
An Approximation Algorithm for the Minimum Co-Path Set

Problem

Zhi-Zhong Chen∗ Guohui Lin† Lusheng Wang‡

Abstract

We present an approximation algorithm for the problem of finding a minimum set of edges

in a given graph G whose removal from G leaves a graph in which each connected component

is a path. It achieves a ratio of 10
7 and runs in O(n1.5) time, where n is the number of vertices

in the input graph. The previously best approximation algorithm for this problem achieves a

ratio of 2 and runs in O(n2) time.

Keywords: Approximation algorithms, graph algorithms, co-path sets, radiation hybrid

mapping, NP-hardness.

1 Introduction

Throughout this paper, a graph means a simple undirected graph (i.e., it has neither parallel edges

nor self-loops). A co-path set of a graph G is a set F of edges in G such that removing the edges

in F from G leaves a graph in which each connected component is a path. A co-path set of G

is minimum if its size is minimized over all co-path sets of G. We are interested in the problem

of finding a minimum co-path set in a given graph. For convenience, we denote this problem by

MCPS.

MCPS has applications in radiation hybrid (Rh) mapping, which is a popular and powerful

technique for mapping unique DNA sequences onto chromosomes and whole genomes [3, 4, 7, 8].

Essentially, in Rh mapping experiments, chromosomes of the target organism are randomly broken

into small DNA fragments through gamma radiation. A random subset of these DNA fragments

incorporate or retain with healthy hamster cells and grow up to yield a hybrid cell line. The

process is repeated many times and the co-retention rate of a pair of markers, which are labeled

chromosomal loci, indicates their physical distance on the chromosome. The underlying mechanism

∗Corresponding author. Department of Mathematical Sciences, Tokyo Denki University. Hatoyama, Saitama

350-0394, Japan. Email: zzchen@mail.dendai.ac.jp.
†Department of Computing Science, University of Alberta. Edmonton, Alberta T6G 2E8, Canada. Email:

ghlin@cs.ualberta.ca.
‡Department of Computer Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong. Email:

cswangl@cityu.edu.hk.

1

is that, when two markers are physically close to each other on the chromosome, the probability that

these two markers are broken down by the gamma radiation is low, and so with a high probability

they are either co-present in or co-absent from a DNA fragment. A subset of markers that are

co-present in or co-absent from Rh panels (that is, DNA fragments) is referred to as a cluster.

Given the marker set S = {1, 2, . . . , n} and the collection C = {C1, C2, . . . , Cm} of clusters, the

radiation hybrid map construction problem requires the computation of a linear ordering of the

markers in which the markers in each given cluster Ci appear consecutively. Due to observation

errors, a cluster of markers co-occurring in DNA fragments could be mistaken and hence there may

be no such required linear ordering. In such a case, we want to remove as few given clusters as

possible so that there is a required ordering for the leftover clusters. This minimization problem is

exactly MCPS when each given cluster is of size 2.

The maximization counterpart of MCPS is the well-known maximum path cover problem (MPC),

which is the problem of finding a maximum subgraph H of a given graph G such that each connected

component of H is a path. MPC arises in a number of applications, among others, in parallel

programs, distributed systems mappings, and the code optimization problems (see [9] and the

references therein). MPC is also closely related to the travelling salesman problem with distances

one and two and several approximation algorithms have been designed for MPC [1, 9].

Unlike MPC, we are aware of only one previously known approximation algorithm for MCPS,

namely, the algorithm given in [3]. The algorithm in [3] achieves a ratio of 2 and runs in O(n2)

time, where n is the number of vertices in the input graph. It is based on the obvious fact that a

minimum co-path set of a graph G = (V,E) contains at least 1
2

∑
v∈V : dG(v)>2(dG(v) − 2) edges,

where dG(v) is the degree of v in G. In this paper, we give a better approximation algorithm

for MCPS via a completely different approach. Our algorithm achieves a ratio of 10
7 and runs in

O(n1.5) time. It is based on both local search and dynamic programming. In more detail, given a

graph G, our algorithm computes two co-path sets S1 and S2 of G and outputs the smaller between

the two. S1 is computed via local search while S2 is computed via dynamic programming. The

computations of S1 and S2 will be closely related to each other.

The remainder of this paper is organized as follows. Section 2 gives some basic definitions and

notations in graph theory that will be used throughout this paper. Section 3 presents our algorithm

and its analysis. Section 4 lists several open questions related to radiation hybrid mapping.

2 Basic Definitions

Let G be a graph. We denote the vertex (respectively, edge) set of G by V (G) (respectively, E(G)).

The degree of a vertex v in G, denoted by dG(v), is the number of vertices adjacent to v in G. A

cycle in G is a connected subgraph of G in which each vertex is of degree 2. A path in G is either

a single vertex or a connected subgraph of G in which exactly two vertices are of degree 1 and

the others are of degree 2. Each vertex of degree at most 1 in a path P is called an endpoint of

P , while each vertex of degree 2 in P is called an inner vertex of P and each edge incident to no

endpoint of P is called an inner edge of P . The length of a path P is the number of edges in P .

2

A path set of G is a subset F of E(G) such that E(G) − F is a co-path set of G. A maximum

path set of G is a path set of G whose size is maximized over all path sets of G. A path component

(respectively, cycle component) of G is a connected component of G that is a path (respectively,

cycle). A path-cycle cover of G is a subgraph H of G such that V (H) = V (G) and dH(v) ≤ 2 for

every v ∈ V (H). Note that each connected component of a path-cycle cover of G is a path or cycle.

The size of a path-cycle cover C of G is the number of edges in C. A maximum path-cycle cover of

G is a path-cycle cover of G whose size is maximized over all path-cycle covers of G. A matching

of G is a set of pairwise nonadjacent edges of G. A maximum matching of G is a matching of G

whose size is maximized over all matchings of G.

Let C be a cycle of G. A chord of C in G is an edge e ∈ E(G)−E(C) such that both endpoints

of e appear in C. If C has no chords at all, C is chord-free; otherwise, it is chord-sensitive. An

antenna of C in G is an edge e ∈ E(G)− E(C) such that exactly one endpoint of e appears in C.

The foot (respectively, tip) of an antenna e of C in G is the endpoint of e that appears (respectively,

does not appear) in C.

For a subset U of V (G), let G− U denote the graph obtained from G by deleting the vertices

of U and the edges incident to them, and let G[U] denote the subgraph of G induced by U , i.e., the

graph G−(V (G)−U). For a set F of (unordered) pairs of vertices of G, let G+F denote the graph

(V (G), E(G)∪F), and let G−F denote the graph (V (G), E(G)−F). For a set H = {H1, . . . ,Hk}
of vertex-disjoint subgraphs of G with

⋃k
i=1 V (Hi) = V (G), modifying G by merging each subgraph

in H into a super-vertex is the operation of constructing a new graph G′ from G and H, where the

vertices of G′ are 1, 2, . . . , k and the edges of G′ are those {i, j} ⊆ {1, . . . , k} such that G has an

edge {u, v} with u ∈ V (Hi) and v ∈ V (Hj). For each edge e = {i, j} of G′, we say that an edge

{u, v} of G corresponds to e if u ∈ V (Hi) and v ∈ V (Hj).

