| ≥ 4. This implies that Pr[e ∈M ′7 | e ∈M ′6] ≥ 3

4 . Thus, Pr[e ∈M ′7 | e ∈ S2 ∧ D1] ≥ 3
8 .

Case 2.2: Event D2 occurs. In this case, the event e ∈M ′6 occurs with probability 1. Obviously,
Pr[e ∈M ′7 | e ∈M ′6] ≥ 1

2 . So, Pr[e ∈M ′7 | e ∈ S2 ∧ D2] ≥ 1
2 .

Case 2.3: Event D3 occurs. In this case, the probability that e ∈ M ′6 occurs depends on
whether {A1, A2} favors u or not. If {A1, A2} favors u, then the event e ∈ M ′6 always occurs
and Pr[e ∈ M ′7 | e ∈ M ′6] = 1

3 (because e is colored green at Step 3 in Figure 5). On the
other hand, if {A1, A2} does not favor u, then the event e ∈ M ′6 occurs with probability 1/2
and Pr[e ∈ M ′7 | e ∈ M ′6] = 2

3 (because e is colored black at Step 3 in Figure 5). Thus, no matter
whether {A1, A2} favors u or not, Pr[e ∈M ′7 | e ∈ S2 ∧ D3] ≥ 1

3 .
By Cases 2.1 through 2.3, we always have Pr[e ∈M ′7 | e ∈ S2] ≥ 1/3. Combining this with the

result in Case 1, we now have Pr[e ∈M ′7 | e ∈ S1] ≥ 1
3 . 2

Hereafter, we assume that there are at least one dangerous pair at time i. Then, |E(Ci)| ≥ 5.

8.1 The Case with Only One Dangerous Pair

In this case, our algorithm colors no vertex of Ci red. Let p = {(u1, v1), (u2, v2)} be the dangerous
pair at time i. Note that if |E(Ci)| = 5, then {u1, u2} ∈ E(Ci).

Lemma 8.2 Suppose that {u1, u2} ∈ E(Ci). Then, the following hold:

1. If |E(Ci)| = 5, then we can choose an ordering e1, . . . , et of the edges in Ci (appearing in Ci
in this order) such that e1 is available at time i and {u1, u2} = e3.

2. If |E(Ci)| ≥ 6, then we can choose an ordering e1, . . . , et of the edges in Ci (appearing in Ci
in this order) such that e1 is available at time i and {u1, u2} = ej for some j ∈ {3, 4}.

3. Let (Z1, Z2) be the output of FindMatch(i, ∅, ∅, Ci, e1) where the ordering e1, . . . , et in State-
ment 1 or 2 of this lemma is used at Step 1 in Figure 4. Then, an arbitrary maximal avail-
able matching-pair {A1, A2} at time i with Z1 ⊆ A1 and Z2 ⊆ A2 satisfies Conditions (C1)
and (C2) and is good for p.

Proof. Statements 1 and 2 follow from Lemma 5.1. To see Statement 3, first observe that
{A1, A2} satisfies Conditions (C1) and (C2) by the first four statements in Lemma 7.5. Now, by
Statement 1 in Lemma 7.2 and Statement 8 in Lemma 7.5, {A1, A2} is good for p. 2

Lemma 8.3 Suppose that {u1, u2} 6∈ E(Ci) and |E(Ci)| ≥ 7. Then, we can easily compute a
maximal available matching-pair {A1, A2} at time i that satisfies Conditions (C1) and (C2) and is
good for p. Moreover, {A1, A2} is good for every dangerous pair p′ such that Q(p′) is of length 1
and Q̃(p) and Q̃(p′) are vertex-disjoint.

