
A Three-String Approach to the Closest String Problem

Zhi-Zhong Chen∗ Bin Ma† Lusheng Wang‡

Abstract

Given a set of n strings of length L and a radius d, the closest string problem (CSP for

short) asks for a string tsol that is within a Hamming distance of d to each of the given

strings. It is known that the problem is NP-hard and its optimization version admits a poly-

nomial time approximation scheme (PTAS). Parameterized algorithms have been then devel-

oped to solve the problem when d is small. In this paper, with a new approach (called the

3-string approach), we first design a parameterized algorithm for binary strings that runs

in O
(
nL+ nd36.731d

)
time, while the previous best runs in O

(
nL+ nd8d

)
time. We then

extend the algorithm to arbitrary alphabet sizes, obtaining an algorithm that runs in time

O
(
nL+ nd1.612d

(
|Σ|+ β2 + β − 2

)d)
, where |Σ| is the alphabet size and β = α2 +1−2α−1 +

α−2 with α = 3

√√
|Σ| − 1 + 1. This new time bound is better than the previous best for small

alphabets, including the very important case where |Σ| = 4 (i.e., the case of DNA strings).

Keywords: Computational biology, the closest string problem, fixed-parameter algorithms.

1 Introduction

An instance of the closest string problem (CSP for short) is a pair (S, d), where S is a set of strings

of the same length L and d is a nonnegative integer (called the radius). The objective is to find a

string tsol of length L such that d(tsol, s) ≤ d for every s ∈ S. We call tsol a center string of radius

d for the strings in S. In the optimization version of the problem, only S is given and the objective

is to find the minimum d such that a center string of radius d exists for the strings in S.

The problem finds a variety of applications in bioinformatics, such as universal PCR primer

design [16, 14, 5, 22, 11, 26], genetic probe design [14], antisense drug design [14, 4], finding unbiased

∗Corresponding author. Department of Mathematical Sciences, Tokyo Denki University, Ishizaka, Hatoyama, Hiki,

Saitama, 359-0394, Japan. Email: zzchen@mail.dendai.ac.jp. Phone: +81-49-296-5249. Fax: +81-49-296-7072.
†School of Computer Science, University of Waterloo, 200 University Ave. W, Waterloo, ON, Canada N2L3G1.

Email: binma@uwaterloo.ca. Phone: +1-519-888-4567. Fax: +1-519-885-1208.
‡Department of Computer Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR.

Email: lwang@cs.cityu.edu.hk. Phone: +852-2788-9820. Fax: +852-2788-8614.

1

consensus of a protein family [1], and motif finding [14, 11, 24, 3, 8]. Consequently, the problem has

been extensively studied in computational biology [14, 15, 18, 12, 20, 11, 19, 13, 7, 10, 23, 4, 21, 24].

The problem is known to be NP-complete [9, 14]. Early attempts to solve this problem mainly

focused on approximation algorithms. These include the first non-trivial approximation algorithm

with ratio 4/3 [14] and a polynomial time approximation scheme (PTAS) [15]. The time complexity

of the PTAS was further improved in [18] and [17]. The main concern of using the PTAS algorithms

is that their time complexity is too high. Even with the latest improvement made in [17], the time

complexity for achieving an approximation ratio of 1 + ε is O(LnO(ε−2)).

Another approach to the solving of CSP is via parameterized algorithms. A parameterized

algorithm computes an exact solution of a problem with time complexity f(k) · nc, where c is a

constant, n is the problem size, k is a parameter naturally associated to the input instance, and

f is any function [6]. The argument is that if k is typically small for natural instances of the

problem, the problem may still be solvable in acceptable time complexity despite that f may be a

super-polynomial function.

For the special case of CSP where d = 1, Stojanovic et. al [23] designed a linear time al-

gorithm. Gramm et. al [12] proposed the first parameterized algorithm with time complexity

O
(
nL+ n(d+ 1)d+1

)
. Ma and Sun [17] gave an algorithm with running timeO

(
nL+ nd · 16d(|Σ| − 1)d

)
,

which is the first polynomial time algorithm when d is logarithmic in the input size and the

alphabet size |Σ| is a constant. Wang and Zhu [25] improved the time complexity to O(nL +

nd23.25d(|Σ| − 1)d). Chen and Wang [2] further improved the time complexity to O
(
nL+ nd8d

)
for binary strings and to O

(
nL+ nd

(√
2|Σ|+ 4

√
8
(√

2 + 1
) (

1 +
√
|Σ| − 1

)
− 2
√

2
)d)

for non-

binary strings. Independently, Zhao and Zhang [27] provided an algorithm with running time

O

(
nL+ nd

(
2|Σ|+ 4

√
|Σ| − 1

)d)
. Note that the algorithm in [2] outperforms the algorithm in [27]

for any kind of strings.

In this paper, we introduce a new approach (called the 3-string approach) and use it to design

new parameterized algorithms for the problem. Roughly speaking, with this approach, our algo-

rithm starts by carefully selecting three of the input strings and using them to guess a portion of

the output center string. In contrast, all previous algorithms were based on the 2-string approach,

with which the algorithms start by carefully selecting two of the input strings and using them to

guess a portion of the output center string. Intuitively speaking, the 3-string approach is better,

because it enables the algorithm to guess a larger portion of the output center string in the be-

ginning. The new parameterized algorithm for binary strings runs in O
(
nL+ nd36.731d

)
time,

while the previous best runs in O
(
nL+ nd8d

)
time. We want to emphasize that O

(
nL+ nd8d

)
seems to be the best possible time complexity achievable by algorithms based on the 2-string ap-

proach. We then extend the algorithm to arbitrary strings, obtaining an algorithm that runs in time

2

O
(
nL+ nd1.612d

(
|Σ|+ β2 + β − 2

)d)
, where β = α2 + 1− 2α−1 +α−2 with α = 3

√√
|Σ| − 1 + 1.

In particular, in the very important case where |Σ| = 4 (i.e., the case of DNA strings), our algorithm

runs in O
(
nL+ nd13.183d

)
time, while the previous best runs in O

(
nL+ nd13.921d

)
time.

The remainder of this paper is organized as follows. Section 2 defines a few notations frequently

used in the paper. Section 3 reviews the algorithm in [2], which will be helpful for the presentation

of the new algorithm. Section 4 details our algorithm for binary strings. Section 5 then extends

the algorithm to general alphabets.

2 Notations

Throughout this paper, Σ denotes a fixed alphabet and a string always means one over Σ. For

each positive integer k, [1..k] denotes the set {1, 2, . . . , k}. For a string s, |s| denotes the length of

s. For each i ∈ [1..|s|], s[i] denotes the letter of s at its i-th position. Thus, s = s[1]s[2] . . . s[|s|]. A

position set of a string s is a subset of [1..|s|]. For two strings s and t of the same length, d(s, t)

denotes their Hamming distance. For a binary string s, s̄ denotes the complement string of s, where

s̄[i] 6= s[i] for every i ∈ [1..|s|].
Two strings s and t of the same length L agree (respectively, differ) at a position i ∈ [1..L] if

s[i] = t[i] (respectively, s[i] 6= t[i]). The position set where s and t agree (respectively, differ) is the

set of all positions i ∈ [1..L] where s and t agree (respectively, differ). The following special notations

will be very useful. For two or more strings s1, . . . , sh of the same length, {s1 ≡ s2 ≡ · · · ≡ sh}
denotes the position set where si and sj agree for all pairs (i, j) with 1 ≤ i < j ≤ h, while

{s1 6≡ s2 6≡ · · · 6≡ sh} denotes the position set where si and sj differ for all pairs (i, j) with

1 ≤ i < j ≤ h. Moreover, for a sequence s1, . . . , sh, t1, . . . , tk, u1, . . . , u` of strings of the same

length with h ≥ 2, k ≥ 1, and ` ≥ 0, {s1 ≡ s2 ≡ · · · ≡ sh 6≡ t1 6≡ t2 6≡ · · · 6≡ tk ≡ u1 ≡ u2 ≡ · · · ≡ u`}
denotes {s1 ≡ s2 ≡ · · · ≡ sh} ∩ {sh 6≡ t1 6≡ t2 6≡ · · · 6≡ tk} ∩ {tk ≡ u1 ≡ u2 ≡ · · · ≡ u`}.

Another useful concept is that of a partial string, which is a string whose letters are only known

at its certain positions. If s is a string of length L and P is a position set of s, then s|P denotes

the partial string of length L such that s|P [i] = s[i] for each position i ∈ P but s|P [j] is unknown

for each position j ∈ [1..L] \ P . Let t be another string of length L. For a subset P of [1..L], the

distance between s|P and t|P is |{i ∈ P | s[i] 6= t[i]}| and is denoted by d(s|P , t|P). For two disjoint

position sets P and Q of s, s|P + t|Q denotes the partial string r|P∪Q such that

r|P∪Q[i] =

 s[i], if i ∈ P ;

t[i], if i ∈ Q.

At last, when an algorithm exhaustively tries all possibilities to find the right choice, we say

that the algorithm guesses the right choice.

3

3 Previous Algorithms and a New Lemma

In this section we familiarize the readers with the basic ideas in the previously known parameterized

algorithms for CSP, as well as introduce two technical lemmas that are needed in this paper. All

previously known algorithms use the bounded search tree approach for parameterized algorithm

design. We explain the ideas based on the algorithm given in [2]. We call the approach used in

previous algorithms the 2-string approach in contrast to the 3-string approach introduced in this

paper.

Let (S, d) be an instance of CSP. Let s1, s2, . . . , sn be the strings in S, L be the length of

each string in S, and tsol be any solution to (S, d). The idea is to start with a candidate string t

with d(t, tsol) ≤ d. Using some strategies, the algorithm guesses the letters of tsol at some positions

(by trying all legible choices), and modify the letters of t to those of tsol at the positions. This

procedure is applied iteratively to eventually change t to tsol. The “guessing” causes the necessity

of using a search tree, whose size is related to (1) the number of choices to guess from in each

iteration (the degree of each tree node) and (2) the total number of iterations (the height of the

tree).