A tree-decomposition of G is a pair ({Xi : i ∈ I}, T), where {Xi : i ∈ I} is a family of subsets

of V (G) and T is a tree with V (T) = I such that the following three conditions hold:

•
⋃

i∈I Xi = V .

• For every edge {v, w} ∈ E, there is a subset Xi, i ∈ I with v ∈ Xi and w ∈ Xi.

• For all i, j, k ∈ I, if j lies on the path from i to k in T , then Xi ∩Xk ⊆ Xj .

The treewidth of a tree-decomposition ({Xi : i ∈ I}, T) is max{|Xi|−1 : i ∈ I}. The treewidth of G

is the minimum treewidth of a tree-decomposition of G, taken over all possible tree-decompositions

of G. It is well-known that a lot of optimization problems on graphs of fixed treewidths can be

solved in polynomial time via dynamic programming.

G is outerplanar if it is planar and has a plane embedding in which all of its vertices appear on

the same face. It is known that the treewidth of an outerplanar graph is at most 2 [2].

3

3 The Approximation Algorithm for MCPS

Throughout this section, fix an input graph G to MCPS and let n = |V (G)|. Since each minimum

co-path set of G contains at least |E(G)| − (n− 1) edges, we may assume that |E(G)| ≤ 10
3 (n− 1);

otherwise, simply outputting E(G) achieves an approximation ratio of 10
7 . We may also assume

that G is connected; otherwise, we can use our algorithm to find a co-path set for each connected

component of G and then output the union of the co-path sets. We may further assume that G is

not a cycle; otherwise, an arbitrary edge of G forms a minimum co-path set of G. Due to the last

two assumptions, each chord-free cycle in G has at least one antenna.

The outline of our algorithm is as follows. Given G, the algorithm first performs a preprocessing

of G and then finds two co-path sets S1 and S2 of G. The algorithm just outputs the smaller one

between S1 and S2.

The remainder of this section is organized as follows. Section 3.1 details the preprocessing.

Sections 3.2 and 3.3 detail the computation of co-path sets S1 and S2, respectively. Section 3.4

analyzes the approximation ratio achieved by the algorithm.

3.1 Preprocessing

The preprocessing is based on the following lemma.

Lemma 3.1 The following statements hold:

1. If C is a chord-free cycle in G having exactly one antenna in G, then for either edge e of C

incident to the foot of the antenna, G has a minimum co-path set containing e.

2. If C is a chord-free cycle in G having exactly two antennas in G and the two antennas have

the same foot, then for either edge e of C incident to the common foot of the antennas, G

has a minimum co-path set containing e.

3. If C is a chord-free cycle in G having exactly two antennas in G and the foots of the antennas

are different but adjacent, then G has a minimum co-path set containing the edge e of C

between the foots of the antennas.

Proof. Let B be an arbitrary minimum co-path set of G. Let e be as stated in the statements.

If B contains the antennas of C, then B must contain exactly one edge f of C because C is a

chord-free cycle in G. If f = e, we are done. Otherwise, modifying B by replacing f with e yields a

new minimum co-path set of G. So, we may assume that B does not contain at least one antenna

of C in G. We now prove the statements separately as follows.

Statement 1. Since B does not contain the antenna of C, B must contain exactly one edge f

of C incident to the foot of the antenna because B is minimum and the degree of each vertex in

G − B is at most 2. If f = e, then we are done. Otherwise, modifying B by replacing f with e

yields a new minimum co-path set of G.

4

Statement 2. If B contains neither antenna of C, then B must contain both edges of C incident

to the common foot of the antennas because the degree of each vertex in G− B is at most 2. So,

suppose that B contains exactly one antenna of C. Then, we can prove the statement as in the

proof of Statement 1.

Statement 3. If B contains exactly one of the antennas of C, then we can prove the statement

as in the proof of Statement 1. So, suppose that B contains neither antenna of C. Then, since B

is minimum, it must contain e. 2

For convenience, for each i ∈ {1, 2, 3}, we call cycle C described in Statement i of Lemma 3.1 a

type-i breakable cycle of G. A breakable cycle of G simply means a type-i breakable cycle of G for

some i ∈ {1, 2, 3}. For a breakable cycle C of G, we call each edge e of C described in Lemma 3.1 a

removable edge of C. Breaking a breakable cycle C in G is the operation of modifying G by removing

one arbitrary removable edge of C.

Lemma 3.1 suggests that we repeat breaking a breakable cycle in G until none exists in G.

After getting rid of breakable cycles, we then find a co-path set S in the leftover graph H. The

final output is S ∪ R, where R is the set of edges removed when breaking breakable cycles in G.

The point is that if |S| is at most r times the minimum size of a co-path set of H for some r > 1,

then |S ∪R| is at most r times the minimum size of a co-path set of G. This point is true because

of Lemma 3.1.

Breaking breakable cycles in G one by one is too time consuming. That is, if we keep looking

for another breakable cycle in G after breaking one, then we may have to pay a quadratic running

time. So, a better way is to first find all breakable cycles of G and then break them simultaneously.

We first explain how to find all breakable cycles of G in linear time. The idea is to consider G[V2],

where V2 is the set of all vertices of degree 2 in G. Obviously, G[V2] can be constructed in linear

time. Each connected component of G[V2] must be a path and may be a portion of a breakable

cycle of G. Conversely, for each breakable cycle C of G, there is a path component in G[V2] that

is a portion of C. To decide if a path component P of G[V2] is a portion of a type-1 (respectively,

type-2) breakable cycle of G, it suffices to verify whether P has two endpoints and they share a

neighbor of degree 3 (respectively, 4) in G. To decide if a path component P of G[V2] is a portion

of a type-3 breakable cycle of G, we distinguish two cases. In the first case, P is a single vertex;

we verify whether its two neighbors in G are adjacent and both are of degree 3 in G. In the second

case, P has two endpoints; we verify whether their neighbors not in P are adjacent in G and both

are of degree 3 in G. Obviously, all the verifications can be done in linear total time. Consequently,

all breakable cycles of G can be found in linear total time. So, it remains to show how to break

them efficiently. The next lemma is obvious but useful for our purpose.

Lemma 3.2 The following statements hold:

1. If two breakable cycles C1 and C2 of G are vertex disjoint, then C2 remains to be a breakable

cycle (of the same type) of G after C1 is broken.

