
Computing Bounded-Degree Phylogenetic Roots of

Disconnected Graphs

Zhi-Zhong Chen ∗

Department of Mathematical Sciences
Tokyo Denki University

Hatoyama, Saitama 350-0394, Japan

Tatsuie Tsukiji
Department of Information Science

Tokyo Denki University
Hatoyama, Saitama 350-0394, Japan

July 14, 2004

Abstract

The Phylogenetic kth Root Problem (PRk) is the problem of finding a (phylogenetic)
tree T from a given graph G = (V,E) such that (1) T has no degree-2 internal nodes, (2) the
external nodes (i.e. leaves) of T are exactly the elements of V , and (3) (u, v) ∈ E if and
only if the distance between u and v in tree T is at most k, where k is some fixed threshold
k. Such a tree T , if exists, is called a phylogenetic kth root of graph G. The computational
complexity of PRk is open, except for k ≤ 4. Recently, Chen et al. investigated PRk under a
natural restriction that the maximum degree of the phylogenetic root is bounded from above by
a constant. They presented a linear-time algorithm that determines if a given connected G has
such a phylogenetic kth root, and if so, demonstrates one. In this paper, we supplement their
work by presenting a linear-time algorithm for disconnected graphs.

Keywords. Phylogeny, phylogenetic root, computational biology, graph power, tree power,
graph algorithm.

1 Introduction

The reconstruction of evolutionary history for a set of species from quantitative biological data
has long been a popular problem in computational biology. This evolutionary history is typically
modeled by an evolutionary tree or phylogeny. A phylogeny is a tree where the leaves are labeled
by species and each internal node represents a speciation event whereby a hypothetical ancestral
species gives rise to two or more child species. Proximity within a phylogeny in general corresponds
to similarity in evolutionary characteristics. Both rooted and unrooted trees have been used to
describe phylogenies in the literature, although they are practically equivalent. In this paper, we
will consider only unrooted phylogenies for the convenience of presentation. Note that each internal
node in a phylogeny has at least 3 neighbors.

∗Supported in part by the Grant-in-Aid for Scientific Research of the Ministry of Education, Science, Sports and
Culture of Japan, under Grant No. 14580390.

1

Many approaches to phylogenetic reconstruction have been proposed in the literature [8]. In
particular, Lin et al. [4] recently suggested a graph-theoretic approach for reconstructing phyloge-
nies from similarity data. Specifically, interspecies similarity is represented by a graph G where the
vertices are the species and the adjacency relation represents evidence of evolutionary similarity.
A phylogeny is then reconstructed from G such that the leaves of the phylogeny are labeled by
vertices of G (i.e. species) and for any two vertices of G, they are adjacent in G if and only if their
corresponding leaves in the phylogeny are at most distance k apart, where k is a predetermined
proximity threshold. This approach gives rise to the following algorithmic problem [4]:

Phylogenetic kth Root Problem (PRk):
Given a graph G = (V,E), find a phylogeny T with leaves labeled
by the elements of V such that for each pair of vertices u, v ∈ V ,
(u, v) ∈ E if and only if dT (u, v) ≤ k, where dT (u, v) is the number
of edges on the path between u and v in T .

Such a phylogeny T (if exists) is called a phylogenetic kth root, or a kth root phylogeny, of graph G.
Graph G is called the kth phylogenetic power of T . For convenience, we denote the kth phylogenetic
power of any phylogeny T as T k. That is, T k = {(u, v) | u and v are leaves of T and dT (u, v) ≤ k}.
Thus, PRk asks for a phylogeny T such that G = T k.

1.1 Previous Results on PRk

PRk was first studied in [4] where linear-time algorithms for PRk with k ≤ 4 were proposed. At
present, the complexity of PRk with k ≥ 5 is still unknown.

The hardness of PRk for large k seems to come from the unbounded degree of an internal node
in the output phylogeny. On the other hand, in the practice of phylogeny reconstruction, most
phylogenies considered are trees of degree 3 [8] because speciation events are usually bifurcating
events in the evolutionary process. These motivated Chen et al. [2] to consider a restricted version
of PRk where the output phylogeny is assumed to have degree at most ∆, for some fixed constant
∆ ≥ 3. We call this restricted version the Degree-∆ PRk and denote it for short as ∆PRk.

Chen et al. [2] presented a linear-time algorithm that determines, for any input connected graph
G and constant ∆ ≥ 3, if G has a kth root phylogeny with degree at most ∆, and if so, demonstrates
one such phylogeny. Unfortunately, their algorithm fails when the input graph G is disconnected.
One of their open questions asks for a polynomial-time algorithm for disconnected graphs, because
the disconnected case is real in biology.

1.2 Other Problems Related to PRk

A graph G is the kth power of a graph H (or equivalently, H is a kth root of G), if vertices u and v
are adjacent in G if and only if they are at most distance k apart in H. An important special case of
graph power/root problems is the Tree kth Root Problem (TRk): Given a graph G = (V,E),
we wish to find a tree T = (V,ET) such that (u, v) ∈ E if and only if dT (u, v) ≤ k. If T exists, then
it is called a tree kth root, or a kth root tree, of graph G. There is rich literature on graph roots and
powers (see [1, Section 10.6] for an overview), but few results on phylogenetic/tree roots/powers. It
is NP-complete to recognize a graph power [6]; nonetheless, we can determine if a graph has a kth
root tree, for any fixed k, in cubic time [3]. In particular, determining if a graph has a tree square

2

root can be done in linear time [5]. Moreover, Nishimura et al. [7] presented a cubic time algorithm
for a variant of PRk with k ≤ 4, where internal nodes of the output phylogeny are allowed to have
degree 2.

1.3 Our Contribution

Our result is a linear-time algorithm that determines, for any input disconnected graph G and
constant ∆ ≥ 3, if G has a kth root phylogeny with degree at most ∆, and if so, demonstrates
one such phylogeny. This answers an open question in [2]. Combining this algorithm with the
algorithm in [2] for connected graphs, we obtain the first linear-time algorithm for ∆PRk for any
constants ∆ ≥ 3 and k ≥ 2. Our algorithm is complicated and it is based on hidden structures
of phylogenetic kth roots of disconnected graphs. Moreover, the algorithm needs a linear-time
subroutine for solving a certain optimization problem on each connected component of the input
disconnected graph. The subroutine is obtained by nontrivially refining the algorithm in [2].

1.4 Organization of the Paper

We introduce some notations and definitions in the next section. Our linear-time algorithm for
∆PRk is presented in Sections 3 and 4.

2 Preliminaries

We employ standard terminologies in graph theory. In particular, the subgraph of a graph G
induced by a vertex set U of G is denoted by G[U], the degree of a vertex v in G is denoted by
degG(v), and the distance between two vertices u and v in G is denoted by dG(u, v). Moreover, for
a set W of vertices in a graph G = (V,E), we write G−W for G[V −W]. Furthermore, in a rooted
tree, each vertex is both an ancestor and a descendant of itself.

For clarity, if G = (V,E) is a graph and T = (VT , ET) is a kth root phylogeny of G for some k,
then we call the elements of V vertices and call those of VT nodes.

In the remainder of this section, fix a graph G = (V,E) and two integers k ≥ 4 and ∆ ≥ 3. A
degree-∆ kth root phylogeny ((∆, k)-phylogeny for short) of G is a kth root phylogeny T of G such
that the maximum degree of a node in T is at most ∆.

A degree-∆ kth root quasi-phylogeny ((∆, k)-QP for short) of G is a tree Q satisfying the following
conditions:

• Each vertex of G is a leaf of Q and appears in Q exactly once. For convenience, we call the
leaves of Q that are also vertices of G true leaves of Q, and call the other leaves of Q false
leaves of Q.

• The degree of each node in Q is at most ∆.

• For every two vertices u and v in G, u and v are adjacent in G if and only if dQ(u, v) ≤ k.

• For each node x of Q that is a degree-2 node or a false leaf in Q, it holds that minv∈V dQ(x, v) ≥
bk

2c.

• If Q has no false leaf, then it has at least one node x such that 2 ≤ degQ(x) ≤ ∆ − 1 and
minv∈V dQ(x, v) ≥ bk

2c.

3

The cost of Q is max{1, a + 2b}, where a is the number of degree-2 nodes in Q and b is the number
of false leaves in Q. Q is an optimal (∆, k)-QP of G if its cost is minimized over all (∆, k)-QPs of
G.

Lemma 2.1 Suppose that G = (V,E) is a connected graph. Let Q be an optimal (∆, k)-QP of G.
Then, the following hold:

1. Q has no node x with minv∈V dQ(x, v) > bk
2c.

2. For each node x with degQ(x) = 2 or degQ(x) > 3, each connected component of Q − {x}
contains at least one true leaf of Q.