At the beginning of each iteration, the algorithm knows the set S of input strings, the radius

d, the current candidate string t, and an upper bound b on the remaining distance d(t, tsol). In

addition, if a position in [1..L] has been considered for modification in a previous iteration, it is

not helpful to modify it again in the current iteration. Thus, we further record a position set P , at

which no further modification is allowed. This gives an extended closest string problem (ECSP for

short) formerly defined in [2]. An instance of ECSP is a quintuple 〈S, d; t, P, b〉, as defined above.

A solution of the instance is a string tsol of length L satisfying the following conditions:

1. tsol|P = t|P .

2. d(tsol, t) ≤ b.

3. For every string s ∈ S, d(tsol, s) ≤ d.

Obviously, to solve CSP for a given instance 〈S, d〉, it suffices to solve ECSP for the instance

〈S \ {t}, d; t, ∅, d〉, where t is an arbitrary string in S and ∅ is the empty set.

The difference between the algorithms in [12], [17] and [2] exists in the guessing strategy in

each iteration. In each iteration, if t is not a solution yet, then there must be a string s such that

|{s 6≡ t}| > d. Since d(t, tsol) ≤ d, for each subset R of {s 6≡ t} with |R| = d+ 1, there must be at

least one position i ∈ R with tsol[i] = s[i]. The algorithm in [12] first chooses an arbitrary subset

R of {s 6≡ t} with |R| = d+ 1, then simply guesses one position i ∈ R, and further changes t[i] to

s[i]. This reduces b by one. Thus, the degree of the search tree is d+ 1 and the height of the tree

is d. The search tree size is hence bounded by (d+ 1)d+1 /d.

4

The algorithm in [17] guesses the partial string tsol|{s 6≡t} (by carefully enumerating all legible

choices) and changes t to t|{s≡t} + tsol|{s 6≡t}. This gives a much greater degree of the search tree

than the algorithm in [12]. However, it was shown in [17] that this strategy at least halves the

parameter b for the next iteration. Thus, the height of the tree is at most O(log d). The search

tree size can then be bounded by (O(|Σ|))d, which is polynomial when d = O(log(nL)) and |Σ| is

a constant.

The guessing strategy was further refined in [2] as follows. Recall that P is the set of positions

of t that have been modified in previous iterations. Suppose there are k positions in {s 6≡ t} \ P
where tsol and t differ. Out of these k positions, suppose there are c ≤ k positions where tsol is

different from both t and s. Then, at each of the c positions, we need to guess the letter of tsol

from only |Σ| − 2 choices. Moreover, at the other k− c positions, we do not need to guess and can

simply let tsol be equal to s. So, when c is small, the degree of the search tree node is reduced. On

the other hand, when c is large, the following lemma proved in [2] shows that b is greatly reduced

for the next iteration, yielding a smaller search tree height. With this lemma, a further improved

time complexity is proved in [2]. The algorithm is given in Figure 1.

Lemma 3.1 [2] Let 〈S, d; t, P, b〉 be an instance of ECSP with a solution tsol. Suppose that s is

a string in S with d(t, s) = d + ` > d. Let k be the number of positions in {s 6≡ t} \ P where tsol

is different from t. Let c be the number of positions in {s 6≡ t} \ P where tsol is different from both

t and s. Let b′ be the number of positions in [1..L] \ (P ∪ {s 6≡ t}) where tsol is different from t.

Then, b′ ≤ b− k and b′ ≤ k − `− c. Consequently, b′ ≤ b−`−c
2 .

The execution of the 2-string algorithm on input 〈S, d; t, P, b〉 can be modeled by a tree T in

which the root corresponds to 〈S, d; t, P, b〉, each other node corresponds to a recursive call, and a

recursive call A is a child of another call B if and only if B calls A directly. We call T the search

tree on input 〈S, d; t, P, b〉. By the construction of the algorithm, each non-leaf node in T has at

least two children. Thus, the number of nodes in T is at most twice the number of leaves in T .

Consequently, we can focus on how to bound the number of leaves in T . For convenience, we define

the size of T to be the number of its leaves. The depth of a node u in T is the distance between

the root and u in T . In particular, the depth of the root is 0. The depth of T is the maximum

depth of a node in T .

During the execution of the algorithm on input 〈S, d; t, P, b〉, d does not change but the other

parameters may change. We use Su, tu, Pu, and bu to denote the values of S, t, P , and b when the

algorithm enters the node u (i.e., makes the recursive call corresponding to u). Moreover, we use

su and `u to denote the string s and the integer ` computed in Steps 2 and 3 of the algorithm at

node u.

Let T (d, bu) denote the size of the subtree rooted at u. The following lemma was proved in [2]:

5

The 2-String Algorithm

Input: An instance 〈S, d; t, P, b〉 of ECSP.

Output: A solution to 〈S, d; t, P, b〉 if one exists, or NULL otherwise.

1. If there is no s ∈ S with d(t, s) > d, then output t and halt.

2. If d = b, then find a string s ∈ S such that d(t, s) is maximized over all strings in

S; otherwise, find an arbitrary string s ∈ S such that d(t, s) > d.

3. Let ` = d(t, s)− d and R = {s 6≡ t} \ P .

4. If ` > min{b, |R|}, then return NULL.

5. Guess tsol|R by the following steps:

5.1 Guess two sets X and Y such that Y ⊆ X ⊆ R, ` ≤ |X| ≤ b, and |Y | ≤
|X| − `. (Comment: |X| and |Y | correspond to k and c in Lemma 3.1,

respectively.)

5.2 For each i ∈ Y , guess a letter zi different from both s[i] and t[i]. Let the

partial string ŝ|Y be such that ŝ|Y [i] = zi for all i ∈ Y .

5.3 Let tsol|R = ŝ|Y + s|X\Y + t|R\X .

6. Let t′ = tsol|R + t|[1..|t|]\R and b′ = min{b− |X|, |X| − `− |Y |}.
7. Solve 〈S − {s}, d; t′, P ∪R, b′〉 recursively.

8. Return NULL.

Figure 1: The algorithm given in [2].

Lemma 3.2 [2] For each descendant u of r in T ,

T (d, bu) ≤
(
b2d−d(tu,tr)+`r+bu2 c

bu

)(
|Σ|+ 2

√
|Σ| − 1

)bu
.

We next prove a new lemma for the 2-string algorithm:

Lemma 3.3 For each node u at depth h ≥ 2 in T ,

T (d, bu) ≤
(
d− (2h−1 − 1)bu

bu

)(
|Σ|+ 2

√
|Σ| − 1

)bu
.

Proof. If the depth of T is at most 1, then the lemma is trivially true. So, suppose that the

depth of T is at least 2. Consider an arbitrary node u whose depth in T is at least 2. Let u1, u2,

. . . , uh−1 be the nodes (other than r and u) we meet on the way from r to u in T . For convenience,

let u0 = r and uh = u. For each integer i with 0 ≤ i ≤ h − 1, let ki = d(tui , tui+1). Then, by the

computation of b′ in Step 6 of the 2-string algorithm, k0 ≥ `r + bu1 and bui ≥ ki + bui+1 for each

1 ≤ i ≤ h− 1. So, k0 ≥ `r +
∑h−1
i=1 ki + bu. Again, by the computation of b′ in Step 6 of the 2-string

6

algorithm, bui ≥ 2bui+1 and ki ≥ bui+1 for each 0 ≤ i ≤ h−1. So, for each 0 ≤ i ≤ h−1, bui ≥ 2h−ibu

and ki ≥ 2h−i−1bu. Now, d(tr, tu) =
∑h−1
i=0 ki ≥ `r + bu + 2

∑h−1
i=1 ki ≥ `r + bu + 2bu

∑h−1
i=1 2h−i−1 =

`r + (2h − 1)bu. Thus, by Lemma 3.2, T (d, bu) ≤
(d−(2h−1−1)bu

bu

)
·
(
|Σ|+ 2

√
|Σ| − 1

)bu
. 2

4 The 3-String Algorithm for the Binary Case

In addition to Lemma 3.3, the improvements made in this paper mainly come from a new strategy

to collapse the first two levels (the root and its children) of the search tree into a single level. We

call this new approach the 3-string approach. In this section, we demonstrate the approach by

designing an algorithm for the binary-alphabet case because of its simplicity. In Section 5, we will

extend the algorithm to the general case.

Note that given an instance (S, d) of CSP such that there are at most two strings in S, we

can solve it trivially in linear time. So, we hereafter assume that each given instance (S, d) of the

problem satisfies that |S| ≥ 3.

4.1 First Trick: Guessing Ahead

Let us briefly go through the first two levels of the search tree T of the 2-string algorithm. The

algorithm starts by initializing tr to be an arbitrary string in S. At the root r, it finds a string

sr ∈ S that maximizes d(tr, sr). It then uses sr to modify tr and further enters a child node u of r

(i.e., makes a recursive call). Note that tr has become tu at u. Suppose that the subtree Tu of T
rooted at u contains a solution tsol. The algorithm then finds a string su ∈ S such that d(tu, su) > d

in Step 2. Note that Pr = {tr 6≡ sr} and Pu \ Pr = {tr ≡ sr 6≡ su}.
The main idea of the 3-string approach is that we guess su at the very beginning of the algo-

rithm, instead of finding it in the second-level recursion. This will immediately increase the time

complexity by a factor of n− 2 because there are n− 2 choices of su. However, with all of the three

strings tr, sr, and su in hand, we will be able to guess tsol|Pu easier, which leads to a better time

complexity. The trade-off is a good one when d is large. In fact, we do not even need to trade off.

In Subsection 4.2, we will introduce another trick to get rid of this factor of n− 2.