2. Each breakable cycle of G can share a vertex with at most one other breakable cycle of G.

5

3. If two breakable cycles C1 and C2 of G share exactly one vertex, then they are both of type-2

and breaking C1 changes the type of C2 from type-2 to type-1 but does not change the removable

edges of C2.

4. If two breakable cycles of G share exactly two vertices, then they are both of type-3 and the

edge between the two shared vertices is the unique removable edge of both cycles, implying that

breaking one of them also breaks the other.

5. No two breakable cycles of G can share more than two vertices.

By Lemma 3.2, after finding all breakable cycles of G, we can get rid of them by simply

removing one arbitrary removable edge from each breakable cycle. It is obvious that breaking a

type-1 breakable cycle does not yield a new breakable cycle. However, breaking a type-2 or type-3

breakable cycle may yield a new breakable cycle. So, for each type-2 or type-3 breakable cycle C

that has been broken, we need to continue to check if breaking C has yielded new breakable cycles

and break them if there is any. We next describe the details. Suppose that C is a type-2 or type-3

breakable cycle that has been broken by removing a breakable edge {x, y} of C, where x is the foot

of an antenna of C (and so is y if C is of type-3). If C is of type-2, then we proceed by performing

the following steps:

1. Let z1 and z2 be the two neighbors of x that are not vertices of C. (Comment: If in the

current graph G, one of z1 and z2 has degree 2, the other has degree 3, and there is a path

P from z1 to z2 such that each inner vertex of P has degree 2, then P together with the

two edges {x, z1} and {x, z2} forms a type-3 breakable cycle whose breakable edge is {x, zi},
where 1 ≤ i ≤ 2 and zi has degree 3.)

2. If in the current graph G, one of z1 and z2 (say, z1) has degree 2 and the other has degree 3,

then perform the following steps:

(a) Find the longest path P such that z1 is an endpoint of P , x is not a vertex of P , and

each inner vertex of P has degree 2 in the current graph G. (Comment: P can be found

in time linear in the length of P .)

(b) If P is of length 3 or more, then shrink it to a new path of length 2 without changing its

endpoints. (Comment: We need to memorize the correspondence between the old path

P and the new path because we need to recover the old path after the preprocessing.

For convenience, we hereafter still use P to denote the new shrunk path.)

(c) If z2 is also an endpoint of P , then remove edge {x, z2} from G and stop looking for

new breakable cycles. (Comment: Performing this step does not yield a new breakable

cycle.)

On the other hand, if C is of type-3, then we proceed by performing the following steps:

3. Let {x1, x2} be the edge removed by breaking C. (Comment: The leftover of C in the current

graph G is a path from x1 to x2.)

6

4. For each i ∈ {1, 2}, let Pi be the longest path in the current graph G such that xi is an

endpoint of Pi and each inner vertex of Pi is not a vertex of C but has degree 2 in the current

graph G. (Comment: Pi can be found in time linear in the length of Pi.)

5. For each i ∈ {1, 2}, if Pi is of length 3 or more, then shrink it to a new path of length 2 without

changing its endpoints. (Comment: We need to memorize the correspondence between the

old path and the new path because we need to recover the old path after the preprocessing.

For convenience, we hereafter still use Pi to denote the new shrunk path.)

6. For each i ∈ {1, 2}, let yi be the endpoint of Pi other than xi. (Comment: If y1 = y2 and the

degree of y1 in the current graph G is 3 or 4, the leftover of C together with P1 and P2 forms

a new type-1 or type-2 breakable cycle. Similarly, if y1 6= y2, {y1, y2} ∈ E(G), and both y1

and y2 have degree 3 in the current graph G, then the leftover of C together with P1 and P2

forms a new type-3 breakable cycle.)

7. If y1 = y2 and the degree of y1 in the current graph G is 3, then remove one of the two edges

adjacent to y1 from G and stop looking for new breakable cycles. (Comment: If the condition

in this step holds, we break a new type-1 breakable cycle without yielding a new breakable

cycle.)

8. If y1 = y2 and the degree of y1 in the current graph G is 4, then perform the following two

steps (which are similar to Steps 1 and 2):

(a) Let z1 and z2 be the two neighbors of y1 that are not vertices of P1 or P2.

(b) If in the current graph G, one of z1 and z2 (say, z1) has degree 2 and the other has

degree 3, then perform the following steps:

i. Find the longest path P such that z1 is an endpoint of P , y1 is not a vertex of P ,

and each inner vertex of P has degree 2 in the current graph G.

ii. If P is of length 3 or more, then shrink it to a new path of length 2 without changing

its endpoints. (Comment: We need to memorize the correspondence between the

old path P and the new path because we need to recover the old path after the

preprocessing. For convenience, we hereafter still use P to denote the new shrunk

path.)

iii. If z2 is also an endpoint of P , then remove edge {y1, z2} from G and stop looking

for new breakable cycles.

9. If y1 6= y2, {y1, y2} ∈ E(G), and both y1 and y2 have degree 3 in the current graph G, then

remove edge {y1, y2} from G and go to Step 3 by viewing the newly broken (type-3) breakable

cycle as C.

Since the paths P , P1, and P2 in the above steps can be found in time linear in their lengths

and we shrink them to a length-2 new path if they are of length 3 or more, finding and breaking

7

the new breakable cycles by the above steps can be done in linear total time. The old paths that

were shrunk can be recovered in linear total time in the reverse order in which they were shrunk.

As the final step of the preprocessing, our algorithm computes a maximum path-cycle cover C
in G. If C is connected, then it is either a Hamiltonian path or cycle of G. In the former case,

E(G) − E(C) is clearly a minimum co-path set of G. In the latter case, after the removal of one

arbitrary edge from C, E(G) − E(C) is again a minimum co-path set of G. So, we may further

assume that C is disconnected. Then, every cycle of C has at least one antenna in G.

Throughout the remainder of this section (i.e., Section 3), we assume that our algorithm has

completed the preprocessing. As an immediate consequence of this assumption, G has no breakable

cycles.

The next lemma will help us compute S2 in Section 3.3.

Lemma 3.3 G has a minimum co-path set B such that for every chord-free cycle C in C with

exactly two antennas in G, B contains at least one antenna of C in G.

Proof. Consider an arbitrary minimum co-path set B of G. Suppose that C is a chord-free

cycle in C with exactly two antennas in G such that B contains neither antenna of C in G. Let

e be one of the antennas of C in G. Since B is a co-path set of G, B contains at least one edge

e′ of C incident to the foot of antenna e. We modify B by removing e′ and adding e. After this

modification, B remains to be a minimum co-path set of G (because C is not a breakable cycle of

G), and contains at least one antenna of C in G. By repeating this modification, we can ensure

that for every chord-free cycle C in C with exactly two antennas in G, B contains at least one

antenna of C in G. 2

Throughout the remainder of this paper, fix a minimum co-path set B of G such that for every

chord-free cycle C in C with exactly two antennas in G, B contains at least one antenna of C in G.