Proof. We prove the two statements separately as follows.
Statement 1. If x were a false leaf of Q with minv∈V dQ(x, v) > bk

2c, then the removal of x from
Q would result in a new (∆, k)-QP of G whose cost is smaller than that of Q, a contradiction. So, for
every false leaf x of Q, minv∈V dQ(x, v) ≤ bk

2c. In turn, for every internal node x of Q such that one
connected component of Q−{x} contains all true leaves of Q, it holds that minv∈V dQ(x, v) ≤ bk

2c.
Now, it remains to consider those internal nodes x of Q such that no connected component of

Q−{x} contains all true leaves of Q. If among these nodes, there were one x with minv∈V dQ(x, v) >
bk

2c, then G would have no edge (u, v) such that u and v belong to different connected components
of Q− {x}, contradicting the connectivity of G.

Statement 2. Let x be a node of Q with degQ(x) = 2 or degQ(x) > 3. For a contradiction,
assume that some connected component C of Q− {x} contains no true leaf of Q. If degQ(x) > 3,
then the removal of C from Q results in a new (∆, k)-QP of G whose cost is smaller than that of
Q, a contradiction. If degQ(x) = 2, then by Statement 1, minv∈V dQ(x, v) < bk

2c, a contradiction.
2

We classify (∆, k)-QPs Q into four types as follows.

• Q is helpful if it has at most one degree-2 node and has no false leaf.

• Q is moderate if it has no degree-2 node but has exactly one false leaf.

• Q is troublesome if it has at least two degree-2 nodes but has no false leaf.

• Q is dangerous if it has at least one false leaf and the total number of false leaves and degree-2
nodes in Q is at least 2.

A (∆, k)-QP Q is unhelpful if it is not helpful.
For a (∆, k)-QP Q, we define its port nodes as follows. If Q is not helpful, then its port nodes

are its false leaves and degree-2 nodes. If Q is helpful and has no degree-2 node, then its port nodes
are those nodes x with minv∈V dQ(x, v) ≥ bk

2c. If Q is helpful and has a degree-2 node, then it has
only one port node, namely, its unique degree-2 node.

A nonport node of a (∆, k)-QP Q is a node of Q that is not a port node of Q.

4

3 Algorithm for Bounded-Degree PRk

Throughout this section, fix two integers k ≥ 4 and ∆ ≥ 3. This section presents a linear-time
algorithm for solving ∆PRk.

Let G = (V,E) be the input graph. We assume that G is disconnected; otherwise, the linear-
time algorithm in [2] solves the problem. Let G1, . . . , G` be the connected components of G. For
each integer with 1 ≤ i ≤ `, let Vi be the vertex set of Gi.

In the next section, we will show the following lemma:

Lemma 3.1 For every i ∈ {1, . . . , `}, we can decide whether Gi has a (∆, k)-QP, in O(|Vi|) time.
Moreover, if Gi has a (∆, k)-QP, then we can compute an optimal (∆, k)-QP of Gi in O(|Vi|) time.

Lemma 3.2 If for some i ∈ {1, . . . , `}, Gi has no (∆, k)-QP, then G has no (∆, k)-phylogeny.

Proof. Suppose that G has a (∆, k)-phylogeny T . Fix an i ∈ {1, . . . , `}. Let Yi be the set of all
internal nodes y of T such that there is a vertex u ∈ Vi with dT (u, y) ≤ bk

2c. Obviously, T [Vi ∪ Yi]
is a (∆, k)-QP of Gi. 2

By Lemmas 3.1 and 3.2, we may assume that for each i ∈ {1, . . . , `}, Gi has a (∆, k)-QP. For
each i ∈ {1, . . . , `}, let Qi be the optimal (∆, k)-QP of Gi computed in Lemma 3.1.

Lemma 3.3 Suppose that G has a (∆, k)-phylogeny. Then, G has a (∆, k)-phylogeny T such that
Q1, . . . , Q` all are subtrees of T .

Proof. Let T be a (∆, k)-phylogeny of G. For each i ∈ {1, . . . , `}, let Yi be as in the proof
of Lemma 3.2. Recall that T [Vi ∪ Yi] is a (∆, k)-QP of Gi. Moreover, for every pair (i, j) with
1 ≤ i 6= j ≤ `, Yi ∩ Yj = ∅.

Consider the integer i ∈ {1, . . . , `} such that Q1, . . . , Qi−1 are subtrees of T but Qi is not. If
no such i exists, then T is as required. So, assume that i exists. Let F1, . . . , Fh be the connected
components of T − (Vi ∪ Yi). For each j ∈ {1, . . . , h}, Fj has exactly one node zj with degFj (zj) <
degT (zj), and each leaf of Fj is a vertex in V − Vi. Moreover, the minimum distance from zj to
a leaf in Fj is at least dk

2e, because minv∈Vi dT (zj , v) = bk
2c + 1. Let Z = {z1, . . . , zh}. Define a

function f : Z → Yi as follows. For each j ∈ {1, . . . , h}, let f(zj) be the neighbor of zj in T that
is not in Fj . Let X = {f(zj) | 1 ≤ j ≤ h}.

We claim that the cost of the (∆, k)-QP T [Vi∪Yi] of Gi is at most h. To see this claim, first note
that X contains all false leaves and all degree-2 nodes of T [Vi ∪ Yi]. Moreover, for each degree-2
node x of T [Vi ∪ Yi], there is at least one zj ∈ Z with f(zj) = x. Furthermore, for each false leaf x
of T [Vi ∪ Yi], there are at least two zj ∈ Z with f(zj) = x. Hence, the claim holds. By the claim,
the cost of the optimal (∆, k)-QP Qi of Gi is at most h.

Now, we use Qi and F1, . . . , Fh to obtain a new (∆, k)-phylogeny Ti of G, by performing the
following steps:

1. Let x1, . . . , xa be the degree-2 nodes in Qi, and let xa+1, . . . , xa+b be the false nodes in Qi.

2. If a > 0 or b > 0, then set c = a + 2b; otherwise, set c = 1 and let x1 be an (arbitrarily
chosen) port node of Qi. (Comment: c is the cost of Qi and h ≥ c.)

3. For all j with 1 ≤ j ≤ c− 2b, add edge (xj , zj).

5

4. For all j with 1 ≤ j ≤ b, add edges (xc−2b+j , zc−2b+2j−1) and (xc−2b+j , zc−2b+2j).

5. If h > c, then perform the following steps:

(a) Delete the edge between xc−b and zc.

(b) Introduce h− c new nodes y1, . . . , yh−c, and connect them into a path from y1 to yh−c.

(c) For all i with 1 ≤ i ≤ h− c, add edge (yi, zc+i−1).

(d) Add edges (y1, xc−b) and (yh−c, zh).

Obviously, Ti is a (∆, k)-phylogeny of G and Qi is a subtree of Ti. Moreover, for every j with
1 ≤ j ≤ i−1, Qj remains to be a subtree of Ti, because Yi∩Yj = ∅ and Qj is a subtree of T [Vj ∪Yj]
by Statement 1 in Lemma 2.1. Thus, Ti is a (∆, k)-phylogeny of G such that for all j ∈ {1, . . . , i},
Qj is a subtree of Ti. Therefore, by our choice of i, we can repeat the above argument to finally
obtain a (∆, k)-phylogeny T` of G such that Q1, . . . , Q` are subtrees of T`. 2

In the remainder of this section, a (∆, k)-phylogeny of G always means one in which Q1, . . . , Q`

are subtrees. By Lemma 3.3, we lose no generality. For convenience, we call Q1, . . . , Q` the unitary
(∆, k)-QPs.

Let T be a (∆, k)-phylogeny T of G. A junction node of T is a node x of T such that no unitary
(∆, k)-QP contains x. A node x of T is over-connected, if it satisfies one of the following conditions:

(1) degT (x) > 3 and x is a junction node of T .

(2) degT (x) > 3 and x is a port node of some unhelpful Qi (1 ≤ i ≤ `).

(3) x is a nonport node of some unhelpful Qi (1 ≤ i ≤ `) and degT (x) > degQi(x).

A helpful Qi (1 ≤ i ≤ `) is mis-connected in T , if (i) at least one nonport node of Qi is adjacent
to a node outside Qi in T , or (ii) there are two or more nodes x outside Qi such that x is adjacent
to a node of Qi in T .

A (∆, k)-phylogeny T of G is canonical, if it has no over-connected node and no helpful Qi

(1 ≤ i ≤ `) is mis-connected in T .

Lemma 3.4 If G has a (∆, k)-phylogeny, then it has a canonical one.

Proof. Let T be a (∆, k)-phylogeny of G. Suppose that T has an over-connected node x. We
distinguish three cases as follows.

Case 1: x satisfies Condition (1) above. Let z1, . . . , zh be the neighbors of x in T . Let b = h−2.
We modify T by performing the following four steps:

1. Delete the edges (x, z1), . . . , (x, zb).

2. Introduce b − 1 new junction nodes w1, . . . , wb−1, and connect them into a path from w1 to
wb−1.

3. For each j ∈ {1, . . . , b− 1}, add edge (wj , zj).

4. Add edges (w1, x) and (wb−1, zb).

6

The modification does not decrease the distance between each pair of leaves in T . So, after the
modification, T remains to be a (∆, k)-phylogeny of G.