Lemma 4.1 Let (S, d) be an instance of the binary case of CSP. Suppose that tr, sr, and su

are three strings in S and tsol is a solution of (S, d). Let Pr = {tr 6≡ sr}, Ru = {tr ≡ sr 6≡
su}, P ′ = {tsol 6≡ su} ∩ Pr, R′ = {tsol 6≡ tr} ∩ Ru, and B = {tr ≡ sr ≡ su 6≡ tsol}. Then,

|Pr|+ |P ′|+ |Ru|+ |R′| ≤ 3d− 3|B|.

Proof. Because tsol is a solution we have

d(tsol, tr) + d(tsol, sr) + d(tsol, su) ≤ 3d. (4.1)

7

Because tr and sr differ in Pr, each position in Pr contributes at least 1 to the left-hand side

of Eq. 4.1. Meanwhile, each position in P ′ ⊆ Pr contributes 2 (cf. Figure 2). Thus, the total

contribution in Pr is |Pr| + |P ′|. Similarly, each position in Ru contributes at least 1 and each

position in R′ ⊆ Ru contributes 2. So, the total contribution in Ru is |Ru| + |R′|. Finally, each

position in B contributes 3. From Eq. 4.1, we have (|Pr| + |P ′|) + (|Ru| + |R′|) + 3|B| ≤ 3d. The

lemma is proved. 2

P

s
s

R
P'
r

tr
r

u

tsol

u
R'

B

Figure 2: Strings tr, sr, su, and tsol in Lemma 4.1, where for each position i ∈ [1..|tr|], two of the

strings have the same letter at the ith position if and only if the two strings are illustrated in the

same color at the ith position.

Lemma 4.1 suggests that we can construct tsol|Pr∪Ru by guessing P ′ and R′, then use s̄u|P ′ +

su|Pr\P ′ + t̄r|R′ + tr|Ru\R′ . For positions in B, we can call the 2-string algorithm to solve it (re-

cursively). Because of the bound |Pr| + |P ′| + |Ru| + |R′| ≤ 3d − 3|B|, we either have a smaller

number of choices for guessing P ′ and R′, or have a smaller |B| which makes the recursive call

of the 2-string algorithm easier. Likely this will lead to a more efficient algorithm than doing the

2-string algorithm from the beginning. We detail the 3-string algorithm for the binary case of CSP

in Figure 3.

To analyze the time complexity of the algorithm, we need a simple technical lemma:

Lemma 4.2 (
p

k

)
≤
(

1 +
√

5

2

)k+p
≈ 1.618k+p (4.2)

Proof. The lemma is clearly true when k = 0 or p. Consider an arbitrary integer k with

1 ≤ k ≤ p − 1. Let α = k
p . By Stirling’s formula,

(p
k

)
≤ α−αp(1 − α)−(1−α)p. So, to finish the

proof, it suffices to show that α−α(1 − α)−(1−α) ≤
(
1+
√
5

2

)1+α
. Consider the function f(α) =

(1 + α) log 1+
√
5

2 + α logα+ (1− α) log(1− α). It remains to prove that f(α) ≥ 0. By calculus, we

can see that (1) f ′(α) = 0 when α = 2
3+
√
5
, (2) f ′(α) < 0 when α < 2

3+
√
5
, and (3) f ′(α) > 0 when

α > 2
3+
√
5
. So, f(α) achieves the minimum value at α = 2

3+
√
5
. Thus, we only need to prove that

f(2
3+
√
5
) ≥ 0. Since the last inequality can be easily verified, the lemma is proved. 2

The next lemma slightly strengthens Lemma 4.2 when p ≥ 3k.

8

The 3-String Algorithm for the Binary Case

Input: An instance (S, d) of the binary case of CSP.

Output: A solution to (S, d) if one exists, or NULL otherwise.

1. Select an arbitrary string tr ∈ S.

2. If there is no s ∈ S with d(tr, s) > d, then output tr and halt.

3. Find a string sr ∈ S such that d(tr, sr) is maximized. (Comment: If a solution tsol

exists, then d(tr, sr) ≤ d(tr, tsol) + d(tsol, sr) ≤ d+ d = 2d.)

4. Let Pr = {tr 6≡ sr}. If |Pr| > 2d, then output NULL and halt.

5. Guess a string su ∈ S \ {tr, sr}.
6. Guess a subset P ′ of Pr with |P ′| ≤ d.

7. Let t′ = s̄u|P ′ + su|Pr\P ′ + tr|[1..|tr|]\Pr
.

8. If there is no s ∈ S with d(t′, s) > d, then output t′ and halt.

9. If d(t′, tr) ≤ d, d(t′, sr) ≤ d, and d(t′, su) > d, then perform the following steps:

9.1. Guess a subset R′ of Ru such that |R′| ≤ 3d − |Pr| − |Ru| − |P ′|, where

Ru = {tr ≡ sr 6≡ su}. (Comment: The upper bound on |R′| used in this

step comes from Lemma 4.1.)

9.2. Let t = t′|Pr + t̄r|R′ + tr|[1..|tr|]\(Pr∪R′).

9.3. If d(t, tr) ≤ d, d(t, sr) ≤ d, and d(t, su) ≤ d, then perform the following

steps:

9.3.1. Compute `r = d(tr, sr)− d, k1 = d(tr, t
′), b1 = min{d− k1, k1 − `r},

k2 = |R′|, `2 = d(t′, su)− d, and b2 = min{b1 − k2, k2 − `2, (3d− |Pr| −
|Ru| − |P ′| − |R′|)/3}. (Comment: Obviously, b1 = min{d− k1, k1 − `r}
mimics the computation of b′ in Step 6 of the 2-string algorithm on

input 〈S \ {tr}, d; tr, ∅, d〉, while b2 ≤ min{b1 − k2, k2 − `2} mimics the

computation of b′ in Step 6 of the 2-string algorithm on input 〈S \
{tr, sr}, d; t′, Pr, b1〉. Moreover, b2 ≤ (3d − |Pr| − |Ru| − |P ′| − |R′|)/3
follows from Lemma 4.1.)

9.3.2. Call the 2-string algorithm to solve 〈S \ {tr, sr, su}, d; t, Pr ∪Ru, b2〉.

10. Output NULL and halt.

Figure 3: The 3-string algorithm for the binary case.

9

Lemma 4.3 Suppose that p ≥ 3k. Then,(
p

k

)
≤
(

4

√
6.75

)k+p
≈ 1.612k+p (4.3)

Proof. The proof is similar to that of Lemma 4.2. What we need to prove here is that α−α(1−
α)−(1−α) ≤

(
4
√

6.75
)1+α

. Consider the function f(α) = (1+α) log 4
√

6.75+α logα+(1−α) log(1−α).

Our goal is to prove that f(α) ≥ 0. By calculus, we can see that (1) f ′(α) = 0 when α = 1

1+ 4
√

6.75
,

(2) f ′(α) < 0 when α < 1

1+ 4
√

6.75
, and (3) f ′(α) > 0 when α > 1

1+ 4
√

6.75
. Note that 1

1+ 4
√

6.75
> 1

3 ≥ α

for p ≥ 3k. So, when p ≥ 3k, f(α) achieves the minimum value at α = 1
3 . Thus, it remains to

prove that f(13) ≥ 0. Since the last inequality can be easily verified, the lemma is proved. 2

Theorem 4.4 The binary case of CSP can be solved in O
(
nL+ n2d26.731d

)
time.

Proof. For convenience, we use A2 (respectively, A3) to denote the 2-string (respectively, 3-

string) algorithm. If A3 halts in Step 2, A3 is clearly correct. So, we further assume that A3 does

not halt in Step 2. Then, we may assume that the string sr found by A3 in Step 3 is the same as

the string s found by A2 in Step 2 on input 〈S \ {tr}, d; tr, ∅, d〉. If d ≤ 25, then clearly A3 runs in

O(n2) time and the theorem is true. So, we further assume that d ≥ 26.

Let T2 be the search tree of A2 on input 〈S \ {tr}, d; tr, ∅, d〉. Note that each grandchild v of

the root r in T2 corresponds to an instance 〈S \ {tr, sr, su}, d; tv, Pv, bv〉 of ECSP, where u is the

parent of v in T2. By the construction of A3, it is clear that for each such v, A3 can first guess

su (in Step 5), then correctly compute tv (as t in Step 9.2), Pv (trivially as Pr ∪ Ru), and bv (as

b2 in Step 9.3.1), and finally call A2 to solve 〈S \ {tr, sr, su}, d; tv, Pv, bv〉 in Step 9.3.2. Thus, if

r has a grandchild v in T2 such that a solution of the instance 〈S − \{tr}, d; tr, ∅, d〉 is found at a

descendant of v in T2, then A3 will find a solution, too.

It remains to consider the case where a solution of the instance 〈S \ {tr}, d; tr, ∅, d〉 is found at

a child v of r in T2. Note that v is a leaf of T2 and the solution found at v is tv. For this v, A3 will

first guess an arbitrary string su (in Step 5), then correctly compute tv (as t′ in Step 7), and finally

output tv in Step 8. So, A3 is correct in this case, too.

Next we estimate the time complexity of A3. The execution of A3 on input (S, d) can be

modeled by a search tree T as follows. The root r of T corresponds to (S, d). For each pair

(su, P
′) of possible outcomes of the guesses made in Steps 5 and 6 such that A3 does not execute

Step 9.1, r has a child corresponding to (su, P
′). Similarly, for each triple (su, P

′, R′) of possible

outcomes of the guesses made in Steps 5, 6, and 9.1 such that A3 executes Step 9.1, r has a child

corresponding to (su, P
′, R′). Moreover, for every child v corresponding to a triple (su, P

′, R′) such

that A3 executes Step 9.3.2, v has descendants in T so that the subtree of T rooted at v is the

same as the search tree of A2 on input 〈S \ {tr, sr, su}, d; t, Pr ∪Ru, b2〉.