B exists because of Lemma 3.3.

Related to C, we next define several notations that will be used frequently hereafter.

• Let p be the number of path components in C.

• Let k be the number of cycles in C.

• Let c be the number of chord-sensitive cycles in C.

Lemma 3.4 |B| ≥ |E(G)| − |E(C)|.

Proof. Since G − B is a path-cycle cover of G and C is a maximum path-cycle cover of G, we

have |E(G)| − |B| ≤ |E(C)|. Hence, |B| ≥ |E(G)| − |E(C)|. 2

8

3.2 Computing Co-Path Set S1

An obvious way to obtain S1 is to transform C into a path set of G and then set S1 = E(G)−E(C).
To transform C into a path set of G, we can simply remove one arbitrary edge eC from each cycle

C in C. By Lemma 3.4, S1 computed in this way has size ≤ |B|+ k and is hence close to |B| if k is

small. Indeed, one can easily observe that |B| ≥ k. So, computing S1 in this simple way achieves

an approximation ratio of 2.

To obtain a smaller S1, our idea is to break the cycles in C more carefully. In other words, we

cannot afford to break the cycles in C independently. Rather, we try to find a collection K of two

or three connected components of C such that we can transform K into a collection K′ of vertex-

disjoint paths with |E(K′)| ≥ |E(K)| − (κ− 1), where κ is the number of cycles in K. For example,

if K is a collection of two cycle components C1 and C2 of C such that E(G)−E(C) contains an edge

e = {u1, u2} with u1 ∈ V (C1) and u2 ∈ V (C2), then we can let K′ = (K− {e1, e2}) + {e}, where e1

(respectively, e2) is one of the two edges of C1 (respectively, C2) incident to u1 (respectively, u2).

We next proceed to the details of the computation of S1. Since we want to save C for later use,

we first make a copy D of C. We then compute S1 by modifying D as follows:

1. Initialize a set M = ∅.

2. While G has a good edge related to D, i.e., an edge {u, v} ∈ E(G)− E(D) such that u and v

appear in different cycle components in D, add edge {u, v} to M and modify D by removing

one of the two edges in D incident to u, removing one of the two edges in D incident to v,

and adding edge {u, v}.

3. Initialize a set M1 = M . (Comment: M1 will be used to compute S2 later.)

4. While G has a superb edge related to D, i.e., an edge {u, v} ∈ E(G)−E(D) such that dD(u) ≤ 1

and v appears in a cycle component of D, add edge {u, v} to M1 and further modify D by

deleting one of the two edges in D incident to v and adding {u, v}.

5. While G has a superb 4-cycle related to D, i.e., a 4-cycle consisting of four edges {u1, v1},
{v1, v2}, {v2, u2}, and {u2, u1} in G such that {v1, v2} is an edge of a path component of D
and {u1, u2} is an edge of a cycle component of D, add both edges {u1, v1} and {u2, v2} to M1

and further modify D by deleting one of the two edges in D incident to u1, deleting one of the

two edges in D incident to u2, deleting edge {v1, v2}, and adding edges {u1, v1} and {u2, v2}.
(Comment: No superb edge related to D will be created in this step because of Step 2.)

6. While G has a good 3-path related to D, i.e., a path consisting of three edges {u1, v1}, {v1, v2},
and {v2, u2} in G such that {v1, v2} is an edge of a path component of D and u1 and u2 fall

into different cycle components of D, add both edges {u1, v1} and {u2, v2} to M1 and further

modify D by deleting one of the two edges in D incident to u1, deleting one of the two edges in

D incident to u2, deleting edge {v1, v2}, and adding edges {u1, v1} and {u2, v2}. (Comment:

Neither superb edge nor superb 4-cycle related to D will be created in this step because of

Step 2.)

9

7. For each cycle C in D, delete an arbitrary edge from C.

8. Let S1 = E(G)− E(D).

In order to analyze |S1|, we define the following notations :

• Let σ be the number of cycles broken in Step 4 or 5.

• Let 2γ be the number of cycles broken in Step 6.

• Let c′ be the number of chord-sensitive cycles in D immediately before Step 7.

• Let b be the number of chord-free cycles in D with exactly two antennas immediately before

Step 7.

• Let t be the number of chord-free cycles in D with at least three antennas immediately before

Step 7.

The next lemma follows from Lemma 3.4 and the definitions of the notations immediately.

Lemma 3.5 |S1| = |E(G)| − |E(C)| + k − |M | − σ − γ ≤ |B| + k − |M | − σ − γ. Moreover,

k = 2|M |+ σ + 2γ + c′ + b+ t.

Lemma 3.6 M1 does not contain two edges {u1, v1} and {u2, v2} such that one connected com-

ponent of C contains both u1 and u2 and another contains both v1 and v2. Moreover, the graph

obtained by modifying C + M1 by merging each connected component of C into a super-vertex is a

forest.

Proof. Let e1, e2, . . . , e` be the edges of M1. We may assume that for each i ∈ {1, 2, . . . , `− 1},
ei was added to M1 by our algorithm (in Steps 3 through 6) no later than ei+1. Imagine that we

construct the graph K = C +M1 by initializing K = C and then adding the edges e1, e2, . . . , e` to

K one by one in this order. Obviously, for each i ∈ {1, 2, . . . , `− 1}, when we add ei to K, at least

one endpoint of ei appears in a connected component of K that contains none of e1, e2, . . . , ei−1.

This fact implies the lemma immediately. 2

Lemma 3.7 The above computation of S1 can be implemented in linear time.

Proof. Throughout this proof, the data structure for representing a graph H is always its

adjacency list, where (i) for each u ∈ V (H), the list Lu of neighbors of u in H is doubly-linked and

(ii) for each {u, v} ∈ E(H), the copy of v in Lu and the copy of u in Lv point to each other (via

two pointers). This data structure enables us to delete a vertex u from H in time linear in dH(u).

It is easy to see that each step other than Steps 2, 4, 5, and 6 can be implemented in linear

time. For convenience, for each i ∈ {2, 4, 5, 6}, let Di be the graph D immediately before Step i.

We may assume that the vertices in D2 are the integers 1, 2, . . . , n, where for each cycle component

10

C in D2, if u is the smallest vertex of C, then the vertices of C are u, u + 1, . . . , u + |V (C)| − 1

and they appear in C clockwise in this order. Let the cycles in D2 be C1, C2, . . . , Ck.