Case 2: x satisfies Condition (2) above. Let Qi (1 ≤ i ≤ `) be the unitary (∆, k)-QP containing
x. Let z1, . . . , zh be the neighbors of x outside Ri in T . By Statement 1 in Lemma 2.1, z1, . . . , zh

are junction nodes of T . If x is a degree-2 node of Qi, then let b = h; otherwise (x is a false leaf of
Qi), let b = h− 1. We modify T by performing the four steps in Case 1. After the modification, T
remains to be a (∆, k)-phylogeny of G, as in Case 1.

Case 3: x satisfies Condition (3) above. Let Qi (1 ≤ i ≤ `) be the unitary (∆, k)-QP containing
x. Let z1, . . . , zh be the neighbors of x outside Ri in T . Let y be an (arbitrarily chosen) port
node of Ri. Let zh+1 be an (arbitrarily chosen) neighbor of y outside Ri in T . By Statement 1 in
Lemma 2.1, z1, . . . , zh+1 are junction nodes of T . We modify T as follows:

1. Delete the edges (x, z1), . . . , (x, zh), (y, zh+1). (Comment: After this step, minv∈V dT (zj , v) ≥
dk

2e for all j ∈ {1, . . . , h + 1}. This follows from Statement 1 in Lemma 2.1.)

2. Introduce h new junction nodes w1, . . . , wh, and connect them into a path from w1 to wh.

3. For each j ∈ {1, . . . , h}, add edge (wj , zj).

4. Add edges (w1, y) and (wh, zh+1). (Comment: After this step, T becomes a (∆, k)-phylogeny
of G. This follows from the comment on Step 1.)

Obviously, after the modification in each case above, Q1, . . . , Q` remain to be subtrees of T
(because each edge deleted is adjacent to a junction node of T before the modification), and x
becomes not over-connected in T while no node newly becomes over-connected in T . So, we can
repeat modifying T until it has no over-connected node.

Next, suppose that some helpful Qi (1 ≤ i ≤ `) is mis-connected in T . Let z1, . . . , zh be the
nodes outside Qi that are adjacent to nodes of Qi in T . By Statement 1 in Lemma 2.1, z1, . . . , zh

are junction nodes of T . Let x be an (arbitrarily chosen) port node of Qi. We modify T as follows.

1. For each j ∈ {1, . . . , h}, delete edge (zj , yj) where yj is the node of Qi adjacent to zj in T .
(Comment: After this step, minv∈V dT (zj , v) ≥ dk

2e for all j ∈ {1, . . . , h + 1}. This follows
from Statement 1 in Lemma 2.1.)

2. If h = 1, then add edge (z1, x).

3. If h > 1, then set h = b and perform the last three steps in Case 1.

Obviously, after the modification, Q1, . . . , Q` remain to be subtrees of T (because z1, . . . , zh are
junction nodes), T remains to be a (∆, k)-phylogeny of G (by the comment on Step 1), T remains
to have no over-connected node, and Qi becomes not mis-connected in T while no helpful Qj 6= Qi

newly becomes mis-connected in T . So, we can repeat modifying T until T becomes canonical. 2

In the remainder of this section, a (∆, k)-phylogeny of G always means a canonical one. By
Lemma 3.4, we lose no generality.

7

3.1 The Case where k is Odd

Throughout this subsection, we assume that k is odd. A double (∆, k)-QP is a tree Ti,j obtained
by combining two helpful unitary (∆, k)-QPs Qi and Qj as follows:

1. Select a port node xi of Qi, and select a port node xj of Qj .

2. Introduce a junction node y, and connect it to both xi and xj .

Note that Ti,j has exactly one degree-2 node (namely, the junction node y) but has no false leaf.
So, Ti,j is a helpful (∆, k)-QP of G[Vi ∪ Vj]. Moreover, the minimum distance from y to a true leaf
in Ti,j is exactly bk

2c+ 1 (cf. Statement 1 in Lemma 2.1).

Lemma 3.5 Suppose that each Qi (1 ≤ i ≤ `) is helpful or moderate. Then, G has a (∆, k)-
phylogeny if and only if ` ≥ 2b+3, where b is the number of moderate (∆, k)-QPs among Q1, . . . , Q`.

Proof. We prove the two directions separately as follows.
(=⇒) Suppose that G has a (∆, k)-phylogeny T . For each moderate Qi, let Q′

i be the tree
obtained from Qi by deleting its unique false leaf. Let T be the tree obtained by modifying T as
follows:

1. For each helpful Qi (1 ≤ i ≤ `), merge Qi into a super-node si.

2. For each moderate Qi (1 ≤ i ≤ `), merge Q′
i into a super-node s′i.

Obviously, the leaves of T are exactly the super-nodes. So, T has exactly ` leaves. Let c be the
number of internal nodes of T . Let mT be the number of edges in T . Note that the false leaf xi of
each moderate Qi remains to be an internal node in T , no neighbor of xi in T is the false leaf xj of
another moderate Qj in T , and no neighbor of xi in T is a super-node sj corresponding to a helpful
Qj (cf. Statement 1 in Lemma 2.1). This implies that mT ≥ 3b+(`− b). Trivially, mT = `+ c− 1,
and mT = 3c+`

2 because the degree of each internal node in T is exactly 3 (by the canonicity of T).
Therefore, ` ≥ 2b + 3.

(⇐=) Suppose that ` ≥ 2b + 3. By renumbering if necessary, we may assume that Q1, . . . , Qb

are moderate. For each i ∈ {1, . . . , b}, let yi be the false leaf of Qi. For each i ∈ {b + 1, . . . , `}, let
zi be an (arbitrarily chosen) port node of Qi. We can connect Q1, . . . , Q` into a (∆, k)-phylogeny
of G as follows.

1. Introduce `− b− 2 junction nodes x1, . . . , x`−b−2.

2. For each i with 1 ≤ i ≤ b, add edges (yi, xi) and (yi, xi+1).

3. Add edges (x1, zb+1), (x1, zb+2), (x`−b−2, z`−1), and (x`−b−2, z`). (Comment: If ` − b = 3,
then only three edges are added here.)

4. For each i with b + 1 ≤ i ≤ `− b− 3, add edge (xi, xi+1).

5. For each i with 2 ≤ i ≤ `− b− 3, add edge (xi, zb+i+1).

8

2

In the sequel, we assume that at least one Qi (1 ≤ i ≤ `) is troublesome or dangerous (since
otherwise Lemma 3.5 solves the problem).

Let T be a (∆, k)-phylogeny of G. For each dangerous Qi (1 ≤ i ≤ `), we say that a false leaf
x of Qi is active in T , if no connected component of T − {x} is a double (∆, k)-QP. A dangerous
Qi (1 ≤ i ≤ `) is active in T if at least one false leaf of Qi is active in T .

Lemma 3.6 Suppose that G has a (∆, k)-phylogeny. Then, G has a (∆, k)-phylogeny T such that
no dangerous Qi (1 ≤ i ≤ `) is active in T .

Proof. Let T be a (∆, k)-phylogeny of G. Consider the integer i ∈ {1, . . . , `} such that no
dangerous Qj with 1 ≤ j ≤ i − 1 is active in T but Qi is both dangerous and active in T . If no
such i exists, then T is as required. So, assume that i exists. Let x1, . . . , xh be the false leaves of
Qi that are active in T .

Root T at a true leaf of Qi. A junction descendant of a node x in T is a descendant of x in
T that is a junction node. Let y1 and y2 be the children of x1 in T . Since the minimum distance
from x1 to a true leaf of Qi in T is exactly bk

2c (cf. Lemma 2.1), the minimum distance from each
yj (1 ≤ j ≤ 2) to a leaf descendant of yj in T is at least dk

2e. Thus, by Statement 1 in Lemma 2.1,
both y1 and y2 are junction nodes in T .

Let y3 be a junction descendant of y1 in T such that dT (y1, y3) ≥ dT (y1, y
′
3) for all junction

descendants y′3 of y1 in T . Then, the subtree of T rooted at y3 must be a double (∆, k)-QP. So,
y3 6= y1, since x1 is active in T . Let z be the parent of y3 in T . It is possible that z = y1. Let y4

be the other child of z than y3. We distinguish two cases as follows.
Case 1: y4 is a junction node in T . Then, by the choice of y3, the subtree of T rooted at y4 is

also a double (∆, k)-QP. So, we can modify T to obtain a new (∆, k)-phylogeny P1 of G by deleting
edges (z, y3) and (x1, y2) and adding edges (x1, y3) and (z, y2). Obviously, x1 becomes inactive in
P1, and each dangerous Qj with 1 ≤ j ≤ i−1 remains inactive in P1 (even if z is a false leaf of Qj).