10

Note that each non-leaf node of T has at least two children in T . So, the number of nodes in

T is at most twice the number of leaves in T . Consequently, we can focus on how to bound the

number of leaves in T . For each string su guessed in Step 5, A3 guesses P ′ ⊂ Pr in Step 6 and

possibly R′ ⊂ Ru in Step 9.1. For convenience, let h = 3d − |Pr| − |Ru|. Then, the number N of

children of r in T that are not leaves of T satisfies the following inequalities:

N ≤
∑
su

h∑
i=0

(
|Pr|
i

)
h−i∑
j=0

(
|Ru|
j

)
≤
∑
su

h∑
x=0

(
|Pr|+ |Ru|

x

)
, (4.4)

where i, j, and x correspond to |P ′|, |R′|, and |P ′| + |R′| in the algorithm, respectively. So, by

Lemmas 3.3 and 4.2, the number N ′ of leaves at depth 2 or more in T satisfies the following

inequalities:

N ′ ≤
∑
su

h∑
x=0

(
|Pr|+ |Ru|

x

)(
d− b2
b2

)
4b2 ≤

∑
su

h∑
x=0

1.618|Pr|+|Ru|+x
(
d− b2
b2

)
4b2 . (4.5)

By Step 9.3.1, 3b2 ≤ 3d− |Pr| − |Ru| − x. Thus, we have

N ′ ≤
∑
su

h∑
x=0

1.6183d−3b2

(
d− b2
b2

)
4b2 .

Consider the function ϕ(b2) = 1.6183d−3b2
(d−b2
b2

)
4b2 . By Step 9.3.1, b1 ≤ 0.5d and b2 ≤ 0.5b1 ≤

0.25d. Since d ≥ 26, one can verify that ϕ(b2 + 1) > ϕ(b2) for b2 ≤ 0.25d. Thus, ϕ(b2) is an

increasing function of b2 for b2 ≤ 0.25d. By Stirling’s formula, we also have
(0.75d
0.25d

)
≤ 30.25d1.50.5d.

Of course, h < 2d for |Pr| > d. Therefore,

N ′ ≤
∑
su

h∑
x=0

1.6182.25d
(

0.75d

0.25d

)
40.25d ≤ 2nd · 1.6182.25d30.25d1.50.5d40.25d ≤ 2nd · 6.731d. (4.6)

We next bound the number of leaves at depth 1 in T . Clearly, the number M1 of leaves at

depth 1 in T corresponding to a pair satisfies the following inequalities:

M1 ≤
∑
su

d∑
i=0

(
|Pr|
i

)
≤
∑
su

2|Pr| ≤ (n− 2)4d, (4.7)

where the last inequality holds because Step 4 ensures that |Pr| ≤ 2d.

On the other hand, the number M2 of leaves at depth 1 in T corresponding to a triple satisfies

the following inequalities:

M2 ≤
∑
su

h∑
i=0

(
|Pr|
i

)
h−i∑
j=0

(
|Ru|
j

)
≤
∑
su

h∑
x=0

(
|Pr|+ |Ru|

x

)(
d− b2
b2

)
4b2 , (4.8)

where we simply let b2 = h − x to ensure that
(d−b2
b2

)
4b2 ≥ 1. Note that the last bound on M2 in

Eq. 4.8 is the same as the first bound on N ′ in Eq. 4.5. So, by Eq. 4.6, we also have M2 ≤ 2nd·6.731d.

11

Therefore, by Eq. 4.6 and 4.7, the total number of leaves in T is N ′ + M1 + M2 ≤ 6nd · 6.731d.

Consequently, A3 runs in O
(
nL+ n2d26.731d

)
time, because each node of T takes O(nd) time. 2

In the next subsection, we consider the case where n > d. The goal is to reduce the running

time of the 3-string algorithm by replacing a factor of O(n) with O(d).

4.2 Second Trick: Avoiding Guessing su

The crux is to modify Step 5 of the algorithm in Subsection 4.1 as follows:

5. Find a string su ∈ S \ {tr, sr} such that |{tr ≡ sr 6≡ su}| is maximized.

The problem caused by this change is that in Step 9 of the algorithm, we cannot guarantee

d(t′, su) > d any more. Thus, if d(t′, su) ≤ d, we want to replace su by a new string s̃u such

that d(t′, s̃u) > d. More specifically, Step 9 of the algorithm in Subsection 4.1 is replaced by the

following:

9. If d(t′, tr) ≤ d and d(t′, sr) ≤ d, then perform the following steps:

9.0. If d(t′, su) ≤ d, then select an arbitrary string s̃u ∈ S \ {tr, sr, su} with

d(t′, s̃u) > d, and further let su refer to the same string as s̃u does. (Com-

ment: Since max{d(t′, tr), d(t′, sr), d(t′, su)} ≤ d but t′ is not a solution, s̃u

must exist.)

9.1 – 9.3. Same as those of the algorithm in Figure 3, respectively.

The key point here is the following lemma:

Lemma 4.5 Let tsol be a solution of (S, d). Consider the time point where the refined algorithm

just selected s̃u in Step 9.0 but has not let su refer to the same string as s̃u does. Then, |P ′| <
d(t′|Pr , s̃u|Pr). Moreover, |Pr| + |P ′| + |R̃u| + |R′| ≤ 3d − 3|B̃|, where R̃u = {tr ≡ sr 6≡ s̃u},
R′ = {tsol 6≡ tr} ∩ R̃u, and B̃ = {tr ≡ sr ≡ s̃u 6≡ tsol}.

Proof. Let Ru = {tr ≡ sr 6≡ su}. By the modified Step 5, |R̃u| ≤ |Ru|. Since d(t′, su) =

|P ′|+ |Ru| ≤ d and d(t′, s̃u) = d(t′|Pr , s̃u|Pr) + |R̃u| > d, we have |P ′| < d(t′|Pr , s̃u|Pr).

By Lemma 4.1, |Pr| + d(t′|Pr , s̃u|Pr) + |R̃u| + |R′| ≤ 3d − 3|B̃|. Since |P ′| < d(t′|Pr , s̃u|Pr), we

have |Pr|+ |P ′|+ |R̃u|+ |R′| ≤ 3d− 3|B̃|. 2

Theorem 4.6 The refined 3-string algorithm solves the binary case of CSP in O
(
nL+ nd36.731d

)
time.

12

Proof. To see the correctness of the refined algorithm, it suffices to consider the case where s̃u

is selected in Step 9.0. In this case, by Lemma 4.5, the algorithm can correctly guess R′ = {tsol 6≡
tr} ∩ R̃u in Step 9.1 because |R′| ≤ 3d− |Pr| − |P ′| − |R̃u|. The correctness of the computation of

the upper bound b2 on the remaining distance between t and tsol in Step 9.3.1 again follows from

Lemma 4.5. From these facts, it is not hard to see that the refined algorithm is correct.

Since the refined algorithm does not guess su, its time complexity seems to be better than that of

the algorithm in Subsection 4.1 by a factor of O(n). However, we are unable to prove this, because

we cannot simply remove the summation on su from Eq. 4.4 in Subsection 4.1. Indeed, instead of

Eq. 4.4 in Subsection 4.1, we only have the following inequalities for the refined algorithm:

N ≤
h∑
i=0

(
|Pr|
i

)
h−i∑
j=0

(
|Ru|
j

)
≤

h∑
i=0

h−i∑
j=0

(
|Pr|+ |Ru|

i+ j

)
, (4.9)

where i and j correspond to |P ′| and |R′| in the refined algorithm, respectively. The reason why

we cannot replace the right-hand side of the last inequality in Eq. 4.9 by
∑h
x=0

(|Pr|+|Ru|
x

)
is that

Ru may depend on i in the refined algorithm. Now, we can mimic the analysis in the proof of

Theorem 4.4 to show that the refined algorithm runs in O
(
nL+ nd36.731d

)
time. 2

The previously best time complexity for the binary case is O
(
nL+ nd8d

)
[2, 27]. The new

algorithm is better when d is large (say, ≥ 44). When d is small, the algorithm in the next section

is better because its running time for binary strings is O
(
nL+ nd6.911d

)
.

5 Extension to Arbitrary Alphabets

There are two main ideas behind the algorithm in Section 4. One is to use Lemma 4.1 to obtain

a better bound on |B|. The other is to obtain tsol|Pr from su|Pr by modifying su|P ′ (instead of

obtaining tsol|Pr from tr|Pr by modifying tr|P ′ as in the 2-string algorithm). It is easy to show

that Lemma 4.1 still holds for arbitrary alphabets. However, the following lemma is stronger than

Lemma 4.1:

Lemma 5.1 Suppose that tr, sr, and su are three strings of the same length L and tsol is another

string of length L with d(tsol, tr) ≤ d, d(tsol, sr) ≤ d, and d(tsol, su) ≤ d. Let Pr = {tr 6≡ sr},
Ru = {tr ≡ sr 6≡ su}, P ′ = {tsol 6≡ su} ∩ Pr, R′ = {tsol 6≡ tr} ∩ Ru, B = {tr ≡ sr ≡ su 6≡ tsol},
C1 = {su ≡ tr 6≡ sr 6≡ tsol}, C2 = {su ≡ sr 6≡ tr 6≡ tsol}, C3 = {tr 6≡ sr 6≡ su 6≡ tsol},
C4 = {su ≡ tsol 6≡ tr 6≡ sr}, and C5 = {tr ≡ sr 6≡ su 6≡ tsol}. Then,

|Pr|+ |P ′|+ |Ru|+ |R′| ≤ 3d− 3|B| −
5∑
i=1

|Ci|.