Proof. Let p′ be as described in the lemma. We distinguish two cases as follows.
Case 1: Some edge e of Q(p) incident to an endpoint of Q(p) is available at time i. Let

e1, . . . , et be an ordering of the edges in Ci (appearing in Ci in this order) such that the edges in
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Q(p) are e2, e3, e4 and e4 = e. By definition, {e1, e5} is available. Let (Z1, Z2) be the output of
FindMatch(i, ∅, ∅, Ci, e1) where the ordering e1, . . . , et is used at Step 1 in Figure 4. Let {A1, A2}
be a maximal available matching-pair at time i with Z1 ⊆ A1 and Z2 ⊆ A2. Then, by the first four
statements in Lemma 7.5, {A1, A2} satisfies Conditions (C1) and (C2). Moreover, by Lemma 7.2
and Statements 9 and 10 in Lemma 7.5, {A1, A2} is good for p. Furthermore, by Lemma 7.2 and
Statement 8 in Lemma 7.5, {A1, A2} is good for p′.

Case 2: No edge of Q(p) incident to an endpoint of Q(p) is available at time i. Let e1, . . . , e5

be an ordering of the edges in the extended witness path of p (appearing in Ci in this order)
such that E(Q(p)) = {e2, e3, e4}. Then, neither {e2} nor {e4} is available. By Lemma 5.3, both
{e1, e3} and {e3, e5} are available at time i. So, to compute {A1, A2}, we can proceed as follows:
Initialize Y1 = {e1, e3} and Y2 = {e5}; Remove e1 from Y1 and let (A1, A2) be the output of
FindMatch(i, Y1, Y2, P, e1), where P is the unique path in Ci−{e2, . . . , e5} with |E(P )| ≥ 1. Then,
{e1, e3} ⊆ A1 by Statements 5 and 6 in Lemma 7.5. In turn, {A1, A2} is good for p by Lemma 7.2.
Moreover, by the first four statements in Lemma 7.5, {A1, A2} satisfies Conditions (C1) and (C2).
Furthermore, by Lemma 7.2 and Statement 7 in Lemma 7.5, {A1, A2} is good for p′. 2

Lemma 8.4 Suppose that {u1, u2} 6∈ E(Ci) and |E(Ci)| = 6. Then, we can easily compute a
maximal available matching-pair {A1, A2} at time i that satisfies Conditions (C1) and (C2) and is
good for p.

Proof. Let e1, . . . , e6 be the edges in Ci (appearing in Ci in this order), where e1 and e2 are
incident to u1, and e4 and e5 are incident to u2. Then, by definition, {e1, e5} or {e2, e4} is available
at time i. If both {e1, e5} and {e2, e4} are available at time i, then we are done by first setting
A1 = {e1, e5} and A2 = {e2, e4} and further extending them to maximal available sets at time i.
So, assume that either {e1, e5} or {e2, e4} is available at time i. We assume that {e1, e5} is available
at time i but {e2, e4} is not; the other case is symmetric. We distinguish two cases as follows:

Case 1: Neither {e2} nor {e4} is available at time i. Then, by Lemma 5.3, {e1, e3} is available
at time i. So, we are done by first setting A1 = {e1, e3} and A2 = {e5} and further extending them
to maximal available sets at time i.

Case 2: e2 or e4 is available at time i. We assume that e4 is available at time i; the other case is
symmetric. Let (A1, A2) be the output of FindMatch(i, ∅, ∅, Ci, e1) where the ordering e1, e2, . . . , e6

is used at Step 1 in Figure 4. Then, by the first four statements in Lemma 7.5, {A1, A2} satisfies
Conditions (C1) and (C2). Moreover, {A1, A2} is good for p, by Lemma 7.2, Statements 9 and 10
in Lemma 7.5, and the fact that {e2, e4} is not available at time i. 2

Now, based on Lemmas 8.2, 8.3, 8.4, and 7.1, our algorithm processes Ci as shown in Figure 6.

1. If {u1, u2} ∈ E(Ci), then compute {A1, A2} as described in Lemma 8.2; otherwise, compute
{A1, A2} as described in the proofs of Lemmas 8.3 and 8.4.

2. Perform Steps 3 through 5 in Figure 5 in turn.

Figure 6. Processing Ci when there is only one dangerous pair.

Lemma 8.5 Let S be the set of Ci-settled edges. Suppose that there is exactly one dangerous pair
at time i and our algorithm processes Ci as shown in Figure 6. Then, E [w(S ∩M ′7)] ≥ w(S)/6.