Case 2: y4 is not a junction node in T . Let Qi′ be the unitary (∆, k)-QP containing y4.
Obviously, i′ 6= i. By the choice of y3, the subtree of T rooted at y4 is a subtree of Qi′ . Moreover,
if Qi′ contains z, then either z is not a false leaf of Qi′ or Qi′ is moderate. Furthermore, if Qi′ does
not contain z, then by Statement 1 in Lemma 2.1, z cannot be a false leaf of a dangerous unitary
(∆, k)-QP. So, no matter whether Qi′ contains z or not, z cannot be a false leaf of a dangerous
unitary (∆, k)-QP. Thus, we can modify T to obtain a new (∆, k)-phylogeny P1 of G as in Case 1,
and P1 has the same properties as stated in Case 1.

By Cases 1 and 2, we can always modify T to obtain a new (∆, k)-phylogeny P1 of G such that
x1 becomes inactive in P1 and each dangerous Qj with 1 ≤ j ≤ i− 1 remains inactive in P1. Since
the modification only changes the subtree of T rooted at x1 and the subtrees of T rooted at two
different false leaves of Qi are disjoint, we can then similarly modify P1 to obtain P2, further modify
P2 to obtain P3, and so on, in such a way that for all i′ ∈ {2, 3, . . . , h}, x1, . . . , xi′ are inactive in
Pi′ and each dangerous Qj with 1 ≤ j ≤ i− 1 remains inactive in Pi′ .

Let Ti = Ph. Then, no dangerous Qj with 1 ≤ j ≤ i is active in Ti. Therefore, by our choice
of i, we can repeat the above argument to finally obtain a (∆, k)-phylogeny T ′ of G such that no
dangerous unitary (∆, k)-QP is active in T ′. 2

Let I be the set of all i ∈ {1, . . . , `} such that Qi is dangerous. For each i ∈ I, let ti be the
number of false leaves in Qi. Let t =

∑
i∈I ti. By Lemma 3.6, if G has a (∆, k)-phylogeny, then there

9

are at least 2t helpful unitary (∆, k)-QPs. So, if there are less than 2t helpful unitary (∆, k)-QPs,
then G has no (∆, k)-phylogeny. In the sequel, we assume that there are at least 2t helpful unitary
(∆, k)-QPs. Without loss of generality, we may assume that Q1, . . . , Q2t are helpful.

We connect Q1, . . . , Q2t to the dangerous unitary (∆, k)-QPs as follows.

1. Introduce t junction nodes x1, . . . , xt, and construct a one-to-one correspondence between
them and the t false leaves of the dangerous unitary (∆, k)-QPs.

2. For each i ∈ {1, . . . , t}, add an edge from xi to its corresponding false leaf, add an edge from
xi to an (arbitrarily chosen) port node of Q2i−1, and add an edge from xi to an (arbitrarily
chosen) port node of Q2i.

The above modification extends each dangerous unitary (∆, k)-QP Qi to a troublesome (∆, k)-
QP Ri. For convenience, let Ri = Qi for each i ∈ {2t + 1, . . . , `} such that Qi is not dangerous.

Now, we are left with R2t+1, . . . , R`; none of them is dangerous. Let τ be the number of
troublesome (∆, k)-QPs among R2t+1, . . . , R`. Note that τ = |i ∈ {1, . . . , `} | Qi is troublesome
or dangerous}. So, τ ≥ 1. Without loss of generality, we may assume that R2t+1, . . . , R2t+τ are
troublesome.

By Lemma 3.6, if G has a (∆, k)-phylogeny, then it has one in which R2t+1, . . . , R` are sub-
trees. So, in the remainder of this section, a (∆, k)-phylogeny of G always means one in which
R2t+1, . . . , R` are subtrees.

A bridging node in a (∆, k)-phylogeny T of G is a node x of T such that no Ri with 2t+1 ≤ i ≤ `
contains x. For each (∆, k)-phylogeny T of G and for each Ri with 2t + 1 ≤ i ≤ `, each degree-2
node x of Ri is adjacent to exactly one bridging node y in T (by the canonicity of T); we call y the
bridging neighbor of x in T .

For each (∆, k)-phylogeny T of G, letM(T) denote the tree obtained by modifying T by merging
each Ri with 2t + 1 ≤ i ≤ ` into a super-node. For convenience, we abuse the notation to let each
Ri also denote the super-node of M(T) corresponding to Ri. Note that each bridging node of
T remains to be an internal node in M(T) and the leaves of M(T) one-to-one correspond to the
helpful unitary (∆, k)-QPs among R2t+1, . . . , R`. Moreover, by the canonicity of T and Statement 1
in Lemma 2.1, no two super-nodes can be adjacent in M(T).

Lemma 3.7 If G has a (∆, k)-phylogeny, then it has one T such that there is a path q in M(T)
on which R2t+1, . . . , R2t+τ appear.

Proof. Let T be a (∆, k)-phylogeny of G. Since the leaves of M(T) one-to-one correspond to
the helpful unitary (∆, k)-QPs among R2t+1, . . . , R`, we have 2t + τ < `. Root T at a true leaf r of
R`.

For each troublesome Ri, let xi be the node of Ri closest to r in T . By the canonicity of T ,
xi is a degree-2 node of Ri and the two children of xi in T are nodes of Ri. Moreover, for each
degree-2 node y 6= xi of Ri, the bridging neighbor of y in T is a child of y in T ; for clarity, we call
this child the bridging child of y in T . We say that a degree-2 node y 6= xi of Ri is unsettled in T ,
if the subtree of T rooted at the bridging child of y contains at least one of R2t+1, . . . , R2t+τ as a
subtree. A troublesome Ri is unsettled in T if it has two or more unsettled degree-2 nodes.

If no troublesome Ri is unsettled in T , then by the canonicity of T , T is as required. Otherwise,
we can keep modifying T as follows, until no troublesome Ri is unsettled in T :

10

1. Choose an unsettled troublesome Ri such that dT (r, xi) ≤ dT (r, xj) for every unsettled trou-
blesome Rj .

2. Let y1, . . . , yh be the unsettled degree-2 nodes of Ri.

3. For each j ∈ {1, . . . , h}, let y′j be the bridging child of yj in T .

4. For each j = 2, 3, . . . , h (in this order), perform the following steps:

(a) Find a troublesome Ri′ such that xi′ is a descendant of y′1 in T and there is no troublesome
Ri′′ with i′′ 6= i′ such that xi′′ is a descendant of xi′ in T .

(b) Select a degree-2 node z of Ri′ with z 6= xi′ , and let z′ be the bridging child of z in T .
(c) Delete edges (z, z′) and (yj , y

′
j), and add edges (z, y′j) and (yj , z

′). (Comment: After this
step, each Ri′′ with 2t + 1 ≤ i′′ ≤ ` remains to be a subtree of T . Moreover, yj becomes
not unsettled and y1, . . . , yj−1 remain not unsettled. Furthermore, if a troublesome Ri′′

with dT (r, xi) ≤ dT (r, xi′′) is not unsettled before this step, then it remains not unsettled
after this step.)

2

Lemma 3.8 If G has a (∆, k)-phylogeny, then it has one T such that some path q in M(T) satisfies
the following three conditions:

1. R2t+1, . . . , R2t+τ and exactly τ − 1 bridging nodes appear on q.

2. No two bridging nodes on q are adjacent in T .

3. For each bridging node x on q, there is a helpful unitary (∆, k)-QP Ri such that x is adjacent
to a port node of Ri in T .

Proof. Let T be a (∆, k)-phylogeny of G. By Lemma 3.7, we may assume that there is a path
p in M(T) on which R2t+1, . . . , R2t+τ appear. We may further assume that neither endpoint of
p is a bridging node. By renumbering if necessary, we may assume that R2t+1 and R2t+τ are the
endpoints of p and R2t+1, . . . , R2t+τ appear on p in this order.

Root T at a true leaf r of R2t+1. A bridging descendant of a node x in T is a descendant of x in
T that is a bridging node. For each troublesome Ri 6= R2t+1, let xi be the node of Ri closest to r
in T . By the canonicity of T , xi is a degree-2 node of Ri. Moreover, for each degree-2 node y 6= xi

of Ri, the bridging neighbor of y in T is a child of y in T ; for clarity, we call this child the bridging
child of y in T .

For each i ∈ {2t+1, . . . , 2t+ τ −1}, let yi be the degree-2 node of Ri that is an ancestor of xi+1

in T . By the canonicity of T , yi is a degree-2 node of Ri. In turn, by Statement 1 in Lemma 2.1,
yi cannot be the parent of xi+1 in T . For each i ∈ {2t + 1, . . . , 2t + τ − 1}, let x′i+1 be the parent
of xi+1 in T , and let y′i be the child of yi in T that is an ancestor of xi+1 in T . Possibly, y′i = x′i+1.

Fix a degree-2 node z 6= x2t+τ of R2t+τ . Let z1 be the bridging child of z in T . We can modify
T by performing the following steps for i = 2t + 2, . . . , 2t + τ (in this order):

1. Find a bridging descendant z2 of z1 in T such that dT (z1, z2) ≥ dT (z1, z3) for every bridging
descendant z3 of z1 in T . (Comment: Possibly, z1 = z2. Moreover, the subtree of T rooted
at z2 must be a double (∆, k)-QP.)