13

Proof. Let b = |B| and ci = |Ci| for all i ∈ {1, . . . , 5} (cf. Figure 4). For convenience, let

a1 = |{tr ≡ su ≡ tsol 6≡ sr}|, a2 = |{tr ≡ su 6≡ sr ≡ tsol}|, a3 = |{tr ≡ tsol 6≡ sr ≡ su}|,
a4 = |{tr ≡ tsol 6≡ sr 6≡ su}|, a5 = |{sr ≡ tsol 6≡ tr 6≡ su}|, a6 = |{sr ≡ su ≡ tsol 6≡ tr}|,
a7 = |{tr ≡ sr ≡ tsol 6≡ su}|, and a8 = |{tr ≡ sr 6≡ su ≡ tsol}|. Since d(tsol, tr) ≤ d, d(tsol, sr) ≤ d,

and d(tsol, su) ≤ d,

d(tr, tsol) = a2 + a5 + a6 + a8 + b+
5∑
i=1

ci ≤ d,

d(sr, tsol) = a1 + a3 + a4 + a8 + b+
5∑
i=1

ci ≤ d,

d(su, tsol) = c1 + c2 + c3 + c5 + b+ a7 +
5∑
i=2

ai ≤ d.

Summing up the left-hand and the right-hand sides of the above three inequalities respectively, we

have

3b+ a1 + a6 + a7 + 2a8 − c4 + 2
5∑
i=2

ai + 3
5∑
i=1

ci ≤ 3d. (5.1)

On the other hand, we also have

|Pr|+ |Ru|+ |P ′|+ |R′| =
8∑
i=1

ai +
5∑
i=1

ci +
5∑
i=2

ai +
3∑
i=1

ci + a8 + c5. (5.2)

By Eq. 5.1 and 5.2, the lemma holds. 2

b

P'

s
s

tr
r

u

tsol

P

R

r

u

R' B

c3c1 c2 c4 c5a1 a2 a3 a4 a5 a6 a7 a8

X1 X2 X3
X3

Figure 4: Strings tr, sr, su, and tsol in Lemma 5.1, where for each position i ∈ [1..|tr|], two of the

strings have the same letter at the ith position if and only if the two strings are illustrated in the

same color or pattern at the ith position.

To understand the remainder of this section, Figure 4 will be very helpful. In addition to the

sets defined in Lemma 5.1, we also need the following sets:

• A1 = {tr ≡ su ≡ tsol 6≡ sr}.

14

• A2 = {tr ≡ su 6≡ sr ≡ tsol}.

• A3 = {tr ≡ tsol 6≡ sr ≡ su}.

• A4 = {tr ≡ tsol 6≡ sr 6≡ su}.

• A5 = {sr ≡ tsol 6≡ tr 6≡ su}.

• A6 = {sr ≡ su ≡ tsol 6≡ tr}.

• A7 = {tr ≡ sr ≡ tsol 6≡ su}.

• A8 = {tr ≡ sr 6≡ su ≡ tsol}.

• X1 = A2 ∪ C1.

• X2 = C2 ∪A3.

• If |A4| ≤ |C4|, then X3 = A4 ∪A5 ∪ C3; otherwise, X3 = A5 ∪ C3 ∪ C4.

As in the binary case, to compute tsol, our algorithm will first use tr|Pr∪Ru , sr|Pr∪Ru , and

su|Pr∪Ru to compute tsol|Pr∪Ru , and then call the 2-string algorithm to compute tsol|[1..|tsol|]\(Pr∪Ru).

We here explain how to compute tsol|Pr∪Ru . Note that for each i ∈ {1, . . . , 8}, |Ai| corresponds

to ai in Figure 4. As can be seen from the figure, if we know A1 through A8, then we can use

the three strings tr, sr, and su to figure out tsol|A, where A =
⋃8
i=1Ai. Unfortunately, we do not

know A1 through A8. Our idea is then to guess X1, X2, X3, and R′. In this way, since we know

A1 ∪ X1 = {tr ≡ su 6≡ sr}, A6 ∪ X2 = {sr ≡ su 6≡ tr}, and either C4 ∪ X3 = {tr 6≡ sr 6≡ su} or

A4 ∪X3 = {tr 6≡ sr 6≡ su}, we can find out A1, A6, A7, and either C4 or A4. Using X1, X2, R
′, and

X3, we can then guess C1, C2, C5, and either C3 ∪A4 or C3 ∪ C4. Now, we know A2, A3, A5, and

A8. Note that for each position i in one of the four guessed sets C1, C2, C5, and either C3 ∪A4 or

C3 ∪ C4, we can guess tsol[i] among only |Σ| − 2 choices.

For technical reasons, in our algorithm, we will not guess X1, X2, and X3 separately. Rather,

we will guess their union X and then split it into X1, X2, and X3 by computing X1 = X ∩ {tr ≡
su 6≡ sr}, X2 = X ∩ {sr ≡ su 6≡ tr}, and X3 = {tr 6≡ sr 6≡ su}. Similarly, in our algorithm, we

will not guess C1, C2, and either C3 ∪A4 or C3 ∪ C4 separately. Rather, we will guess their union

Y and then split it by computing Y ∩ Xi for each 1 ≤ i ≤ 3. We remind the reader that once

we know X, Y , R′, and C5 (by guessing), we can use tr|Pr∪Ru , sr|Pr∪Ru , and su|Pr∪Ru to compute

tsol|(Pr\Y)∪(Ru\C5) very easily. In contrast, we have to guess tsol[i] for each position i ∈ Y ∪C5, and

this is what our algorithm will do in Steps 10 and 14.3 of Subroutines 1 and 2 in Figures 6 and 7.

We next explain why we need to decide whether |A4| ≤ |C4| or not. By Lemma 5.1, the larger∑5
i=1 |Ci| is , the smaller |B| = d(tsol|[1..|tsol|]\(Pr∪Ru), tr|[1..|tsol|]\(Pr∪Ru)) is (and so the shorter time

15

the 2-string algorithm will spend on computing tsol|[1..|tsol|]\(Pr∪Ru)). So, we want our algorithm to

take advantage of the sets C1 through C5. We also want to inherit the second main idea in the

algorithm in Section 4, namely, obtaining tsol|Pr from su|Pr by modifying su|P ′ . Thus, it seems that

we may first guess P ′, C1, C2, and C3, and then obtain tsol|Pr from su by modifying su|P ′ in such

a way that su[i] is changed to a letter different from both sr[i] and the old su[i] for every i ∈ C1,

while su[i] is changed to a letter different from both tr[i] and the old su[i] for every i ∈ C2 ∪ C3.

However, in this way, we waste C4 (because P ′ does not include C4). To avoid wasting C4, we have

to look at A4 and guess whether |A4| ≤ |C4|. Basically, if |A4| ≤ |C4|, we guess C3 ∪A4 instead of

C3; otherwise, we guess C3 ∪ C4 instead of C3.

When we call the 2-string algorithm to compute tsol|[1..|tsol|]\(Pr∪Ru), we already know tsol|Pr∪Ru

and need to find an upper bound on |B| = d(tsol|[1..|tsol|]\(Pr∪Ru), tr|[1..|tsol|]\(Pr∪Ru)) that is as small

as possible. We can obtain one upper bound on |B| from Lemma 5.1: If |A4| ≤ |C4|, then |B| ≤ (3d−
|Pr|−|Ru|−|P ′|−|R′|−

∑5
i=1 |Ci|)/3 = (3d−|Pr|−|Ru|−|X|−|Y |+|A4|−|C4|−|R′|−|C5|)/3 because

|P ′| = |X| and
∑3
i=1 |Ci| = |Y |−|A4|; otherwise, |B| ≤ (3d−|Pr|−|Ru|−|P ′|−|R′|−

∑5
i=1 |Ci|)/3 =

(3d − |Pr| − |Ru| − |X| + |C4| − |A4| − |Y | − |R′| − |C5|)/3 because |P ′| = |X| − |C4| + |A4| and∑4
i=1 |Ci| = |Y |. Moreover, we can obtain other upper bounds on |B| from Lemma 3.1 as follows. We

first mimic the computation of b′ in Step 6 of the 2-string algorithm on input 〈S \{tr}, d; tr, ∅, d〉 to

obtain an upper bound b1 on d(tr|[1..|tr|]\Pr
, tsol|[1..|tr|]\Pr

): If |A4| ≤ |C4|, then b1 = min{d−k1, k1−
`r−(|C1|+|C2|+|X3∩Y |−|A4|+|C4|)}; otherwise, b1 = min{d−k1, k1−`r−(|C1|+|C2|+|X3∩Y |)},
where `r = d(tr, sr)−d and k1 = d(tr|Pr , tsol|Pr). We then mimic the computation of b′ in Step 6 of

the 2-string algorithm on input 〈S \{tr, sr}, d; tsol|Pr + tr|[1..|tr|]\Pr
, Pr, b1〉 to obtain an upper bound

b2 on |B|: b2 = min{b1− k2, k2− `2−|C5|}, where k2 = |R′|, `2 = d(tsol|Pr + tr|[1..|tr|]\Pr
, su)− d. In

our algorithm, b1 and b2 will be computed in Step 14.5.1 of Subroutines 1 and 2 in Figures 6 and 7.

Based on the above ideas, we design an algorithm for CSP as follows.

Theorem 5.2 Let β = α2 + 1 − 2α−1 + α−2 with α = 3

√√
|Σ| − 1 + 1. Then, CSP can be solved

in O
(
nL+ dn21.612d

(
|Σ|+ β2 + β − 2

)d)
time.

Proof. As in the proof of Theorem 4.4, we define the notations A2, A3, and T2, and further

assume that A3 does not halt in Step 2 and the string sr found by A3 in Step 3 is the same as the

string s found by A2 in Step 2 on input 〈S \ {tr}, d; tr, ∅, d〉.
First consider the case where a solution of the instance 〈S \ {tr}, d; tr, ∅, d〉 is found at a child

v of r in T2. Note that v is a leaf of T2 and the solution found at v is tv. For this v, A3 will first

guess an arbitrary string su (in Step 5), then correctly compute tv (as t′ in Step 11), and finally

output tv in Step 12. So, A3 is correct in this case.