To implement Step 2, we construct a graph H2 whose vertices are 1, 2, . . . , k and whose edges

are those {i, j} ⊆ {1, . . . , k} such that G has an edge {u, v} with u ∈ V (Ci) and v ∈ V (Cj). For

each edge {i, j} of H2, we also record an (arbitrary) edge {u, v} ∈ E(G) with u ∈ V (Ci) and

v ∈ V (Cj) and call it the good edge corresponding to {i, j}. Now, to implement Step 2, we just

repeat the following two steps in turn until E(H2) becomes empty:

• Choose an arbitrary edge {i, j} in H2 and use the good edge {u, v} corresponding to {i, j} to

modify M and D as in Step 2.

• Remove vertices i and j from H2.

To implement Step 4, we construct a bipartite graph H4 = (X4 ∪ Y4, E4), where X4 consists of

the endpoints of the path components in D4, Y4 consists of all i ∈ {1, . . . , k} such that Ci is a cycle

component in D4, and E4 consists of those {u, i} such that u ∈ X4, i ∈ Y4, and Ci has a vertex v

with {u, v} ∈ E(G). For each edge {u, i} of H4, we also record an (arbitrary) edge {u, v} ∈ E(G)

with v ∈ V (Ci) and call it the superb edge corresponding to {u, i}. Now, to implement Step 4, we

just repeat the following two steps in turn until E(H4) becomes empty:

• Choose an arbitrary edge {u, i} in H4 and use the superb edge {u, v} corresponding to {u, i}
to modify M and D as in Step 4.

• Remove vertices u and i from H4.

To implement Step 5, we construct a bipartite graph H5 = (X5 ∪ Y5, E5), where X5 consists

of the inner edges of the path components in D5, Y5 consists of all i ∈ {1, . . . , k} such that Ci is

a cycle component in D5, and E5 consists of those {{v1, v2}, i} such that {v1, v2} ∈ X5, i ∈ Y5,

and G has two edges {u1, v1} and {u2, v2} with {u1, u2} ∈ E(Ci). For each edge {{v1, v2}, i} of

H5, we also record a pair of (arbitrary) edges {u1, v1} and {u2, v2} of G with {u1, u2} ∈ E(Ci) and

call it the superb pair corresponding to {{v1, v2}, i}. Now, to implement Step 5, we just repeat the

following two steps in turn until E(H5) becomes empty:

• Choose an arbitrary edge {{v1, v2}, i} in H5 and use the superb pair ({u1, v1}, {u2, v2}) cor-

responding to {{v1, v2}, i} to modify M and D as in Step 5.

• Remove vertices {v1, v2} and i from H5.

We next explain how to construct H5 in linear time, because it does not look so obvious. Clearly,

we can set up a (random-access) array A of size n such that for each u ∈ {1, 2, . . . , n}, A[u] = 0 if

vertex u does not appear in a cycle component of D5, and A[u] = i if Ci is the cycle component of

D5 with u ∈ V (Ci). We also set up a (random-access) array A′ of size n whose elements are all 0.

We further compute the minimum vertex ni and the maximum vertex xi in Ci for every i ∈ Y5.
Now, consider an arbitrary {v1, v2} ∈ X5. It suffices to show that we can find all i ∈ Y5 with

11

{{v1, v2}, i} ∈ E5 in dG(v1)+dG(v2) total time. To this end, for each neighbor u1 of v1 in G, we set

A′[u1] = 1. We then check, for each neighbor u2 of v2 in G with A[u2] > 0, whether (1) u2 < xA[u2]

and A′[u2 + 1] = 1, (2) u2 > nA[u2] and A′[u2 − 1] = 1, (3) u2 = xA[u2] and A′[nA[u2]] = 1, or

(4) u2 = nA[u2] and A′[xA[u2]] = 1. If the checking succeeds for some neighbor u2 of v2 in G with

A[u2] > 0, then {{v1, v2},A[u2]} is an edge of H5. After scanning the neighbors of v2 in G in this

way, we should have found the edges of H5 adjacent to vertex {v1, v2} and then we reset A′[u1] = 0

for every neighbor u1 of v1 in G.

To implement Step 6, we construct a bipartite graph H6 = (X6 ∪ Y6, E6), where X6 consists of

the inner vertices of the path components in D6, Y6 consists of all i ∈ {1, . . . , k} such that Ci is

a cycle component in D6, and E6 consists of those {u, i} such that u ∈ X6, i ∈ Y6, and Ci has a

vertex v with {u, v} ∈ E(G). For each edge {v, i} of H6, we also record an (arbitrary) edge {u, v}
of G with u ∈ V (Ci) and call it the representative edge corresponding to {v, i}. Now, to implement

Step 5, we let L be the list of the inner edges of the path components of D6 and repeat the following

three steps in turn until L becomes empty:

• Choose an arbitrary edge {v1, v2} in L.

• If either (1) one of dH6(v1) and dH6(v2) is larger than 1 and the other is larger than 0, or (2)

dH6(v1) = 1 and dH6(v2) = 1 but the neighbor of v1 in H6 is different from that of v2 in H6,

then perform the following three steps in turn:

– Find different Ci and Cj with {v1, i} ∈ E(H6) and {v2, j} ∈ E(H6) (by checking at most

two neighbors of vh in H6 for each h ∈ {1, 2}).

– Use edge {v1, v2}, the representative edge {u1, v1} corresponding to {v1, i}, and the

representative edge {u2, v2} corresponding to {v2, j} to modify M and D as in Step 6.

– Remove vertices i and j from H6.

• Remove {v1, v2} from L.

Obviously, the above three steps can be done in O(dH6(i) + dH6(j)) time if Ci and Cj are found in

the second step, while in O(1) time otherwise. 2

3.3 Computing Co-Path Set S2

As mentioned in Section 3.2, |S1| is close to |B| when k is small. So, we want to compute S2 in

such a way that |S2| is close to |B| when k is large. Recall that we can compute a maximum path

set in a given graph with bounded tree-width in linear time. With this in mind, we will compute

S2 roughly as follows:

• Compute a set F of edges in E(G)−E(C) such that C+F is a connected graph with bounded

tree-width. (Comment: Since C + F is connected, |F | ≥ k + p− 1. So, |F | is large when k is

large.)

12

• Compute a maximum path set P in C + F and output E(G)− E(P).

How to compute F? This is the crux of computing S2. A simple but smart way is to let F be

an arbitrary set of edges in E(G) − E(C) such that modifying C + F by merging each connected

component of C into a super-vertex yields a tree. Obviously, such a set F contains exactly k+p−1

edges and C+F is an outerplanar graph (and hence its tree-width is at most 2). We can prove that

computing F in this way leads to an approximation ratio of 1.5. We omit the proof here because

we can do even better by choosing the edges in F more carefully (as shown below).