11

2. Let z3 be the parent of z2 in T , and let z4 and z5 be the children of z2 in T . (Comment:
Possibly, z3 = z1 or z3 = z.)

3. Delete edges (yi−1, y
′
i−1), (x′i, xi), (z3, z2) and (z2, z5), and further add edges (yi−1, z2), (z2, xi),

(z3, y
′
i−1) and (x′i, z5). (Comment: Before and after this step, y′i−1, x′i, and z2 are bridging

nodes, and each of xi, yi−1, and z5 is a degree-2 node of an Rj with 2t + 1 ≤ j ≤ `. So, after
this step, R2t+1, . . . , R` remain to be subtrees of T and T remains to be a (∆, k)-phylogeny
of G.)

Obviously, after the above modification, the path q from the super-node corresponding to R2t+1

to the super-node corresponding to R2t+τ in M(T) satisfies the conditions in the lemma. 2

In the remainder of this section, a (∆, k)-phylogeny of G always means one T such that some
path q in M(T) satisfies the three conditions in Lemma 3.8. We call q the spine of M(T). The
following corollary shows that it does not matter in which order R2t+1, . . . , R2t+τ appear on the
spine.

Corollary 3.9 Let T be a (∆, k)-phylogeny of G. Then, for every pair (Ri, Rj) of troublesome
(∆, k)-QPs, there is another (∆, k)-phylogeny T ′ of G such that the spine of M(T ′) can be obtained
from that of M(T) by exchanging the positions of Ri and Rj.

Proof. The corollary is obvious, if τ ≤ 2. So, assume that τ ≥ 3.
Let q be the spine of M(T). Consider a pair (Ri, Rj) of troublesome (∆, k)-QPs. If Ri is not

an endpoint of q, then let xi and yi be the two degree-2 nodes of Ri whose bridging neighbors
are on q; otherwise, let xi be the degree-2 node of Ri whose bridging neighbor is on q, and let
yi be a degree-2 node of Ri with yi 6= xi. Let x′i (respectively, y′i) be the bridging neighbor of xi

(respectively, yi) in T . Define xj , yj , x′j , and y′j similarly. Possibly, {x′i, y′i} ∩ {x′j , y′j} 6= ∅.
We obtain T ′ by deleting edges (xi, x

′
i), (yi, y

′
i), (xj , x

′
j), and (yj , y

′
j), and adding edges (xi, x

′
j),

(yi, y
′
j), (xj , x

′
i), and (yj , y

′
i). Obviously, T ′ is as required. 2

The following corollary is obvious and shows that it does not matter via which degree-2 nodes
each troublesome Ri is connected to the spine.

Corollary 3.10 Let T be a (∆, k)-phylogeny of G. Then, for every troublesome Ri and for every
pair (x1, x2) of degree-2 nodes of Ri, we can obtain another (∆, k)-phylogeny T ′ of G by deleting
edges (x1, y1) and (x2, y2) and adding edges (x1, y2) and (x2, y1), where y1 (respectively, y2) is the
bridging neighbor of x1 (respectively, x2) in T . Moreover, the spines of M(T) and M′(T) are the
same.

By Lemma 3.8, if G has a (∆, k)-phylogeny, then there are at least τ − 1 helpful unitary (∆, k)-
QPs among R2t+τ+1, . . . , R`. So, if there are less than τ − 1 helpful unitary (∆, k)-QPs among
R2t+τ+1, . . . , R`, then G has no (∆, k)-phylogeny. In the sequel, we assume that there are at least
τ−1 helpful unitary (∆, k)-QPs among R2t+τ+1, . . . , R`. Without loss of generality, we may assume
that R2t+τ+1, . . . , R2t+2τ−1 are helpful unitary (∆, k)-QPs.

If τ ≥ 2, then we connect R2t+1, . . . , R2t+2τ−1 into a single (∆, k)-QP R as follows.

1. Introduce τ − 1 bridging nodes x1, . . . , xτ−1.

12

2. Select a degree-2 node y2t+1 of R2t+1, and select a degree-2 node z2t+τ of R2t+τ .

3. For each i with 2t + 2 ≤ i ≤ 2t + τ − 1, select two degree-2 nodes zi and yi of Ri.

4. For each i with 1 ≤ i ≤ τ − 1, add edges (xi, y2t+i) and (xi, z2t+i+1), and add an edge from
xi to an (arbitrarily chosen) port node of R2t+τ+i.

If τ = 1, we let R = R2t+1.
Note that R is a troublesome (∆, k)-QP. By Lemma 3.8 and Corollaries 3.9 and 3.10, if G

has a (∆, k)-phylogeny, then G has one T such that R, R2t+2τ , . . . , R` are subtrees of T . In the
remainder of this section, a (∆, k)-phylogeny of G always means such a tree T . Let h be the number
of degree-2 nodes in R. Let x1, . . . , xh be the degree-2 nodes of R.

Lemma 3.11 If G has a (∆, k)-phylogeny, then it has one T such that for all but one xi ∈
{x1, . . . , xh}, the connected component of T − {xi} containing no node of R is a double (∆, k)-
QP.

Proof. Let T be a (∆, k)-phylogeny of T . Root T at a true leaf of R. For each i ∈ {1, . . . , h},
exactly one child of xi in T is not a node of R; let yi be the child. Note that y1, . . . , yh are bridging
nodes. We say that a node yi with 1 ≤ i ≤ h is heavy in T if the subtree of T rooted at yi is not
a double (∆, k)-QP. Let h′ be the number of heavy nodes among y1, . . . , yh. If h′ ≤ 1, then T is
as required. So, assume that h′ ≥ 2. We may further assume that the heavy nodes are y1, . . . , yh′ .
We can modify T by performing the following steps for i = 2, 3, . . . , h′ (in this order):

1. Find a bridging descendant z1 of y1 in T such that dT (y1, z1) ≥ dT (y1, z2) for every bridging
descendant z2 of y1 in T . (Comment: The subtree of T rooted at z1 must be a double
(∆, k)-QP. So, z1 6= y1.)

2. Let z2 be the parent of z1 in T . (Comment: Possibly, z2 = y1.)

3. Delete edges (xi, yi) and (z2, z1), and further add edges (xi, z1) and (z2, yi). (Comment:
Before and after this step, yi and z1 are bridging nodes not contained in R. So, after this
step, R and R2t+2τ , . . . , R` remain to be subtrees of T , T remains to be a (∆, k)-phylogeny
of G, and xi is no longer heavy in T .)

Obviously, after the above modification, T is as required. 2

By Lemma 3.11, if G has a (∆, k)-phylogeny, then there are at least 2h − 2 helpful unitary
(∆, k)-QPs among R2t+2τ , . . . , R`. So, if there are less than 2h − 2 helpful unitary (∆, k)-QPs
among R2t+2τ , . . . , R`, then G has no (∆, k)-phylogeny. In the sequel, we assume that there are
at least 2h − 2 helpful unitary (∆, k)-QPs among R2t+2τ , . . . , R`. We may further assume that
R2t+2τ , . . . , R2t+2τ+2h−3 are helpful unitary (∆, k)-QPs. For each i ∈ {2t+2τ, . . . , 2t+2τ +2h−3},
let zi be an (arbitrarily chosen) port node of Ri.

We connect R, R2t+2τ , . . . , R2t+2τ+2h−3 into a single (helpful) (∆, k)-QP R′ by performing the
following steps:

1. Introduce h− 1 bridging nodes s1, . . . , sh−1.

2. For each i ∈ {1, . . . , h− 1}, add edges (si, z2t+2τ+2i−2), (si, z2t+2τ+2i−1), and (si, xi).

13

Now, we are left with R′, R2t+2τ+2h−2, . . . , R` each of which is helpful or moderate. Moreover,
by Lemma 3.11, if G has a (∆, k)-phylogeny, then it has one in which R′, R2t+2τ+2h−2, . . . , R` are
subtrees. So, we can modify the proof of Lemma 3.5 to show that G has a (∆, k)-phylogeny if
and only if a′ ≥ b′ + 3, where a′ (respectively, b′) is the number of helpful (respectively, moderate)
(∆, k)-QPs among R′, R2t+2τ+2h−2, . . . , R`.

In summary, we have the following:

Theorem 3.12 Suppose that k is odd. Then, we can decide if G has a (∆, k)-phylogeny, and
construct one if so, in linear time.

3.2 The Case where k is Even

Throughout this subsection, we assume that k is even. The contents in this subsection are very
similar to those in the last subsection. In particular, the lemmas in this subsection one-to-one cor-
respond to the lemmas in the last subsection. Moreover, the proof of each lemma in this subsection
is very similar to (indeed a bit simpler than) its corresponding lemma in the last subsection. So,
we will omit the proofs of the lemmas.