Next consider a grandchild v of r in T2. It corresponds to an instance 〈S\{tr, sr, su}, d; tv, Pv, bv〉
of ECSP, where u is the parent of v in T2. A3 can correctly guess su in Step 5. Let tsol be a solution

16

The 3-String Algorithm for the General Case

Input: An instance (S, d) of CSP.

Output: A solution to (S, d) if one exists, or NULL otherwise.

1 – 5. Same as Steps 1 through 5 in the algorithm in Figure 3.

6. Guess a subset X of Pr with X ≤ d. (Comment: If |A4| ≤ |C4|, X is supposed to

be P ′. Otherwise, X is supposed to be (P ′ \A4) ∪ C4.)

7. Guess a subset Y of X with |Y | ≤ 3d− |Pr| − |X|. (Comment: If |A4| ≤ |C4|, Y is

supposed to be C1 ∪ C2 ∪ C3 ∪ A4. Otherwise, Y is supposed to be
⋃4
i=1Ci. In

either case, Lemma 5.1 ensures that |Pr|+ |X|+ |Y | ≤ 3d.)

8. Let X1 = {su ≡ tr 6≡ sr} ∩X, X2 = {su ≡ sr 6≡ tr} ∩X, X3 = {tr 6≡ sr 6≡ su} ∩X,

C1 = X1 ∩ Y , C2 = X2 ∩ Y , and C ′3 = X3 ∩ Y . (Comment: X1 − C1, X2 − C2,

and X3 − C ′3 are supposed to be A2, A3, and A5, respectively. So, if |A4| ≤ |C4|,
C ′3 is supposed to be C3 ∪A4; otherwise, it is supposed to be C3 ∪ C4.)

9. Run one of the subroutines in Figures 6 and 7. If it halts with a solution found,

then output the solution and halt. Otherwise, run the other subroutine, output

whatever it outputs, and halt. (Comment: Subroutine 1 handles the case where

|A4| ≤ |C4|, while Subroutine 2 handles the case where |A4| > |C4|.)

Figure 5: The 3-string algorithm for the general case.

of (S, d). For the four strings tr, sr, su, and tsol, we refer to the notations defined in Lemma 5.1

and its proof (cf. Figure 4). We distinguish two cases depending on whether a4 ≤ c4 or not.

Let us first consider the case where a4 ≤ c4. Subroutine 1 works for this case. Basically, it

guesses P ′ (as X) in Step 6 and C1∪C2∪C3∪A4 (as Y) in Step 7. In Step 8, Y = C1∪C2∪C3∪A4 is

partitioned into three subsets C1, C2, C3∪A4 (as C ′3). These subsets are used to correctly compute

tv|Pr (as t′|Pr in Step 10). It further guesses R′ and C5 in Steps 14.1 and 14.2, respectively. The

algorithm can now correctly compute tv (as t in Step 14.4), Pv (trivially as Pr ∪ Ru), and bv (as

b2 in Step 14.5.1), and finally call A2 to solve 〈S \ {tr, sr, su}, d; tv, Pv, bv〉 in Step 14.5.2. Thus, in

this case, if a solution of the instance 〈S −\{tr}, d; tr, ∅, d〉 is found at a descendant of v in T2, then

A3 will find a solution, too.

Next consider the case where a4 > c4. Subroutine 2 works for this case. Basically, it guesses

(P ′ \A4)∪C4 (as X) in Step 6 and
⋃4
i=1Ci (as Y) in Step 7. In Step 8, Y =

⋃4
i=1Ci is partitioned

into three subsets C1, C2, C3∪C4 (as C ′3). These subsets are used to correctly compute tv|Pr (as t′|Pr

in Step 10). It further guesses R′ and C5 in Steps 14.1 and 14.2, respectively. The algorithm can

now correctly compute tv (as t in Step 14.4), Pv (trivially as Pr ∪Ru), and bv (as b2 in Step 14.5.1),

17

Subroutine 1

10. For each position j ∈ C1 ∪C ′3, guess a letter ẑj different from both su[j] and sr[j];

while for each position j ∈ C2, guess a letter ẑj different from both su[j] and

tr[j]. Let the partial string ŝ|X be such that ŝ|X [j] = ẑj for all j ∈ C1 ∪C2 ∪C ′3,
ŝ|X [j] = sr[j] for all j ∈ (X1−C1)∪(X3−C ′3), and ŝ|X [j] = tr[j] for all j ∈ X2−C2.

11. Let t′ = ŝ|X + su|Pr\X + tr|[1..|tr|]\Pr
. (Comment: ŝ|X + su|Pr\X is supposed to be

tsol|Pr .)

12. If there is no s ∈ S with d(t′, s) > d, then output t′ and halt.

13. Let c4 = |{t′ ≡ su 6≡ tr 6≡ sr}|, a4 = |{t′ ≡ tr 6≡ sr 6≡ su}|, and Ru = {tr ≡
sr 6≡ su}. (Comment: By Lemma 5.1, |Ru| ≤ 3d − |Pr| − |P ′| −

∑4
i=1 |Ci| =

3d− |Pr| − |X| − |Y |+ a4 − c4.)
14. If d(t′, tr) ≤ d, d(t′, sr) ≤ d, d(t′, su) > d, a4 ≤ c4, and |Ru| ≤ 3d − |Pr| − |X| −

|Y |+ a4 − c4, then perform the following steps:

14.1. Guess a subset R′ of Ru such that |R′| ≤ 3d − |Pr| − |Ru| − |X| − |Y | +
a4− c4. (Comment: The upper bound on |R′| used in this step follows from

Lemma 5.1.)

14.2. Guess a subset C5 of R′ such that |C5| ≤ 3d − |Pr| − |Ru| − |X| − |Y | +
a4−c4−|R′|. (Comment: The upper bound on |C5| used in this step follows

from Lemma 5.1.)

14.3. For each position j ∈ C5, guess a letter žj different from both tr[j] and

su[j]. Let the partial string š|R′ be such that š|R′ [j] = žj for all j ∈ C5, and

š|R′ [j] = su[j] for all j ∈ R′ − C5.

14.4. Let t = t′|Pr +š|R′+tr|[1..|tr|]\(Pr∪R′). (Comment: š|R′+tr|Ru\R′ is supposed

to be tsol|Ru .)

14.5. If d(t, tr) ≤ d, d(t, sr) ≤ d, and d(t, su) ≤ d, then perform the following

steps:

14.5.1. Compute `r = d(tr, sr) − d, k1 = d(tr, t
′), b1 = min{d − k1, k1 −

`r − |C1| − |C2| − |C ′3| + a4 − c4}, k2 = |R′|, `2 = d(t′, su) − d, and

b2 = min{b1− k2, k2− `2− |C5|, (3d− |Pr| − |Ru| − |X| − |Y |+ a4− c4−
|R′| − |C5|)/3}.

14.5.2. Call the 2-string algorithm to solve 〈S \{tr, sr, su}, d; t, Pr∪Ru, b2〉.

15. Return NULL.

Figure 6: The first subroutine called by the 3-string algorithm for the general case.

18

Subroutine 2

10. For each position j ∈ C1 ∪ C2 ∪ C ′3, guess a letter ẑj different from both tr[j] and

sr[j]. Let the partial string ŝ|X be such that ŝ|X [j] = ẑj for all j ∈ C1 ∪C2 ∪C ′3,
ŝ|X [j] = sr[j] for all j ∈ (X1−C1)∪(X3−C ′3), and ŝ|X [j] = tr[j] for all j ∈ X2−C2.

11. Let t′ = ŝ|X + su|{su≡tr 6≡sr}\X1
+ su|{su≡sr 6≡tr}\X2

+ tr|{su 6≡sr 6≡tr}\X3
+ tr|[1..|tr|]\Pr

.

(Comment: ŝ|X+su|{su≡tr 6≡sr}\X1
+su|{su≡sr 6≡tr}\X2

+tr|{su 6≡sr 6≡tr}\X3
is supposed

to be tsol|Pr .)

12 – 13. Same as Steps 12 and 13 in Subroutine 1. (Comment: By Lemma 5.1,

|Ru| ≤ 3d− |Pr| − |P ′| −
∑4
i=1 |Ci| = 3d− |Pr| − |X|+ c4 − a4 − |Y |.)

14. If d(t′, tr) ≤ d, d(t′, sr) ≤ d, d(t′, su) > d, a4 > c4, and |Ru| ≤ 3d − |Pr| − |X| +
c4 − a4 − |Y |, then perform the following steps:

14.1. Guess a subset R′ of Ru such that |R′| ≤ 3d−|Pr|−|Ru|−|X|+c4−a4−|Y |,
where Ru = {tr ≡ sr 6≡ su}. (Comment: The upper bound on |R′| used in

this step follows from Lemma 5.1.)

14.2. Guess a subset C5 of R′ such that |C5| ≤ 3d− |Pr| − |Ru| − |X|+ c4− a4−
|Y | − |R′|. (Comment: The upper bound on |C5| used in this step follows

from Lemma 5.1.)

14.3 – 14.4. Same as Steps 14.3 and 14.4 of Subroutine 1, respectively.

14.5. If d(t, tr) ≤ d, d(t, sr) ≤ d, and d(t, su) ≤ d, then perform the following

steps:

14.5.1. Compute `r = d(tr, sr) − d, k1 = d(tr, t
′), b1 = min{d − k1, k1 −

`r − |C1| − |C2| − |C ′3|}, k2 = |R′|, `2 = d(t′, su)− d, and b2 = min{b1 −
k2, k2− `2−|C5|, (3d−|Pr|− |Ru|− |X|+ c4−a4−|Y |− |R′|− |C5|)/3}.