Our construction of F can be sketched as follows. F will be the union of six sets M1, M2, . . . ,

M6, where M1 is the set computed in Section 3.2. By Lemma 3.6, modifying C + M1 by merging

each connected component of C into a super-vertex yields a forest. The three sets M2, M3, and M4

will be carefully computed so that
∑4

i=1 |Mi| = k+ p− 1 and modifying C + (
⋃4

i=1Mi) by merging

each connected component of C into a super-vertex yields a tree. This implies that C+ (
⋃4

i=1Mi) is

outerplanar. Of special interest is the construction of M4 which will be randomized. To construct

M5, we will start with M5 = ∅ and then, for every chord-sensitive cycle C in C, add one (arbitrary)

chord of C in G to M5. In this way, C + (
⋃5

i=1Mi) remains to be outerplanar. M6 will contain at

most one edge; its role is simply to help us achieve an approximation ratio of 10
7 (instead of 10

7 − ε
for some arbitrarily small constant ε > 0).

We next detail the computation of S2. For convenience, we say that a cycle C in C is bad if

it is a chord-free cycle with exactly two antennas in G and there is no edge {u, v} ∈ M1 with

{u, v}∩V (C) 6= ∅. Note that each bad cycle in C is also a cycle component of D immediately before

Step 7. We compute S2 as follows:

9. Let Z be the set of vertices that appear in bad cycles in C.

10. Construct an auxiliary graph H1 by modifying G−Z by merging each connected component

of (C +M1)− Z into a super-vertex.

11. Compute a spanning forest T1 of H1.

12. Let M2 be the set obtained from E(T1) by replacing each edge e ∈ E(T1) with an edge

{u, v} ∈ E(G) corresponding to e.

13. Construct an auxiliary graph H2 as follows:

(a) The vertices of H2 one-to-one correspond to the connected components of (C + (M1 ∪
M2))− Z.

(b) For each pair {s1, s2} of vertices of H2, {s1, s2} is an edge of H2 if and only if there is

a bad cycle C in C such that the tip of one antenna of C in G appears in the connected

component of (C+ (M1 ∪M2))−Z corresponding to s1 and the tip of the other antenna

of C in G appears in the connected component of (C + (M1 ∪M2)) − Z corresponding

to s2.

13

14. Compute a spanning tree T2 of H2. (Comment: Note that H2 is connected because so is G.)

15. Let M3 be the set obtained from E(T2) by replacing each edge {s1, s2} ∈ E(T2) with the

two antennas e1 and e2 of the cycle C in C such that the tip of e1 appears in the connected

component of (C + (M1 ∪ M2)) − Z corresponding to s1 and the tip of e2 appears in the

connected component of (C + (M1 ∪M2))− Z corresponding to s2.

16. Construct a graph H3 from C and T as follows:

(a) Initially, set H3 = C + (M1 ∪M2 ∪M3).

(b) For each bad cycle C of C that is also a connected component of H3, choose one antenna

of C in G uniformly at random and add it to H3. (Comment: M4 is the set of edges

added to H3 in this step.)

(c) For each chord-sensitive cycle C in C, add one chord of C in G to H3. (Comment: After

this step, H3 is outerplanar and so its tree-width is at most 2. Moreover, M5 is the set

of edges added to H3 in this step.)

17. If E(G) − E(H3) 6= ∅, add one (arbitrary) edge of E(G) − E(H3) to H3. (Comment: After

this step, the tree-width of H3 is at most 3. Moreover, if one edge is added to H3 in this step,

M6 consists of this edge only; otherwise, M6 is empty.)

18. Compute a maximum path set P in H3. (Comment: Since the tree-width of H3 is at most 3,

this step can be done in linear time via a standard dynamic programming.)

19. Let S2 = E(G)− E(P).

Obviously, if no edge is added to H3 in Step 17, then S2 is a minimum co-path set of G and we

are done. So, we hereafter assume that one edge is added to H3 in Step 17. For a random variable

x, let E [x] denote the expected value of x. Then, we have the following lemma:

Lemma 3.8 E [|S2|] ≤ |B|+ |E(G)| − |E(C)| − k − c− p−max{0, 12(b− |M | − p+ 1)}.

Proof. Since E(H3) − B is a path set of H3 and P is a maximum path set of H3, |E(H3)| −
|E(H3)∩B| ≤ |E(P)| = |E(G)|− |S2|. So, |E(H3)∩B| ≥ |S2|+ |E(H3)|− |E(G)| = |S2|− |E(G)|+
|E(C)|+ k + c+ p. Hence, E [|E(H3) ∩B|] ≥ E [|S2|]− |E(G)|+ |E(C)|+ k + c+ p.

We claim that E [|(E(G) − E(H3)) ∩ B|] ≥ max{0, 12(b − |M | − p + 1)}. This claim together

with the last inequality in the last paragraph implies the lemma. To see the claim, first observe

that D has exactly p + |M | + c′ + b + t connected components immediately before Step 7. So,

(C+ (M1 ∪M2))−Z has at most p+ |M | connected components because G is connected and there

is no edge between any pair of cycles in D immediately before Step 7. Thus, |E(T2)| ≤ p+ |M |− 1,

implying that at least max{0, b−(p+ |M |−1)} edges were added to H3 in Step 16b. By Lemma 3.3

and our choice of B, for each edge e added to H3 in Step 16b, the probability that e′ ∈ B is at

least 1
2 , where e′ is the other antenna of the bad cycle one of whose antennas is e. This finishes the

proof of the claim and hence the lemma. 2

14

Obviously, the above computation of S2 can be implemented in linear time. Note that each

random choice in Step 16b uses one random bit. The proof of Lemma 3.8 remains valid, even if the

random bits used in Step 16b are mutually dependent (i.e., only one random bit is generated and

each random choice in Step 16b uses this random bit). So, we can easily derandomize the above

computation of S2. In more details, we modify Steps 16 through 19 as follows:

16. Construct two graphs H3 and H ′3 from C and T as follows:

(a) Initially, set H3 = H ′3 = C + (M1 ∪M2 ∪M3).

(b) For each bad cycle C of C that is also a connected component of H3, add one antenna

of C in G to H3 and add the other to H ′3.

(c) For each chord-sensitive cycle C in C, add one chord of C in G to both H3 and H ′3.

17. If E(G)−E(H3) 6= ∅, add one (arbitrary) edge of E(G)−E(H3) to H3. Similarly, if E(G)−
E(H ′3) 6= ∅, add one (arbitrary) edge of E(G)− E(H ′3) to H ′3.

18. Compute a maximum path set P in H3 and compute a maximum path set P ′ in H ′3.

19. If |E(P)| ≥ |E(P ′)|, then let S2 = E(G)− E(P); otherwise, let S2 = E(G)− E(P ′).

Therefore, in the next section, we will assume that our algorithm has been derandomized.