Proof. Same as the proof of Lemma 8.1 2
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8.2 The Case with Two or Three Dangerous Pairs

In this case, our algorithm colors no vertex of Ci red and processes Ci as shown in Figure 7:

1. Select a dangerous pair {(u1, v1), (u2, v2)} at time i uniformly at random.

2. Perform the steps in Figure 6 in turn. (Comment: Lemmas 8.2 through 8.4 still hold even
if there are two or more dangerous pairs at time i.)

Figure 7. Processing Ci when there are two or three dangerous pairs.

Lemma 8.6 Let S be the set of Ci-settled edges. Suppose that there are two or three dangerous pairs
at time i and our algorithm processes Ci as shown in Figure 7. Then, E [w(S ∩M ′7)] ≥ 5w(S)/36.

Proof. Let S1 be the set of edges in S that are active at time i. Let S2 be the set of edges in S1

that are dangerous at time i. Consider an edge e = (u, v) in S. By Invariant (I5), Pr[e ∈ S1] ≥ 1
2 .

So, it remains to show that Pr[e ∈M ′7 | e ∈ S1] ≥ 5
18 . By the proof of Lemma 8.1, Pr[e ∈M ′7 | e ∈

S1 − S2] ≥ 1
3 >

5
18 . In turn, it remains to show that Pr[e ∈M ′7 | e ∈ S2] ≥ 5

18 .
Let b be the number of dangerous pairs at time i. Let D1 be the event that e ∈ S2 and the

dangerous pair containing e is selected at Step 1 in Figure 7. Let D2 be the event that e ∈ S2

but the dangerous pair containing e is not selected at Step 1 in Figure 7. Note that D1 occurs
with probability 1

b · Pr[e ∈ S2] and D2 occurs with probability (1 − 1
b ) · Pr[e ∈ S2]. By the

proof of Lemma 8.1, Pr[e ∈ M ′7 | D1] ≥ 1
3 . On the other hand, Pr[e ∈ M ′7 | D2] ≥ 1

4 . Thus,
Pr[e ∈M ′7 | e ∈ S2] ≥ 1

b ·
1
3 + (1− 1

b ) ·
1
4 ≥

5
18 . 2

8.3 The Case with Four or More Dangerous Pairs

This case is more complicated than the previous cases. In this case, the length of Ci is at least 8
and hence we can prove the following important lemma:

Lemma 8.7 Let p = {(u1, v1), (u2, v2)} be a dangerous pair at time i. Suppose that a maximal
available matching-pair {A1, A2} at time i covers all vertices of Q(p) and satisfies Condition (G3)
for p. Then, {A1, A2} satisfies Condition (G1) for p.

Proof. By Condition (G3) and renaming, we can assume that the two edges incident to u1 in
Ci belong to A1 ∪A2. Let e1 and e2 be the two edges incident to u1 in Ci, where e2 is also an edge
in Q(p). Let e3 be the edge of Q(p) incident to u2, and let e4 be the other edge incident to u2 in
Ci. Note that e2 = e3 when the length of Q(p) is 1.

Since A1 and A2 are matchings, we can assume that e1 ∈ A1 and e2 ∈ A2 (again by renaming).
A simple but crucial observation is that A2 contains at least one edge in E(Ci) − E(Q(p)). This
observation follows from the maximality of A2 and Corollary 5.2 immediately. By this observation,
the graph Ci −A2 has no path between u1 and u2. If E(Q(p))∩A1 6= ∅, then Ci −A1 has no path
between u1 and u2, either. So, it remains to consider the case where E(Q(p)) ∩A1 = ∅.