14.5.2. Call the 2-string algorithm to solve 〈S \{tr, sr, su}, d; t, Pr∪Ru, b2〉.

15. Return NULL.

Figure 7: The second subroutine called by the 3-string algorithm for the general case.

and finally call A2 to solve 〈S \ {tr, sr, su}, d; tv, Pv, bv〉 in Step 14.5.2. Thus, in this case, if a

solution of the instance 〈S − \{tr}, d; tr, ∅, d〉 is found at a descendant of v in T2, then A3 will find

a solution, too.

Next we estimate the time complexity of A3. The execution of A3 on input (S, d) can be

modeled by a search tree T as follows. The root r of T corresponds to (S, d). For each quadruple

(su, X, Y, 〈. . . , ẑj , . . .〉) of possible outcomes of the guesses made in Steps 5, 6, 7, and 10 such that A3

19

does not execute Step 14.1, r has a child corresponding to the quadruple. Similarly, for each septuple

(su, X, Y, 〈. . . , ẑj , . . .〉, R′, C5, 〈. . . , žj , . . .〉) of possible outcomes of the guesses made in Steps 5, 6, 7,

10, 14.1, 14.2, and 14.3 such that A3 executes Step 14.1, r has a child corresponding to the septuple.

Moreover, for every child v corresponding to a septuple (su, X, Y, 〈. . . , ẑj , . . .〉, R′, C5, 〈. . . , žj , . . .〉)
such that A3 executes Step 14.5.2, v has descendants in T so that the subtree of T rooted at v is

the same as the search tree of A2 on input 〈S \ {tr, sr, su}, d; t, Pr ∪Ru, b2〉.
Note that each non-leaf node of T has at least two children in T . So, the number of nodes in

T is at most twice the number of leaves in T . Consequently, we can focus on how to bound the

number of leaves in T . For convenience, let γ = |Σ|−2, h′ = 3d−|Pr|, and fx,y = h′−|Ru|−x−y.

Then, the number N of children of r in T that are not leaves of T satisfies the following inequality:

N ≤
∑
su

d∑
x=0

(
|Pr|
x

)
h′−x∑
y=0

(
x

y

)
γy

fx,y∑
i=0

(
|Ru|
i

) fx,y−i∑
j=0

(
i

j

)
γj (5.3)

where x, y, i, and j correspond to |X|, |Y |, |R′|, and |C5| in Subroutines 1 and 2, respectively.

Note that |Σ| + 2
√
|Σ| − 1 = α6. So, by Eq. 5.3 and Lemma 3.3, the number N ′ of leaves at

depth 2 or more in T satisfies the following inequalities:

N ′ ≤
∑
su

d∑
x=0

(
|Pr|
x

)
h′−x∑
y=0

(
x

y

)
γy

fx,y∑
i=0

(
|Ru|
i

) fx,y−i∑
j=0

(
i

j

)
γj
(
d− b2
b2

)
α6b2 .

So, by Lemma 4.3,

N ′ ≤ 1.612d
∑
su

d∑
x=0

(
|Pr|
x

)
h′−x∑
y=0

(
x

y

)
γy

fx,y∑
i=0

(
|Ru|
i

) fx,y−i∑
j=0

(
i

j

)
γjα6b2 . (5.4)

By Step 14.5.1, b1 ≤ 0.5d, b2 ≤ 0.5b1 ≤ 0.25d, and 3b2 ≤ h′ − |Ru| − x − y − i − j. Thus, we

have

N ′ ≤ 1.612d
∑
su

d∑
x=0

(
|Pr|
x

)
h′−x∑
y=0

(
x

y

)
γy

fx,y∑
i=0

(
|Ru|
i

) fx,y−i∑
j=0

(
i

j

)
γjα2(fx,y−i−j) (5.5)

≤ 1.612d
∑
su

d∑
x=0

(
|Pr|
x

)
h′−x∑
y=0

(
x

y

)
γyα2fx,y

fx,y∑
i=0

(
|Ru|
i

)
1

α2i

fx,y−i∑
j=0

(
i

j

)(
γ

α2

)j

≤ 1.612d
∑
su

d∑
x=0

(
|Pr|
x

)
h′−x∑
y=0

(
x

y

)
γyα2fx,y

fx,y∑
i=0

(
|Ru|
i

)
1

α2i

(
1 +

γ

α2

)i

≤ 1.612d
∑
su

d∑
x=0

(
|Pr|
x

)
h′−x∑
y=0

(
x

y

)
γyα2fx,y

(
1 +

1

α2
+

γ

α4

)|Ru|

≤ 1.612d
∑
su

d∑
x=0

(
|Pr|
x

)
1

α2x

h′−x∑
y=0

(
x

y

)(
γ

α2

)y
α2h′

(
1

α2
+

1

α4
+

γ

α6

)|Ru|
(5.6)

20

By Step 14, |Ru| ≤ 3d− |Pr| − x− y = h′ − x− y. Thus, by Eq. 5.6, we have

N ′ ≤ 1.612d
∑
su

βh
′
d∑

x=0

(
|Pr|
x

)
1

βx

h′−x∑
y=0

(
x

y

)(
γ

β

)y
(5.7)

≤ 1.612d
∑
su

βh
′
d∑

x=0

(
|Pr|
x

)
1

βx

(
1 +

γ

β

)x
≤ 1.612d

∑
su

βh
′
(

1 +
1

β
+

γ

β2

)|Pr|
. (5.8)

One can verify that β ≥ 1 + 1
β + γ

β2 for all alphabets Σ with |Σ| ≥ 2. Now, since h′ + |Pr| = 3d

and |Pr| > d, Eq. 5.8 implies the following:

N ′ ≤ 1.612d
∑
su

β2d
(

1 +
1

β
+

γ

β2

)d
≤ (n− 2)1.612d

(
β2 + β + γ

)d
. (5.9)

We next bound the number of leaves at depth 1 in T . Clearly, the number M1 of leaves at

depth 1 in T corresponding to a quadruple satisfies the following inequalities:

M1 ≤
∑
su

d∑
x=0

(
|Pr|
x

)
h′−x∑
y=0

(
x

y

)
γy ≤

∑
su

d∑
x=0

(
|Pr|
x

)
h′−x∑
y=0

(
x

y

)
γyβh

′−x−y. (5.10)

Note that the right-hand sides of Eq. 5.10 and 5.7 are very similar. Consequently, as we used the

bound on N ′ in Eq. 5.7 to obtain the bound on N ′ in Eq. 5.9, we can prove

M1 ≤ (n− 2)
(
β2 + β + γ

)d
. (5.11)

On the other hand, the number M2 of leaves at depth 1 in T corresponding to a septuple

satisfies the following inequalities:

M2 ≤
∑
su

d∑
x=0

(
|Pr|
x

)
h′−x∑
y=0

(
x

y

)
γy

fx,y∑
i=0

(
|Ru|
i

) fx,y−i∑
j=0

(
i

j

)
γj

≤
∑
su

d∑
x=0

(
|Pr|
x

)
h′−x∑
y=0

(
x

y

)
γy

fx,y∑
i=0

(
|Ru|
i

) fx,y−i∑
j=0

(
i

j

)
γjα6b2 ,

where we simply let b2 = (fx,y − i − j)/3 to ensure that α6b2 ≥ 1. Consequently, as we used the

bound on N ′ in Eq. 5.4 to obtain the bound on N ′ in Eq. 5.9, we can prove

M2 ≤ (n− 2)
(
β2 + β + γ

)d
. (5.12)

Therefore, by Eq. 5.4, 5.11, and 5.12, the total number of leaves in T is

N ′ +M1 +M2 = O

(
(n− 2)1.612d

(
β2 + β + γ

)d)
.

21

14. If d(t′, tr) ≤ d, d(t′, sr) ≤ d, and a4 ≤ c4, then perform the following steps:

14.1. If d(t′, su) ≤ d, then select a string s̃u ∈ S \ {tr, sr, su} such that d(t′, s̃u) > d

and |{tr ≡ sr 6≡ s̃u}| ≤ |{tr ≡ sr 6≡ s}| for all s ∈ S\{tr, sr, su} with d(t′, s) > d;

further let su refer to the same string as s̃u does, and then compute Ru = {tr ≡
sr 6≡ su}. (Comment: Since max{d(t′, tr), d(t′, sr), d(t′, su)} ≤ d but t′ is not a

solution, s̃u must exist.)

14.2. If |Ru| ≤ 3d− |Pr| − |X| − |Y |+ a4 − c4, then perform the following steps:

14.2.1 – 14.2.5. Same as Steps 14.1 through 14.5 of Subroutine 1 in Figure 6,

respectively.

Figure 8: The modification of Step 14 of Subroutine 1.

14. If d(t′, tr) ≤ d, d(t′, sr) ≤ d, and a4 > c4, then perform the following steps:

14.1. Same as Step 14.1 in Figure 8.

14.2. If |Ru| ≤ 3d− |Pr| − |X|+ c4 − a4 − |Y |, then perform the following steps:

14.2.1 – 14.2.5. Same as Steps 14.1 through 14.5 of Subroutine 2 in Figure 7,

respectively.

Figure 9: The modification of Step 14 of Subroutine 2.

Consequently, A3 runs in time

O

(
nL+ n2d1.612d

(
β2 + β + γ

)d)
,

because each node of T takes O(nd) time. 2

As in the binary case (cf. Subsection 4.2), we can improve the time bound of the 3-string

algorithm by a factor of n. Again, the crux is to modify Step 5 as in Subsection 4.2. Accordingly,

we need to replace Step 14 of Subroutines 1 and 2 as in Figures 8 and 9, respectively.