3.4 Analysis of the Algorithm

We start by proving a crucial lower bound on |B|:

Lemma 3.9 |B| ≥ 4t+ 3b+ 3c′.

Proof. For convenience, let D7 be the graph D immediately before Step 7. The idea behind the

proof is to find a set Γ(C) of edges in G for every cycle C in D7 satisfying the following conditions:

(a) The sets Γ(C) for the cycles C in D7 are disjoint.

(b) If C is chord-sensitive, then |Γ(C) ∩B| ≥ 3.

(c) If C is chord-free and has exactly two antennas in G, then |Γ(C) ∩B| ≥ 3.

(d) If C is chord-free and has at least three antennas in G, then |Γ(C) ∩B| ≥ 4.

Because of Conditions (a) through (d), the existence of Γ(C) implies the lemma immediately.

So, it remains to show the existence of Γ(C). For the cycles C of D7, we construct Γ(C) by

performing the following steps:

(1) For each cycle C in D7, compute the set A(C) of antennas of C in G. (Comment: Because

of Steps 2 and 4, the tip of each antenna in A(C) appears in a path component of D7 and is

not an endpoint of the path.)

15

(2) For each chord-free cycle C in D7, initialize Γ(C) = E(C) ∪A(C).

(3) For each chord-sensitive cycle C in D7, initialize Γ(C) = E(C) ∪ A(C) ∪ {e}, where e is an

arbitrary chord of C in G.

(4) Let A =
⋃

C A(C), where C ranges over all cycles of D7.

(5) For each vertex u that appears in a path component of D7 and is incident to exactly one edge

in A∩ (E(G)−B), we choose one (arbitrary) edge e ∈ B ∩E(D7) incident to u and add e to

Γ(C), where C is the cycle in D7 such that the edge in A∩ (E(G)−B) is an antenna of C in

G. (Comment: Since u is the tip of an antenna of some cycle C in D7, the degree of u in D7

is 2. So, B ∩ E(D7) contains at least one edge incident to u. Moreover, since G has no good

3-path related to D7, no edge is added to more than one Γ(C) in this step.)

(6) For each vertex u that appears in a path component of D7 and is incident to exactly two

edges in A∩ (E(G)−B), we find the two edges e1 and e2 of D7 incident to u, add e1 to EC1 ,

and add e2 to EC2 , where C1 and C2 are the cycles in D7 such that one edge in A∩(E(G)−B)

is an antenna of C1 and the other is an antenna of C2. (Comment: Since the degree of u in

G−B is 2, B must contain both e1 and e2. Moreover, since G has no good 3-path related to

D7, no edge is added to more than one Γ(C) in this step or the previous step. Furthermore,

it is possible that C1 and C2 are the same cycle.)

By the above construction of Γ(C) for the cycles C of D7, it is easy to see that Condition (a)

is satisfied. To prove Condition (b), consider an arbitrary chord-sensitive cycle C in D7. Let

e = {u, v} be the chord of C in G added to Γ(C) in Step (3). Let e′ be an arbitrary antenna of C

in G. To see that Γ(C) satisfies Condition (b), we make the following simple observations:

• If B contains both e and e′, then B contains at least one edge of C because C is a cycle and

B is a co-path set of G.

• If B contains e′ but does not contain e, then B contains at least one edge eu of C incident to

u and contains at least one edge ev of C incident to v because B is a co-path set of G. Note

that eu 6= ev.

• If B contains e but does not contain e′, then at least one edge of B is added to Γ(C) in

Step (5) or (6) and B also contains at least one edge of C incident to the foot of antenna e′.

• If B contains neither e nor e′, then at least one edge of B is added to Γ(C) in Step (5) or (6)

and B also contains at least one edge eu of C incident to u and contains at least one edge ev

of C incident to v.

To prove Condition (c), consider an arbitrary chord-free cycle C in D7 with exactly two antennas

in G. Recall that B contains at least one antenna of C in G because of Lemma 3.3 and our choice

of B. Γ(C) satisfies Condition (c) because of the following observations:

16

• If B contains both antennas of C in G, then B must contain at least one edge of C because

C is a cycle.

• If one antenna e of C in G is in B but the other e′ is not, then one edge of B is added to

Γ(C) in Step (4) or (5) and B contains at least one edge of C incident to the foot of e′.

To prove that Condition (d) holds, we choose three arbitrary antennas e1, e2, e3 of C in G and

make the following observations:

• If B contains e1, e2, and e3, then B also contains at least one edge of C.

• If B contains both e1 and e2 but does not contain e3, then at least one edge of B is added to

Γ(C) in Step (4) or (5) and at least one edge of C incident to the foot of e3 is in B.

• Suppose that B contains e1 but contains neither e2 nor e3. There are two cases depending

on the relative locations of the foots of e2 and e3 in C. In case the foots are distinct and

adjacent in C, the total number of edges of B added to Γ(C) in Step (4) or (5) is at least 2

(because of Step 5) and at least one edge of C is in B. In case the foots are either the same

or distinct but not adjacent in C, B contains at least two edges incident to the foots and at

least one edge of B is added to Γ(C) in Step (4) or (5).

• Suppose that B contains none of e1, e2, and e3. Then, at most two of the foots of e1, e2, and

e3 are the same. We consider two cases depending on the relative locations of the foots in C.

In case there are two distinct foots adjacent in C, the total number of edges of B added to

Γ(C) in Step (4) or (5) is at least 2 (because of Step 5) and at least two edges of C are in B.

In case no two distinct foots are adjacent in C, B contains at least three of the edges of C

incident to the foots and at least one edge of B is added to Γ(C) in Step (4) or (5).

2

Theorem 3.10 There is an O(n1.5)-time approximation algorithm for MCPS achieving an approx-

imation ratio of 10
7 , where n is the number of vertices in the input graph.