Lemma 3.13 Suppose that each Qi (1 ≤ i ≤ `) is helpful or moderate. Then, G has a (∆, k)-
phylogeny if and only if a ≥ 2, where a is the number of helpful (∆, k)-QPs among Q1, . . . , Q`.

In the sequel, we assume that at least one Qi (1 ≤ i ≤ `) is troublesome or dangerous (since
otherwise Lemma 3.13 solves the problem).

Let T be a (∆, k)-phylogeny of G. For each dangerous Qi (1 ≤ i ≤ `), we say that a false leaf
x of Qi is active in T , if no connected components of T − {x} is a helpful unitary (∆, k)-QP. A
dangerous Qi (1 ≤ i ≤ `) is active in T if at least one false leaf of Qi is active in T .

Lemma 3.14 Suppose that G has a (∆, k)-phylogeny. Then, G has a (∆, k)-phylogeny T such that
no dangerous unitary (∆, k)-QP is active in T .

Let I be the set of all i ∈ {1, . . . , `} such that Qi is dangerous. For each i ∈ I, let ti be the
number of false leaves in Qi. Let t =

∑
i∈I ti. By Lemma 3.14, if G has a (∆, k)-phylogeny, then

there are at least t helpful unitary (∆, k)-QPs. So, if there are less than t helpful unitary (∆, k)-
QPs, then G has no (∆, k)-phylogeny. In the sequel, we assume that there are at least t helpful
unitary (∆, k)-QPs. Without loss of generality, we may assume that Q1, . . . , Qt are helpful.

We connect Q1, . . . , Qt to the dangerous unitary (∆, k)-QPs as follows.

1. Construct a one-to-one correspondence between Q1, . . . , Qt and the t false leaves of the dan-
gerous unitary (∆, k)-QPs.

2. For each i ∈ {1, . . . , t}, add an edge from an (arbitrarily chosen) port node of Qi to the false
leaf corresponding to Qi.

The above modification extends each dangerous unitary (∆, k)-QP Qi to a troublesome (∆, k)-
QP Ri. For convenience, let Ri = Qi for each i ∈ {t + 1, . . . , `} such that Qi is not dangerous.

Now, we are left with Rt+1, . . . , R`; none of them is dangerous. Let τ be the number of trou-
blesome (∆, k)-QPs among Rt+1, . . . , R`. Note that τ = |i ∈ {1, . . . , `} | Qi is troublesome or

14

dangerous}. So, τ ≥ 1. Without loss of generality, we may assume that Rt+1, . . . , Rt+τ are trou-
blesome.

By Lemma 3.14, if G has a (∆, k)-phylogeny, then it has one in which Rt+1, . . . , R` are subtrees.
So, in the remainder of this section, a (∆, k)-phylogeny of G always means one in which Rt+1, . . . , R`

are subtrees.
For each (∆, k)-phylogeny T of G, letM(T) denote the tree obtained by modifying T by merging

each Ri with t + 1 ≤ i ≤ ` into a super-node. For convenience, we abuse the notation to let each
Ri also denote the super-node corresponding to Ri in M(T).

Lemma 3.15 If G has a (∆, k)-phylogeny, then it has one T such that there is a path in M(T)
on which Rt+1, . . . , Rt+τ appear.

Lemma 3.16 If G has a (∆, k)-phylogeny, then it has one T such that there is a path in M(T)
whose nodes are exactly Rt+1, . . . , Rt+τ .

In the remainder of this section, a (∆, k)-phylogeny of G always means one T such that there is
a path q in M(T) whose nodes are exactly Rt+1, . . . , Rt+τ . We call q the spine of M(T). Obviously,
Corollaries 3.9 and 3.10 still hold even if k is even.

If τ ≥ 2, then we connect Rt+1, . . . , Rt+τ into a single (∆, k)-QP R as follows.

1. Select a degree-2 node yt+1 of Rt+1, and select a degree-2 node zt+τ of Rt+τ .

2. For each i with t + 2 ≤ i ≤ t + τ − 1, select two degree-2 nodes zi and yi of Ri.

3. For each i with t + 1 ≤ i ≤ t + τ − 1, add edge (yi, zi+1).

If τ = 1, we let R = Rt+1.
Note that R is a troublesome (∆, k)-QP. By Lemma 3.16 and Corollaries 3.9 and 3.10, if G

has a (∆, k)-phylogeny, then G has one T such that R, Rt+τ+1, . . . , R` are subtrees of T . In the
remainder of this section, a (∆, k)-phylogeny of G always means such a tree T . Let h be the number
of degree-2 nodes in R. Let x1, . . . , xh be the degree-2 nodes of R.

Lemma 3.17 If G has a (∆, k)-phylogeny, then it has one T such that for all but one xi ∈
{x1, . . . , xh}, the connected component of T − {xi} containing no node of R is a helpful unitary
(∆, k)-QP.

By Lemma 3.17, if G has a (∆, k)-phylogeny, then there are at least h − 1 helpful unitary
(∆, k)-QPs among Rt+τ+1, . . . , R`. So, if there are less than h − 1 helpful unitary (∆, k)-QPs
among Rt+τ+1, . . . , R`, then G has no (∆, k)-phylogeny. In the sequel, we assume that there are
at least h − 1 helpful unitary (∆, k)-QPs among Rt+τ+1, . . . , R`. We may further assume that
Rt+τ+1, . . . , Rt+τ+h−1 are helpful unitary (∆, k)-QPs. For each i ∈ {t + τ + 1, . . . , t + τ + h − 1},
let zi be an (arbitrarily chosen) port node of Ri.

We connect R, Rt+τ+1, . . . , Rt+τ+h−1 into a single (helpful) (∆, k)-QP R′ by adding edges
(x1, zt+τ+1), . . . , (xh−1, zt+τ+h−1).

Now, we are left with R′, Rt+τ+h, . . . , R` each of which is helpful or moderate. Moreover, by
Lemma 3.17, if G has a (∆, k)-phylogeny, then it has one in which R′, Rt+τ+h, . . . , R` are subtrees.
So, we can modify the proof of Lemma 3.13 to show that G has a (∆, k)-phylogeny if and only if
a′ ≥ 2, where a′ is the number of helpful (∆, k)-QPs among R′, Rt+τ+h, . . . , R`.

In summary, we have the following:

15

Theorem 3.18 Suppose that k is even. Then, we can decide if G has a (∆, k)-phylogeny, and
construct one if so, in linear time.

4 Algorithm for Optimal Quasi-Phylogeny

Throughout this section, fix a connected graph G = (V,E) and two integers k ≥ 4 and ∆ ≥ 3.
If V consists of only one vertex v, then G has only one optimal (∆, k)-QP Q, namely, Q is the
(∆, k)-QP of G in which each internal node is of degree 3 and the distance from each false leaf to v
is exactly bk

2c. So, the problem is easy when |V | = 1. In the remainder of this section, we assume
that |V | ≥ 2.

Consider a (∆, k)-QP Q of G. A node x of Q is redundant, if x is not a true leaf of Q and
one connected component of Q − {x} contains all true leaves of Q. We can obtain a new tree P
by removing all redundant nodes from Q. Note that V is exactly the set of all leaves of P and P
has at least one internal node of degree ≤ ∆ − 1. We call P a degree-∆ kth root semi-phylogeny
((∆, k)-SP for short) of G. We define the cost of P to be max{1,

∑
x 2bk/2c−g(x)}, where x ranges

over all degree-2 nodes of P and g(x) = minv∈V dP (x, v). Obviously, the following hold:

• The cost of P does not exceed the cost of Q.

• If Q is optimal, then the costs of Q and P are equal (cf. Lemma 2.1).

• Some subtree of Q is a (∆, k)-QP of G and its cost is equal to the cost of P .

P is an optimal (∆, k)-SP of G if its cost is minimized over all (∆, k)-SPs of G. Obviously, an
optimal (∆, k)-QP of G can be computed from an optimal (∆, k)-SP of G in linear time.

So, in the remainder of this section, we will design a linear-time algorithm for computing an
optimal (3, k)-SP of G. The adaptation to arbitrary ∆ is straightforward and is hence omitted
here. The algorithm is a modification of the algorithm in [2] for computing a kth root phylogeny
for a given connected graph.

4.1 Basic Definitions

A tree-decomposition of G is a pair D = (T ,B) consisting of a tree T = (U ,F) and a collection
B = {Bα | Bα ⊆ V, α ∈ U} of sets (called bags) such that

•
⋃

α∈U Bα = V ,

• for each edge (v1, v2) ∈ E, there is a node α ∈ U such that {v1, v2} ⊆ Bα, and

• if α ∈ U is on the path connecting β and γ in T , then Bβ ∩Bγ ⊆ Bα.

A useful property is that if G is connected, then for every two adjacent nodes α and β in T ,
Bα ∩Bβ 6= ∅.