The key point here is the following lemma (which is very similar to Lemma 4.5):

Lemma 5.3 Consider the time point where the refined algorithm just selected s̃u in Step 14.1 in

Figure 8 or 9 but has not let su refer to the same string as s̃u does. If a4 ≤ c4, then |Pr| + |X| +
|Y | − a4 + c4 + |R̃u|+ |R̃′| ≤ 3d− 3|B̃| − |C̃5|; otherwise, |Pr|+ |X| − c4 + a4 + |Y |+ |R̃u|+ |R̃′| ≤
3d − 3|B̃| − |C̃5|, where R̃u = {tr ≡ sr 6≡ s̃u}, R̃′ = {tsol 6≡ tr} ∩ R̃u, B̃ = {tr ≡ sr ≡ s̃u 6≡ tsol},
and C̃5 = {tr ≡ sr 6≡ s̃u 6≡ tsol}.

Proof. Let Ru = {tr ≡ sr 6≡ su}. By the modified Step 5, |R̃u| ≤ |Ru|. Since d(t′, su) =

|P ′| + |Ru| ≤ d and d(t′, s̃u) = d(t′|Pr , s̃u|Pr) + |R̃u| > d, we have |P ′| < d(t′|Pr , s̃u|Pr). Because

22

d(tsol|Pr , su|Pr) = d(t′|Pr , su|Pr) = |P ′|, it follows that d(tsol|Pr , su|Pr) < d(t′|Pr , s̃u|Pr). Conse-

quently, d(tsol|Pr , su|Pr) < d(tsol|Pr , s̃u|Pr) for t′|Pr = tsol|Pr .

Consider the string ŝu = su|Pr+s̃u|[1..|su|]\Pr
. Note that d(tsol, ŝu)−d(tsol, s̃u) = d(tsol|Pr , su|Pr)−

d(tsol|Pr , s̃u|Pr). So, by the last inequality in the last paragraph, d(tsol, ŝu) < d(tsol, s̃u). Con-

sequently, d(tsol, ŝu) ≤ d for d(tsol, s̃u) ≤ d. Now, applying Lemma 5.1 with su there being

replaced by ŝu here, we have |Pr| + |P ′| + |R̃u| + |R̃′| ≤ 3d − 3|B̃| −
∑4
i=1 |Ci| − |C̃5|. Thus,

|Pr|+ |P ′|+
∑4
i=1 |Ci|+ |R̃u|+ |R̃′| ≤ 3d− 3|B̃|− |C̃5|. If a4 ≤ c4, then by the algorithm, |X| = |P ′|

and |Y | =
∑3
i=1 |Ci|+ a4, implying that |Pr|+ |X|+ |Y | − a4 + c4 + |R̃u|+ |R̃′| ≤ 3d− 3|B̃| − |C̃5|.

On the other hand, if a4 > c4, then by the algorithm, |X| = |P ′| − a4 + c4 and |Y | =
∑4
i=1 |Ci|,

implying that |Pr|+ |X| − c4 + a4 + |Y |+ |R̃u|+ |R̃′| ≤ 3d− 3|B̃| − |C̃5|. 2

Theorem 5.4 The refined 3-string algorithm solves CSP in O
(
nL+ dn1.612d

(
|Σ|+ β2 + β − 2

)d)
time.

Proof. To see the correctness of the refined algorithm, it suffices to consider the case where s̃u is

selected in Step 14.1 in Figure 8 (respectively, Figure 9). In this case, by Lemma 5.3, the algorithm

can correctly guess R̃′ and C̃5 in Steps 14.1 and 14.2 of Subroutine 1 (respectively, Subroutine 2) in

Figure 6 (respectively, Figure 7). The correctness of the computation of the upper bound b2 on the

remaining distance between t and tsol in Step 14.3.1 of Subroutine 1 (respectively, Subroutine 2)

in Figure 6 (respectively, Figure 7) again follows from Lemma 5.3. From these facts, it is not hard

to see that the refined algorithm is correct.

Since the refined algorithm does not guess su, we can mimic the analysis in the proof of The-

orem 5.2 to show that the refined algorithm runs in O
(
nL+ dn1.612d

(
|Σ|+ β2 + β − 2

)d)
time.

2

When |Σ| = 4, the time bound of the 3-string algorithm given in Theorem 5.2 isO
(
nL+ nd13.183d

)
which is better than the previously best time bound O

(
nL+ nd13.922d

)
in [2]. However, when

|Σ| ≥ 7, the time bound of the 3-string algorithm given in Theorem 5.2 is (slightly) worse than

that in [2] (but better than that in [27]).

Acknowledgments

Zhi-Zhong Chen was supported in part by the Grant-in-Aid for Scientific Research of the Ministry

of Education, Science, Sports and Culture of Japan, under Grant No. 20500021. Bin Ma was sup-

ported in part by China 863 National High-tech R&D Program (2008AA02Z313), NSERC (RGPIN

238748-2006) and a start up grant at University of Waterloo. Lusheng Wang was fully supported

by a grant from City University of Hong Kong (project no. 7002452).

23

References

[1] A. Ben-Dor, G. Lancia, J. Perone, and R. Ravi. Banishing bias from consensus sequences. In

Proceedings of the 8th Annual Symposium on Combinatorial Pattern Matching, Lecture Notes

In Computer Science(1264), pages 247 – 261, 1997.

[2] Z. Z. Chen and L. Wang. Fast exact algorithms for the closest string and substring problems

with application to the planted (l, d)-motif model. IEEE/ACM Transactions on Computational

Biology and Bioinformatics, 2009. Submitted for publication.

[3] J. Davila, S. Balla, and S. Rajasekaran. Space and time efficient algorithms for planted motif

search. In International Conference on Computational Science (2), pages 822–829, 2006.

[4] X. Deng, G. Li, Z. Li, B. Ma, and L. Wang. Genetic design of drugs without side-effects. SIAM

Journal on Computing 32(4), pages 1073–1090, 2003.

[5] J. Dopazo, A. Rodŕıguez, J.C. Sáiz, and F. Sobrino. Design of primers for PCR amplification

of highly variable genomes. CABIOS, 9:123–125, 1993.

[6] R. G. Downey and M. R. Fellows. Parameterized complexity. Monographs in Computer Science.

Springer-Verlag, New York, 1999.

[7] P. A. Evans and A. D. Smith. Complexity of approximating closest substring problems. In

FCT, pages 210–221, 2003.

[8] M.R. Fellows, J. Gramm, and R. Niedermeier. On the parameterized intractability of motif

search problems. Combinatorica, 26(2):141–167, 2006.

[9] M. Frances and A. Litman. On covering problems of codes. Theoretical Computer Science,

30:113–119, 1997.

[10] J. Gramm, J. Guo, and R. Niedermeier. On exact and approximation algorithms for distin-

guishing substring selection. In FCT, pages 159–209, 2003.

[11] J. Gramm, F. Hüffner, and R. Niedermeier. Closest strings, primer design, and motif search.

In L. Florea et al. (eds), Currents in Computational Molecular Biology, poster abstracts of

RECOMB 2002, pages 74–75, 2002.

[12] J. Gramm, R. Niedermeier, and P. Rossmanith. Fixed-parameter algorithms for closest string

and related problems. Algorithmica, 37:25–42, 2003.

24

[13] Y. Jiao, J. Xu, and M. Li. On the k-closest substring and k-consensus pattern problems.

In Combinatorial Pattern Matching: 15th Annual Symposium (CPM 2004), 3109 volume of

Lecture Notes in Computer Science, pages 130–144, 2004.

[14] K. Lanctot, M. Li, B. Ma, S. Wang, and L. Zhang. Distinguishing string search problems. In

SODA 1999, pages 633–642, 1999.

[15] M. Li, B. Ma, and L. Wang. On the closest string and substring problems. Journal of the

ACM, 49(2):157–171, 2002.

[16] K. Lucas, M. Busch, S. MÖssinger, and J.A. Thompson. An improved microcomputer program

for finding gene- or gene family-specific oligonucleotides suitable as primers for polymerase

chain reactions or as probes. CABIOS, 7:525–529, 1991.

[17] B. Ma and X. Sun. More efficient algorithms for closest string and substring problems. In Pro-

ceedings of the 12th Annual International Conference on Computational Biology (RECOMB),

pages 396–409, 2008.

[18] D. Marx. The closest substring problem with small distances. In FOCS 2005, pages 63–72,

2005.

[19] H. Mauch, M. J. Melzer, and J. S. Hu. Genetic algorithm approach for the closest string

problem. In Proceedings of the 2nd IEEE Computer Society Bioinformatics Conference (CSB),

pages 560–561, 2003.

[20] C. N. Meneses, Z. Lu, C. A. S. Oliveira, and P. M. Pardalos. Optimal solutions for the

closest-string problem via integer programming. INFORMS Journal on Computing, 2004.

[21] F. Nicolas and E. Rivals. Complexities of the centre and median string problems. In Proceedings

of the 14th Annual Symposium on Combinatorial Pattern Matching, pages 315–327, 2003.

[22] V. Proutski and E.C. Holme. Primer master: A new program for the design and analysis of

PCR primers. CABIOS, 12:253–255, 1996.

[23] N. Stojanovic, P. Berman, D. Gumucio, R. Hardison, and W. Miller. A linear-time algorithm

for the 1-mismatch problem. In Proceedings of the 5th International Workshop on Algorithms

and Data Structures, pages 126–135, 1997.

[24] L. Wang and L. Dong. Randomized algorithms for motif detection. Journal of Bioinformatics

and Computational Biology, 3(5):1039–1052, 2005.

25

[25] L. Wang and B. Zhu. Efficient algorithms for the closest string and distinguishing string

selection problems. In The Third International Frontiers of Algorithmics Workshop, pages

261–270, 2009.

[26] Y. Wang, W. Chen, X. Li, and B. Cheng. Degenerated primer design to amplify the heavy

chain variable region from immunoglobulin cDNA. BMC Bioinformatics, 7(Suppl 4):S9, 2006.

[27] R. Zhao and N. Zhang. A more efficient closest string algorithm. In 2nd International Con-

ference on Bioinformatics and Computational Biology, 2010. To appear.

26