Suppose that E(Q(p)) ∩ A1 = ∅. Then, e3 ∈ A2 because A2 is a matching and each vertex of
Q(p) is incident to an edge in A1 ∪ A2. In turn, by Condition (G3), e4 6∈ A1 ∪ A2. So, the degree
of u2 in the graph Ci −A1 is 2. Thus, {A1, A2} satisfies Condition (G1) for p. 2

Suppose that Ci has been embedded in the plane. For each dangerous pair p at time i, the left
endpoint of Q(p) is the endpoint u of Q(p) such that the other endpoint (called the right endpoint)
of Q(p) can be reached by starting at u, proceeding clockwise around Ci, and traversing the edges
of Q(p) only.
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We construct a graph H4 as follows. The nodes of H4 are the dangerous pairs at time i. For
two dangerous pairs p1 and p2 at time i, {p1, p2} is an edge in H4 if and only if one of the following
two conditions holds true:

• E(Q(p1)) ∩ E(Q(p2)) 6= ∅.

• E(Q(p1)) ∩E(Q(p2)) = ∅, and Ci contains a path P from some endpoint u of Q(p1) to some
endpoint v of Q(p2) such that E(P ) ∩ E(Q(p1)) = E(P ) ∩ E(Q(p2)) = ∅ and P contains at
most one other dangerous vertex than u and v.

A simple inspection shows that the degree of each node in H4 is at most 5. Moreover, if p is a node
of degree 5 in H4, then p has a neighbor of degree 3 in H4. Thus, the nodes of H4 can be colored
with at most five colors so that no two adjacent nodes get the same color.

Now, our algorithm processes Ci as follows:

1. Partition the node set of H4 into at most five (nonempty) independent sets of H4, and then
select one independent set I among them uniformly at random.

2. Let H5 be the graph Ci − (∪p∈IV (Q(p))). (Comment: By the construction of H4 and the
independence of I, each connected component of H5 contains at least two dangerous vertices
at time i and hence is a path of length at least 1.)

3. Let J be those p ∈ I with |E(Q(p))| = 3.

4. If J = ∅, then perform the following steps:

(a) If H5 has a connected component K with |E(K)| ≥ 2, then perform the following steps:

i. Find an available edge e ∈ E(K) at time i. (Comment: By Lemma 5.1, e exists.)
ii. Let e1, . . . , et be the edges of Ci (appearing in Ci in this order), where e1 = e and

et ∈ E(K).
iii. Let (A1, A2) be the output of FindMatch(i, ∅, ∅, Ci, e).
iv. Extend A1 and A2 to maximal available sets at time i. (Comment: By the first four

statements in Lemma 7.5, {A1, A2} satisfies Conditions (C1) and (C2). Moreover,
by Lemma 7.2 and Statement 8 in Lemma 7.5, {A1, A2} is good for all p ∈ I.)

(b) If every connected component K of H5 satisfies |E(K)| = 1, then perform the following
steps:

i. Choose an arbitrary dangerous pair q = {(u1, v1), (u2, v2)} 6∈ I at time i. (Comment:
Since every connected component of H5 is an edge and |E(Ci)| ≥ 8, |I| ≥ 2. In turn,
by the independence of I, q must exist.)

ii. Choose one integer j ∈ {1, 2} uniformly at random.
iii. Color vertex uj and edge (uj , vj) red.
iv. Let e′ be the edge of H5 incident to uj . Let e be the edge in E(Ci)− {e′} adjacent

to e′ but not incident to uj . (Comment: By the definition of a dangerous pair at
time i, e is available at time i because e ∈ E(Q̃(p))− E(Q(p)) for some p ∈ I.)

v. Let (A1, A2) be the output of FindMatch(i, ∅, ∅, Ci − {e′}, e), and extend A1 and
A2 to maximal available sets at time i. (Comment: Note that one vertex of Ci is red
now. By the first four statements in Lemma 7.5, {A1, A2} satisfies Conditions (C1)
and (C2). So, by Lemma 7.2 and Statement 7 in Lemma 7.5, {A1, A2} is good for
all p ∈ I.)
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5. If J contains exactly one dangerous pair p, then computeA1 andA2 as described in Lemma 8.3.
(Comment: Lemma 8.3 still holds for p, even if there are other dangerous pairs at time i. By
this lemma, {A1, A2} satisfies Conditions (C1) and (C2) and is good for every p ∈ I.)