Proof. Let S be the smaller one between S1 and S2. First, consider the case where b ≤ p+ |M |.
In this case, we have:

p+ |M | ≥ b

5|B|+ 5|E(G)| ≥ 5|S|+ 5k + 5c+ 5p+ 5|E(C)| (Lemma 3.8)

5|B|+ 5|E(C)| ≥ 5|E(G)| (Lemma 3.4)

|B| ≥ 4t+ 3b+ 3c′ (Lemma 3.9)

4t+ 4b+ 4c′ + 4σ + 8γ + 8|M | ≥ 4k (Lemma 3.5)

9|B|+ 9k ≥ 9|S|+ 9σ + 9γ + 9|M | (Lemma 3.5)

17

Adding up the left-hand sides and the right-hand sides of the above inequalities respectively,

we have 20|B| ≥ 14|S| + 5σ + γ + 5c − c′ + 4p. Since σ ≥ 0, γ ≥ 0, p ≥ 0, and c ≥ c′, we have

10|B| ≥ 7|S|.
Next, consider the case where b ≥ p+ |M |. In this case, we have:

3b ≥ 3p+ 3|M |

10|B|+ 10|E(G)|+ 5|M | ≥ 10|S|+ 10k + 10c+ 5p+ 5b+ 10|E(C)| (Lemma 3.8)

10|B|+ 10|E(C)| ≥ 10|E(G)| (Lemma 3.4)

2|B| ≥ 8t+ 6b+ 6c′ (Lemma 3.9)

8t+ 8b+ 8c′ + 8σ + 16γ + 16|M | ≥ 8k (Lemma 3.5)

18|B|+ 18k ≥ 18|S|+ 18σ + 18γ + 18|M | (Lemma 3.5)

Adding up the left-hand sides and the right-hand sides of the above inequalities respectively,

we have 40|B| ≥ 28|S|+ 10σ + 2γ + 10c− 2c′ + 8p. Since σ ≥ 0, p ≥ 0, γ ≥ 0, and c ≥ c′, we have

10|B| ≥ 7|S|. 2

4 Open Problems

An obvious open problem is to ask for better approximation algorithms for MCPS. It is worth

noting that unless P=NP, MCPS has no polynomial-time approximation schemes. This is true

because of the following theorem:

Theorem 4.1 MCPS is Max-SNP-hard.

Proof. The reduction is from the traveling salesman problem with distances one and two ((1, 2)-

TSP for short). Recall that an instance of (1, 2)-TSP is an edge-weighted complete graph G where

each weight is 1 or 2. Given such a graph G, (1, 2)-TSP requires the computation of a minimum-

weight Hamiltonian cycle of G. It is widely known that (1, 2)-TSP is Max-SNP-hard [6]. Indeed,

(1, 2)-TSP remains to be Max-SNP-hard even if we require that each vertex of the input graph G

be incident to at most four edges of weight 1. This result is implicitly shown in [5].

Given an instance G of (1, 2)-TSP such that each vertex of G is incident to at most four edges

of weight 1, we construct an instance H of MCPS from G by removing all edges of weight 2. To

show that this reduction is an L-reduction, we prove the following two statements:

1. The minimum size opt(H) of a co-path set of H is at most twice the minimum weight opt(G)

of a Hamiltonian cycle of G.

2. Given a co-path set S of H, we can construct a Hamiltonian cycle C of G in polynomial time

such that |opt(G)− w(C)| ≤ |opt(H)− |S||, where w(C) is the total weight of edges in C.

To prove Statement 1, let n (respectively, m) be the number of vertices (respectively, edges)

in H. Then, m ≤ 2n because the degree of each vertex in H is at most 4. Moreover, opt(G) =

18

2n− (m− opt(H)). So, opt(H) = opt(G) +m− 2n ≤ 2n ≤ 2 · opt(G) because n ≤ opt(G) ≤ 2n and

m ≤ 2n.

To prove Statement 2, we construct C from S by deleting the edges of S from H and then

arbitrarily connecting the resulting paths into a cycle. Obviously, w(C) = 2n − (m − |S|). So,

|S| = w(C)+m−2n. Consequently, w(C)−|S| = opt(G)−opt(H), or equivalently opt(G)−w(C) =

opt(H)− |S|. This completes the proof. 2

It would be also interesting to consider more general optimization versions of the radiation

hybrid map construction problem than MCPS, where some given clusters of markers can be of size

larger than 2. The most general problem is the following: Given a marker set S = {1, 2, . . . , n} and

a collection C = {C1, C2, . . . , Cm} of clusters (i.e., subsets of S), we want to remove as few clusters

as possible from C so that there is a linear ordering of the markers in S in which the markers in

each leftover cluster Ci appear consecutively. By putting a fixed upper bound k (say, 3) on the sizes

of clusters, we can obtain a less general problem. To our knowledge, no approximation algorithms

are known for these problems when k ≥ 3.

We can also consider maximization counterparts of the above problems. Namely, given a marker

set S = {1, 2, . . . , n} and a collection C = {C1, C2, . . . , Cm} of clusters (i.e., subsets of S), we want

to choose as many clusters as possible from C so that there is a linear ordering of the markers in

S in which the markers in each chosen cluster Ci appear consecutively. By putting a fixed upper

bound k on the sizes of clusters, we can obtain a less general problem. Clearly, when k = 2, the

problem is exactly MPC. Again, to our knowledge, no approximation algorithms are known for

these problems when k ≥ 3.

Acknowledgments

We thank the referees for insightful comments. The first author was supported in part by the

Grant-in-Aid for Scientific Research of the Ministry of Education, Science, Sports and Culture of

Japan, under Grant No. 20500021. The second was supported in part by NSERC. The third author

was fully supported by a grant from City University of Hong Kong (Project No. 7002452).

References

[1] P. Berman and M. Karpinski. 8/7-approximation algorithm for (1,2)-TSP. In ACM-SIAM

Proceedings of the Seventeenth Annual Symposium on Discrete Algorithms (SODA’06), pages

641–648, 2006.

[2] H.L. Bodlaender. Planar graphs with bounded treewidth. Technical Report RUU-CS-88-14,

Department of Computer Science, University of Utrecht, March 1988.

[3] Y. Cheng, Z. Cai, R. Goebel, G. Lin, and B. Zhu. The radiation hybrid map construction

problem: recognition, hardness, and approximation algorithms. Unpublished Manuscript, 2008.

19

[4] D. R. Cox, M. Burmeister, E. R. Price, S. Kim, and R. M. Myers. Radiation hybrid mapping: a

somatic cell genetic method for constructing high resolution maps of mammalian chromosomes.

Science, 250:245–250, 1990.

[5] L. Engebretsen. An Explicit Lower Bound for TSP with Distances One and Two. Algorithmica,

35(4): 301–318, 2003.

[6] C. H. Papadimitriou and M. Yannakakis. The traveling salesman problem with distances one

and two. Mathematics of Operations Research, 18(1):1–11, 1993.

[7] C. W. Richard, D. A. Withers, T. C. Meeker, S. Maurer, G. A. Evans, R. M. Myers, and D. R.

Cox. A radiation hybrid map of the proximal long arm of human chromosome 11, containing

the multiple endocrine neoplasia type 1 (MEN-l) and bcl-1 disease loci. American Journal of

Human Genetics, 49:1189–1196, 1991.

[8] D. Slonim, L. Kruglyak, L. Stein, and E. Lander. Building human genome maps with radiation

hybrids. Journal of Computational Biology, 4:487–504, 1997.

[9] S. Vishwanathan. An approximation algorithm for the asymmetric travelling salesman problem

with distances one and two. Information Processing Letters, 44:297-302, 1992.

20