In the sequel, we abuse the notations to use D to denote the tree T in it, and denote the bag
associated with a node α of D by Bα. For two adjacent nodes α and β of D, let U(α, β) =

⋃
γ Bγ ,

where γ ranges over all nodes of D with dD(γ, α) < dD(γ, β). In other words, if we root D at node
β, then U(α, β) is the union of the bags associated with α and its descendants in D. A useful
property of D is that for every internal node α and every two neighbors β and γ of α in D, G has
no edge between any vertex of U(β, α)−Bα and any vertex of U(γ, α)−Bα.

16

A clique-tree-decomposition of G is a tree-decomposition D of G such that for each node α in
D, Bα is a maximal clique of G. (Recall that a clique of G is maximal if it is not contained in a
larger clique of G.)

As pointed out in [2], if G has a (∆, k)-phylogeny, then we can compute a clique-tree-decomposition
D of G in linear time that satisfies the following two conditions:

1. For each node α in D, |Bα| ≤ 3 · 2(k−2)/2 if k is even, while |Bα| ≤ 2(k+1)/2 if k is odd.

2. The degree of each node α in D is exactly 3.

An optimal (∆, k)-SP of G is computed by a dynamic programming algorithm applied on a
rooted version of the decomposition tree D. The details of the dynamic programming algorithm
are developed in the next two subsections.

4.2 Ideas behind the Dynamic Programming Algorithm

Note that every internal node in a (3, k)-SP T of G has degree at most 3.

Definition 4.1 Let W be a nonempty set of vertices of G. A relaxed semi-phylogeny (RSP for
short) for W is a tree R satisfying the following four conditions:

• The degree of each node in R is at most 3.

• Each vertex of W is a leaf in R and appears in R only once. For convenience, we call
the leaves of R that are also vertices of W final leaves of R, and call the other leaves of R
temporary leaves of R.

• For every two vertices u and v of W , u and v are adjacent in G if and only if dR(u, v) ≤ k.

• Each temporary leaf x of R is assigned a pair (γ, t), where γ is a node of D and t is a
nonnegative integer. We call γ the color of x and call t the threshold of x. For convenience,
we denote the color of a temporary leaf x of R by cR(x) and denote the threshold of x by
tR(x).

By Lt(R), we denote the set of temporary leaves in R. For each degree-2 node x in R, let λR(x) =
minu∈W dR(x, u) if Lt(R) = ∅, while let λR(x) = min{minu∈W dR(x, u), miny∈Lt(R) dR(x, y)+tR(y)}
if Lt(R) 6= ∅. The cost of R, denoted by cost(R), is

∑
x 2bk/2c−λR(x), where x ranges over all degree-2

nodes in R.

Note that if W = V and R has at least one degree-2 node but has no temporary leaf, then R is
a (3, k)-SP of G.

Intuitively speaking, the temporary leaves of R serve as ports from which we can expand R so
that it may eventually become a (3, k)-SP R′ of G. In more detail, for each temporary leaf x of R,
cR(x) specifies the node whose bag contains the leaf v ∈ V −W of R′ closest to x in R′ and tR(x)
specifies the distance between x and v in R′.

Our algorithm processes the nodes of D one by one. While processing a node α of D, the
algorithm finds out all RSPs for Bα that are possibly subtrees of (3, k)-SPs of graph G. The
following lemma shows that such RSPs for Bα have certain useful properties.

17

Lemma 4.1 Let T be a (3, k)-SP of G. Let α be a node of D. Root T at an arbitrary leaf that is
in Bα. Define a pure node to be a node x of T such that α has a neighbor γ in D such that all leaf
descendants of x in T are in U(γ, α) − Bα. Define a critical node to be a pure node of T whose
parent is not pure. Let R be the RSP for Bα obtained from T by performing the following steps:

1. For every critical node x of T , perform the following:

(a) Find the neighbor γ of α such that all leaf descendants of x in T are contained in U(γ, α).

(b) Compute the minimum distance from x to a leaf descendant of x in T ; let ix denote
this distance. (Comment: ix ≤ k or else the leaf descendants of x in tree T would be
unreachable from the outside in graph G.)

(c) Delete all descendants (excluding x) of x.

(d) Let x be a temporary leaf, and assign the pair (γ, ix) to x.

2. Unroot T .

Then, the resultant tree R has the following properties:

• For every temporary leaf x of R, cR(x) is a neighbor of α in D and 0 ≤ tR(x) ≤ k.

• For every two temporary leaves x and y of R with different colors, it holds that tR(x)+tR(y)+
dR(x, y) > k.

• For every neighbor γ of α in D, every temporary leaf x of R with cR(x) = γ, and every final
leaf u of R with u 6∈ Bγ, it holds that dR(x, u) + tR(x) > k.

• For every internal node x of R, either there is a final leaf u of R with dR(u, x) ≤ k− 1, or at
least one descendant of x in R′ is a final leaf of R where R′ is obtained from R by rooting it
at an arbitrary final leaf.

Proof. Same as that of Lemma 3.2 in [2]. 2

Each RSP R for Bα having the four properties in Lemma 4.1 is called a skeleton of α. The
following lemma shows that there can be only a constant number of skeletons of α.

Lemma 4.2 For each node α of D, the number of skeletons of α is bounded from above by a
constant depending only on k and |Bα|.

Proof. Same as that of Lemma 3.3 in [2]. 2

Definition 4.2 Let α and β be two adjacent nodes of D. Let S be a skeleton of α. An expansion
of S to U(α, β) is an RSP X for U(α, β) such that some subtree Y of X is isomorphic to S, and
the bijection f from the node set of S to the node set of Y witnessing this isomorphism satisfies the
following conditions:

• For every final leaf v of S, f(v) = v.

• For every temporary leaf y of S with cS(y) = β, f(y) is a temporary leaf of X with cX(f(y)) =
cS(y) and tX(f(y)) = tS(y).

18

• Suppose that we root X at a leaf r ∈ Bα ∩ Bβ. Then, for every temporary leaf y of P with
cS(y) 6= β, all leaf descendants of f(y) in X are final leaves and are contained in U(α, β)−Bα,
the minimum distance between f(y) and a leaf descendant of f(y) in X is equal to tS(y).

An expansion of S to U(α, β) is perfect if it has no degree-2 node; otherwise, it is imperfect. An
imperfect expansion of S to U(α, β) is optimal if its cost is minimized over all imperfect expansions
of S to U(α, β).

Note that a skeleton S of α may have no expansion to U(α, β). However, if G has a (3, k)-SP
T , then the skeleton S of α obtained from T as in Lemma 4.1 has an expansion to U(α, β); more
specifically, the restriction of T to U(α, β) (defined below) is an expansion of S to U(α, β).

Definition 4.3 Let α and β be two adjacent nodes in D. Let X be an RSP for a superset of
U(α, β) such that for every temporary leaf y of X, dX(β, cX(y)) < dX(α, cX(y)). The restriction
of X to U(α, β) is an RSP for U(α, β) obtained from X by performing the following steps:

1. Change each final leaf v 6∈ U(α, β) to a temporary leaf; set the threshold of v to be 0 and set
the color of v to be β.

2. Root X at an arbitrary vertex of Bα ∩Bβ.

3. Find those nodes x in X such that (i) every leaf descendant of x in X is a temporary leaf
whose color is not α, but (ii) the parent of x in X does not have property (i).

4. For each node x found in the last step, if x is a leaf in X then set the color of x to be β;
otherwise, perform the following steps:

(a) Set ix = miny{tX(y) + dX(x, y)} where y ranges over all leaf descendants of x in X.
(b) Delete all descendants (excluding x) of x in X.
(c) Let x be a temporary leaf, and assign the pair (β, ix) to x.

5. Unroot X.

By Lemma 4.2, while processing a node α of D, our algorithm can find out all skeletons of α in
constant time. For each skeleton S of α, the algorithm tries to compute both a perfect expansion
XS and an optimal imperfect expansion XS of S to U(α, β), where β is the parent of α in rooted
D. If XS (respectively, XS) does not exist, the algorithm sets XS = ∅ (respectively, XS = ∅). The
algorithm records (S, XS , XS) in the dynamic programming table for later use when processing the
parent β. The following definition aims at removing unnecessary skeletons of α from the dynamic
programming table.

Definition 4.4 Let α and β be two adjacent nodes of D. Let X be a skeleton of β. The projection
of X to α is an RSP for Bα ∩Bβ obtained from X by performing the five steps in Definition 4.3.

Obviously, two different skeletons of α may have the same projection to β. For convenience,
we say that these skeletons are equivalent. Among equivalent skeletons of α, our algorithm will
record only the one whose optimal expansion to U(α, β) has the minimum cost, in the dynamic
programming table. This motivates the following definition:

19

Definition 4.5 Let α and β be two adjacent nodes of D. For each skeleton S of α, the projection P
of S to β is called a projection of α to β, and each expansion of S to U(α, β) is called an expansion
of P to U(α, β).

Let P be a projection of α to β. An expansion of P to U(α, β) is perfect if it has no degree-2
node; otherwise, it is imperfect. An imperfect expansion of P to U(α, β) is optimal if its cost is
minimized over all imperfect expansions of P to U(α, β).