6. If |J | ≥ 2, then perform the following steps:

(a) Let p1, . . . , pk be the dangerous pairs (nodes) in J (appearing in Ci in this order clock-
wise).

(b) Let H6 be the graph Ci − (∪1≤j≤kE(Q(pi))). (Comment: By the construction of H4

and the independence of I, each connected component K of H6 with |E(K)| = 0 is a
vertex of Q(pj) for some j ∈ {1, . . . , k}, and each connected component K of H6 with
|E(K)| > 0 is a path of length at least 3.)

(c) For each j ∈ {1, . . . , k}, color the dangerous vertex at time i closest to the left endpoint
of Q(pj) in H6 olive, and color the dangerous vertex at time i closest to the right endpoint
of Q(pj) in H6 brown. (Comment: By the construction of H4 and the independence of
I, no vertex is colored twice at this step. For the same reason, for each vertex u colored
at this step, the dangerous pair containing the dangerous edge incident to u is not in I.
Moreover, there is no dangerous pair {(u1, v1), (u2, v2)} such that u1 and u2 are assigned
the same color at this step.)

(d) Let UO be the set of olive vertices. Let UB be the set of brown vertices.

(e) For each dangerous pair p = {(u1, v1), (u2, v2)} 6∈ I at time i such that exactly one
of u1 and u2 is colored, color the uncolored vertex in {u1, u2} with a suitable color in
{olive,brown} so that u1 and u2 get different colors. (Comment: Immediately after this
step, for each dangerous pair p = {(u1, v1), (u2, v2)} 6∈ I at time i, either both u1 and u2

are uncolored, or they are colored with different colors.)

(f) Select a color c among olive and brown uniformly at random.

(g) If c is olive, then set UR = UO and color all edges in M ′ incident to olive vertices
red; otherwise, set UR = UB and color all edges in M ′ incident to brown vertices red.
(Comment: All red edges are dangerous at time i.)

(h) Recolor the vertices in UR red. (Comment: Some red edges may have no red endpoints.)

(i) Compute an available matching-pair {A1, A2} that satisfies Condition (C2) and is good
for all p ∈ I.

(j) Extend A1 and A2 to maximal available sets at time i. (Comment: By Corollary 5.2,
{A1, A2} satisfies Condition (C1) after this step. So, after this step, {A1, A2} satisfies
Conditions (C1) and (C2) and is good for all p ∈ I.)

7. Perform Steps 3 through 5 in Figure 5 in turn.

Step 6i is rough; the remainder of this subsection is devoted to it. Hereafter, we assume that
|J | ≥ 2. The following lemma is clear from our choice of olive vertices and brown vertices at Step 6c.

Lemma 8.8 The following hold:

1. For every connected component (path) K of graph Ci − UR, there is exactly one dangerous
pair p ∈ J with E(Q(p)) ⊆ E(K). (Comment: Hereafter, we denote this dangerous pair by
p(K) for convenience.)

2. Ci − UR has no connected component K equal to Q(p(K)).
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3. For each p ∈ I−J , Ci−UR has a connected component K with E(Q(p)) ⊂ E(K), and neither
endpoint of Q(p) is an endpoint of path K.

To compute A1 and A2 as required in Step 6i, our algorithm first initializes A1 and A2 to be
empty, and then processes the connected components of Ci−UR one by one (in an arbitrary order).
In a nutshell, during processing a connected component K of Ci−UR, our algorithm does nothing
else but the following two jobs:

(J1) Add some edges in E(K) ∪ {f1, f2} to A1 and A2, where f1 and f2 are the two edges in
E(Ci)− E(K) incident to an endpoint of path K.

(J2) Delete zero or more edges in {f ′1, f ′2} from A1 or A2, or move zero or more suitable edges
in {f ′1, f ′2} from one of A1 and A2 to the other, where f ′1 (respectively, f ′2) is the edge in
E(Ci)− E(K) adjacent to f1 (respectively, f2).

The addition in Job (J1) is required to satisfy the following two conditions:

(C4) Immediately after the addition, {A1, A2} is an available matching-pair at time i with A1∩A2 =
∅, covers all vertices of K, and is not harmful for all p ∈ I with E(Q(p)) ⊆ E(K).

(C5) Even if one or both of the two edges in E(Ci) − E(K) incident to an endpoint of path K
are deleted from A1 or A2, or are moved from one of A1 and A2 to the other in the future,
{A1, A2} will remain to be not harmful for all p ∈ I with E(Q(p)) ⊆ E(K).

The deletion in Job (J2) is required to satisfy the following condition:

(C6) If a non-red vertex of Ci was covered by {A1, A2} before the deletion, then it remains to be
covered by {A1, A2} after the deletion.)

Lemma 8.9 After processing all connected components K of Ci − UR as above, {A1, A2} is an
available matching-pair at time i, satisfies Condition (C2), and is good for all p ∈ I.

Proof. Immediate from Conditions (C4) and (C6) and Lemma 7.2. 2

We next detail how our algorithm does Jobs (J1) and (J2). The idea is similar to that in the
proof of Lemma 8.3. To do Jobs (J1) and (J2) for a connected component K of Ci − UR, our
algorithm performs the following steps:

8. If there are distinct edges e1 and e2 in Q(p(K)) such that both A1 ∪ {e1} and A2 ∪ {e2} are
available at time i, then perform the following steps:

(a) For each j ∈ {1, 2}, add ej to Aj , and find the path Pj in Ci such that ej ∈ E(Pj),
ej′ 6∈ E(Pj), and |E(Pj)− E(K)| = 1, where j′ is the integer in {1, 2} − {j}.

(b) For each j ∈ {1, 2} (in any order), remove ej from Aj , call FindMatch(i, Aj , Aj′ , Pj , ej)
to obtain (Z1, Z2), add the edges in Z1 to Aj , and add the edges in Z2 to Aj′ , where j′

is the integer in {1, 2} − {j}.
(Comment: By procedure FindMatch, it is easy to see that what our algorithm does at
Steps 8a and 8b are exactly Jobs (J1) and (J2). Moreover, immediately after Step 8b,
e1 ∈ A1 and e2 ∈ A2 (implying that {A1, A2} is not harmful for p(K)) by Statement 5
in Lemma 7.5, {A1, A2} covers all vertices of K by Statement 2 in Lemma 7.5, and
{A1, A2} is not harmful for all p ∈ I − {p(K)} with E(Q(p)) ⊆ E(K) by Statement 3
in Lemma 8.8 and Statement 7 in Lemma 7.5. So, by Statement 1 in Lemma 7.5,
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{A1, A2} satisfies Condition (C4). By the contents of Jobs (J1) and (J2) to be done
for other connected components of Ci − UR, edges e1 and e2 will remain in A1 and A2

forever, respectively. In turn, {A1, A2} will remain to be not harmful for p(K) forever.
Furthermore, for each q ∈ I −{p(K)} with E(Q(q)) ⊆ E(K), because of Statement 3 in
Lemma 8.8, the contents of Jobs (J1) and (J2) to be done for other connected components
of Ci − UR guarantee that {A1, A2} will remain to be not harmful for q forever. Thus,
{A1, A2} satisfies Condition (C5). Finally, by Statement 6 in Lemma 7.5, {A1, A2}
satisfies Condition (C6).)

9. If there are no distinct edges e1 and e2 in Q(p(K)) such that both A1 ∪ {e1} and A2 ∪ {e2}
are available at time i, then perform the following steps:

(a) Let e1, . . . , e5 be the edges of Q̃(p(K)) (appearing in Ci in this order), where Q(p(K)) =
{e2, e3, e4} and e5 ∈ E(K).
(Comment: By Statement 2 in Lemma 8.8, e5 exists. By Lemma 5.1, both A1 ∪ {e3}
and A2 ∪{e3} are available at time i, and neither Aj ∪{e2} nor Aj ∪{e4} is available at
time i for each j ∈ {1, 2}. So, by Lemma 5.3, Aj ∪{e3, e5} is available at time i for each
j ∈ {1, 2} such that Aj does not contain the edge in E(Ci)− {e1, e2} adjacent to e1.)