As a skeleton of α may have no expansion to U(α, β), a projection of α to β may have no
expansion to U(α, β). However, if G has a (3, k)-SP T , then for the skeleton S of α obtained from
T as in Lemma 4.1, the projection P of S to β has an expansion to U(α, β); more specifically, the
restriction of T to U(α, β) is an expansion of P to U(α, β).

Recall that while processing a node α of D, our algorithm tries to compute, for every skeleton
S of α, both a perfect expansion XS and an optimal imperfect expansion XS of S to U(α, β) where
β is the parent of α in rooted D. The following lemmas show that the computation of XS and XS

only needs both a perfect expansion and an optimal imperfect expansion of Pγ to U(γ, α) for every
child γ of α in rooted D, where Pγ is the projection of S to γ.

Lemma 4.3 Let α be an internal node of D. Let β, γ1, and γ2 be the neighbors of α in D. Let S
be a skeleton of α. For each i ∈ {1, 2}, let Pi be the projection of S to γi, and let Ri be an expansion
of Pi to U(γi, α). Then, there is an expansion X of S to U(α, β) such that

cost(X) = cost(S) + cost(R1) + cost(R2)−
∑

y∈Ψ1

2b
k
2
c−λP1

(y) −
∑

y∈Ψ2

2b
k
2
c−λP2

(y),

where Ψi (i = 1, 2) is the set of degree-2 nodes in Pi. Moreover, X is perfect if and only if S has
no degree-2 node and both R1 and R2 are perfect.

Proof. By definition, we may view Pi as a subtree of both Ri and S for each i ∈ {1, 2}. By
combining S, R1, and R2, we can obtain an expansion X of S to U(α, β) as follows:

1. For each i ∈ {1, 2}, delete those nodes x from Ri such that x is a node of Pi but is not a
temporary leaf of Pi with cPi(x) = γi.

2. For each i ∈ {1, 2} and for each temporary leaf x of S with cS(x) = γi, modify S by replacing
x with the connected component (a tree) of Ri in which x appears.

Obviously, S, P1, P2, R1, and R2 are subtrees of X. For two trees Y and Z among S, P1, P2,
R1, and R2, let Y ∩ Z denote the subtree shared by Y and Z. Then, we have the following simple
observations:

• R1 ∩ S = P1, R2 ∩ S = P2, and R1 ∩R2 = P1 ∩ P2.

• For each degree-2 node y of S, λS(y) = λX(y) (cf. Definition 4.1).

• For each i ∈ {1, 2} and for each degree-2 node y of Ri, λRi(y) = λX(y).

• For each i ∈ {1, 2} and for each degree-2 node y of Pi, λPi(y) = λRi(y) = λX(y).

20

By the above observations, the equality in the lemma holds. The second assertion in the lemma
is obvious, too. 2

Lemma 4.4 Let α, β, γ1, γ2, S, P1, P2,Ψ1,Ψ2 be as in Lemma 4.3. The following hold:

• Suppose that X is a perfect expansion of S to U(α, β). Then, for each i ∈ {1, 2}, the restriction
Ri of X to U(γi, α) is a perfect expansion of Pi to U(γi, α).

• Suppose that X is an optimal imperfect expansion of S to U(α, β). Then, for each i ∈ {1, 2},
the restriction Ri of X to U(γi, α) is either a perfect expansion or an optimal imperfect
expansion of Pi to U(γi, α).

Proof. For each i ∈ {1, 2}, Ri is clearly an expansion of Pi to U(γi, α). Moreover, by combining
S, R1, and R2, we can obtain X as in the proof of Lemma 4.3. Thus, we have the equality in
Lemma 4.3. In turn, by the optimality of X, both R1 and R2 are optimal. 2

4.3 Details of the Dynamic Programming Algorithm

To compute an optimal (3, k)-SP of G, we perform a dynamic programming on the tree-decomposition
D as follows. To simplify the description of the algorithm, we add a new node r to D, connect r to
an arbitrary leaf α of D, and copy the bag at α to r (that is, Br = Bα). Clearly, the resultant D
is still a required tree-decomposition of G. Root D at r.

The dynamic programming starts at the leaves of D, and proceeds upwards. After the unique
child of the root r of D is processed, we will know whether G has a (3, k)-SP or not, and will get
an optimal (3, k)-SP of G if any. The invariant maintained during the dynamic programming is
that after each nonroot node α has been processed, for each projection P of α to its parent β,
we will have obtained and stored the quintuple (P,XP , bP , XP , bP) in the dynamic programming
table, where XP = ∅ and bP = +∞ (respectively, XP = ∅ and bP = +∞) if P has no perfect
(respectively, imperfect) expansion to U(α, β), while XP (respectively, XP) is a perfect expansion
(respectively, an optimal imperfect expansion) of P to U(α, β) and bP = cost(XP) = 0 (respectively,
bP = cost(XP)) otherwise.

Now consider how a nonroot node α of D is processed. Let β be the parent of α in D. First
suppose that α is a leaf of D. For each projection P of α to β, a perfect (respectively, imperfect)
expansion of P to U(α, β) is a skeleton S of α such that P is the projection of S to β and S has
no (respectively, at least one) degree-2 node. Thus, it is easy to process α.

Next suppose that α is neither a leaf nor the root node of D, and suppose that all descendants
of α in D have been processed. Let γ1 and γ2 be the children of α in D. To process α, we first
compute all projections P of α to β, and initialize (P,XP , bP , XP , bP) = (P, ∅,+∞, ∅,+∞). Then,
we try all skeletons S of α. When trying S, we perform the following steps for S:

1. For each i ∈ {1, 2}, compute the projection Pi of S to γi, and search the dynamic programming
table to find the quintuple (Pi, XPi , bPi , XPi , bPi).

2. Compute the projection P of S to β.

3. For each R1 ∈ {XP1 , XP1} and each R2 ∈ {XP2 , XP2} such that R1 6= ∅ and R2 6= ∅, perform
the following steps:

21

(a) Obtain an expansion X of S to U(α, β) by combining S, R1, and R2 as in the proof of
Lemma 4.3.

(b) If S has no degree-2 node, R1 = XP1 , R2 = XP2 , and cost(X) < bP , then update
the quintuple (P,XP , bP , XP , bP) by replacing XP and bP with X and cost(X) (= 0),
respectively.

(c) If S has a degree-2 node or R1 = XP1 or R2 = XP2 , and cost(X) < bP , then update the
quintuple (P,XP , bP , XP , bP) by replacing XP and bP with X and cost(X), respectively.

Finally, let α be the unique child of the root r of D and suppose that α has been processed. By
searching the dynamic programming table, we try to find all projections P of α to r such that (i)
P has no temporary leaf whose color is r, and (ii) the quintuple (P,XP , bP , XP , bP) satisfies that
XP 6= ∅. If no such projection P is found, then we can conclude that G has no (3, k)-SP; otherwise,
among the expansions XP found, the one with the minimum cost is an optimal (3, k)-SP of G.

The above discussion justifies the following theorem:

Theorem 4.5 Let k ≥ 4 be an integral constant. There is a linear-time algorithm determining if
a given connected graph has a (3, k)-SP, and if so, demonstrating an optimal (3, k)-SP.

Theorem 4.5 can be easily generalized to arbitrary ∆ ≥ 3. Thus, Lemma 3.1 follows immediately.

References

[1] A. Brandstädt, V. B. Le, and J. P. Spinrad, Graph Classes: a Survey, SIAM Monographs on
Discrete Mathematics and Applications, SIAM, Philadelphia, 1999.

[2] Z.-Z. Chen, T. Jiang, and G.-H. Lin, Computing phylogenetic roots with bounded degrees and
errors, SIAM Journal on Computing, 32 (2003) 864–879.

[3] P. E. Kearney and D. G. Corneil, Tree powers, Journal of Algorithms, 29 (1998) 111–131.

[4] G.-H. Lin, P. E. Kearney, and T. Jiang, Phylogenetic k-root and Steiner k-root, in: The 11th
Annual International Symposium on Algorithms and Computation (ISAAC 2000), Lecture
Notes in Computer Science, 1969 (2000) 539–551.

[5] Y.-L. Lin and S. S. Skiena, Algorithms for square roots of graphs, SIAM Journal on Discrete
Mathematics, 8 (1995) 99–118.

[6] R. Motwani and M. Sudan, Computing roots of graphs is hard, Discrete Applied Mathematics,
54 (1994) 81–88.

[7] N. Nishimura, P. Ragde, and D. M. Thilikos, On graph powers for leaf-labeled trees, in: Pro-
ceedings of the 7th Scandinavian Workshop on Algorithm Theory (SWAT 2000), Lecture Notes
in Computer Science, 1851 (2000) 125–138.

[8] D. L. Swofford, G. J. Olsen, P. J. Waddell, and D. M. Hillis, Phylogenetic inference, in:
D. M. Hillis, C. Moritz, and B. K. Mable (Ed.), Molecular Systematics (2nd Edition), Sinauer
Associates, Sunderland, Massachusetts, 1996, pp. 407–514.

22