(b) Find an integer j ∈ {1, 2} such that Aj ∪ {e3, e5} is available at time i. (Comment: By
the comment on Step 9a and the fact that A1 ∩A2 = ∅, j exists.)

(c) Add both e3 and e5 to Aj .

(d) Let P1 be the path in Ci such that {e3, e4}∩E(P1) = {e3} and |E(P1)−E(K)| = 1. Let
P2 be the path in Ci such that {e4, e5} ∩E(P2) = {e5} and |E(P2)−E(K)| = 1. Let j′

be the integer in {1, 2} − {j}.
(e) Remove e3 from Aj , call FindMatch(i, Aj , Aj′ , P1, e3) to obtain (Z1, Z2), add the edges

in Z1 to Aj , and add the edges in Z2 to Aj′ .

(f) Remove e5 from Aj , call FindMatch(i, Aj , Aj′ , P2, e5) to obtain (Z1, Z2), add the edges
in Z1 to Aj , and add the edges in Z2 to Aj′ .
(Comment: By procedure FindMatch, it is easy to see that what our algorithm does
at Steps 9a and 9f are exactly Jobs (J1) and (J2). Moreover, immediately after Step 9f,
{e3, e5} ⊆ Aj (implying that {A1, A2} is not harmful for p(K)) by Statement 5 in
Lemma 7.5, {A1, A2} covers all vertices of K by Statement 2 in Lemma 7.5, and {A1, A2}
is not harmful for all p ∈ I−{p(K)} with E(Q(p)) ⊆ E(K) by Statement 3 in Lemma 8.8
and Statement 7 in Lemma 7.5. So, by Statement 1 in Lemma 7.5, {A1, A2} satisfies
Condition (C4). By the contents of Jobs (J1) and (J2) to be done for other connected
components of Ci − UR, edges e3 and e5 will remain in Aj forever. In turn, {A1, A2}
will remain to be not harmful for p(K) forever. Furthermore, for each q ∈ I − {p(K)}
with E(Q(q)) ⊆ E(K), because of Statement 3 in Lemma 8.8, the contents of Jobs (J1)
and (J2) to be done for other connected components of Ci−UR guarantee that {A1, A2}
will remain to be not harmful for q forever. Thus, {A1, A2} satisfies Condition (C5).
Finally, by Statement 6 in Lemma 7.5, {A1, A2} satisfies Condition (C6).)

Lemma 8.10 Let S be the set of Ci-settled edges. Suppose that there are four or more dangerous
pairs at time i and our algorithm processes Ci as described above in this subsection. Then, E [w(S∩
M ′7)] ≥ 11w(S)/80.

Proof. Let S1 be the set of edges in S that are active at time i. Let S2 be the set of edges
in S1 that are dangerous at time i. Consider an edge e = (u1, v1) in S. By Invariant (I5),
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Pr[e ∈ S1] ≥ 1
2 . So, it remains to show that Pr[e ∈M ′7 | e ∈ S1] ≥ 11

40 . By the proof of Lemma 8.1,
Pr[e ∈M ′7 | e ∈ S1 − S2] ≥ 1

3 >
5
18 . In turn, it remains to show that Pr[e ∈M ′7 | e ∈ S2] ≥ 11

40 .
Assume that the event e ∈ S2 has occurred. Let p = {(u1, v1), (u2, v2)} be the dangerous pair

at time i containing e. Let b be the number of independent sets into which the node set of H4 has
been partitioned at Step 1. Clearly, Pr[p ∈ I | e ∈ S2] = 1

b and Pr[p 6∈ I | e ∈ S2] = b−1
b . Consider

three cases as follows:
Case 1: p ∈ I. By Steps 4 through 6 and Lemma 8.7, {A1, A2} is strongly good for p. Thus, as

in the proof of Lemma 8.1, we can show that given the event p ∈ I, the event e ∈M ′7 occurs with
probability at least 3

8 . That is, Pr[e ∈M ′7 | p ∈ I] ≥ 3
8 .

Case 2: p 6∈ I and J = ∅. Clearly, p is the dangerous pair q chosen at Step 4(b)i or not.
Case 2.1: p 6= q. Then, Pr[e ∈M ′6 | p 6∈ I] ≥ 1

2 and hence Pr[e ∈M ′7 | p 6∈ I] ≥ 1
4 .

Case 2.2: p = q. Let D be the event that u1 is not colored red at Step 4(b)iii. D occurs with
probability 1

2 , and hence Pr[e ∈ M ′6 | p 6∈ I] ≥ 1
4 . Moreover, if D occurs, then edge (u2, v2) is

colored red at Step 4(b)iii. Thus, given the event e ∈ M ′6, the event (u2, v2) ∈ M ′6 cannot occur
and so e ∈M ′7 with probability 1 (because no cycle in C can contain e immediately after Step 6 in
Figure 2). Therefore, Pr[e ∈M ′7 | p 6∈ I] ≥ 1

4 .
Case 3: p 6∈ I and |J | ≥ 2. Clearly, u1 ∈ UO ∪ UB or not (cf. Step 6c).
Case 3.1: u1 6∈ UO ∪ UB. Then, the event u1 ∈ UR cannot occur. So, Pr[e ∈ M ′6 | p 6∈ I] ≥ 1

2
and hence Pr[e ∈M ′7 | p 6∈ I] ≥ 1

4 .
Case 3.2: u1 ∈ UO ∪ UB. Then, the event u1 6∈ UR occurs with probability 1

2 and hence
Pr[e ∈ M ′6 | p 6∈ I] ≥ 1

4 . A crucial point is that if u1 6∈ UR, then edge (u2, v2) is red because of
Steps 6e and 6g. So, given the event u1 6∈ UR and the event e ∈M ′6, the event e ∈M ′7 occurs with
probability 1 (because after Step 6 in Figure 2, edge (u2, v2) is not in C and hence no cycle in C
can contain e). Thus, Pr[e ∈M ′7 | p 6∈ I] ≥ 1

4 .
By Cases 2.1, 2.2, 3.1, and 3.2, we always have Pr[e ∈ M ′7 | p 6∈ I] ≥ 1

4 . Combining this with
the result in Case 1, we have Pr[e ∈ M ′7 | e ∈ S2] ≥ 3

8 ·
1
b + 1

4 ·
b−1
b . Since b ≤ 5, we now have

Pr[e ∈M ′7 | e ∈ S2] ≥ 11
40 . 2

9 The Result

Recall T , Tint, Text, and α (they are defined in the beginning of Section 3).

Lemma 9.1 Let δw(T ) be the expected total weight of edges moved from C to M at Step 4 or 5 in
Figure 2. Then, E [w(T2)] ≥ (0.5 + δ)w(T ) and E [w(T3)] ≥ ((1− δ) + 11

160(1− α))w(T ).

Proof. Since T2 contains Mc (a maximum-weight perfect matching of G) as a subset and also
contains the edges moved from C at Step 4 or 5 in Figure 2, it is clear that E [w(T2)] ≥ (0.5+δ)w(T ).

Obviously, each edge in M ′ is either 4-cycle-closed or Ci-settled for some i ∈ {` + 1, . . . , r}.
By Lemmas 6.17, 8.1, 8.5, 8.6, and 8.10, we have E [w(M ′7)] ≥ 11

80w(M ′). Thus, after Step 7 in
Figure 2, E [w(C)] ≥ (1 − δ)w(T ) + 11

80w(M ′). Now, since w(M ′) ≥ 1
2w(Text) = 1

2(1 − α)w(T ), we
have E [w(T3)] ≥ ((1− δ) + 11

160(1− α))w(T ). 2

Now, combining Fact 3.1 and Lemma 9.1 and noting that the running time of the algorithm
is dominated by the O(n3)-time needed for computing a maximum-weight cycle cover and two
maximum-weight matchings, we have:

Theorem 9.2 For any fixed ε > 0, there is an O(n3)-time approximation algorithm for Max TSP
achieving an expected approximation ratio of 251(1−ε)

331−320ε .
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