
A Fast Exact Algorithm for the Closest Substring Problem and Its

Application to the Planted (L, d)-Motif Model

Zhi-Zhong Chen∗ Lusheng Wang †

Abstract

The closest substring problem has been studied extensively in the literature because of its
wide applications in motif detection, universal PCR primer design, genetic drug target iden-
tification, binding sites locating, genetic probes design, etc. Since the problem is NP-hard,
fixed-parameter algorithms and approximation algorithms have been designed for it. In this
paper, we present a new fixed-parameter algorithm for the problem that is much faster than
all existing algorithms. The running time of our algorithm depends on the alphabet size. The
new algorithm runs in O

(
(n− 1)m2

(
L+ d · 17.97d ·mblog2(d+1)c)) time for DNA strings, and

runs in O
(
(n− 1)m2

(
L+ d · 61.86d ·mblog2(d+1)c)) time for protein strings, where n is the

number of input strings, L is the length of the output center substring, L − 1 + m is the
maximum length of a single input string, and d is the given upper bound on the number
of mismatches between the center substring and at least one substring of each input string.
In comparison, the previously best algorithm (due to Ma and Sun) for the closest substring
problem runs in O

(
(n− 1)m2

(
L+ d · 48d ·mblog2(d+1)c)) time for DNA sequences, and runs

in O
(
(n− 1)m2

(
L+ d · 304d ·mblog2(d+1)c)) time for protein sequences. The improvement is

achieved by a new technique that makes use of different letters in the alphabet Σ, together with
novel analysis of the running time. Due to its much faster speed, our new algorithm for the
closest substring problem can be implemented into a C program that can give exact solutions
for practical data sets of motif detection problems in a few seconds/minutes. To our knowledge,
this is the first practical program that can give exact solutions and has a good theoretical bound
on its running time for the NP-hard closest substring problem.

We apply our new exact program for the closest substring problem to the planted (L, d)-motif
problem proposed by Pevzner and Sze in 2000. We compare our program with the previously
best exact program for the problem which was designed and called PMSPrune by Davila, Balla,
and Rajasekaran in 2007. Our experimental data show that our program runs faster for practical
cases where (L, d) = (12, 3), (13, 3), (14, 4), (15, 4), or (17, 5), and also runs faster for challenging
cases where (L, d) = (9, 2) or (11, 3). Our program runs slower than PMSPrune for some
hard cases where (L, d) = (17, 6), (18, 6), or (19, 7). It should be pointed out that we have
pointed out a bug in PMSPrune to its authors and they are still busy fixing it. PMSPrune is
complicated and is hence bug-prone because it is based on branch-and-bound. Indeed, for certain
problem instances, its current bugged version misses some solutions that should be output by
the program. We believe that after the bug is fixed, PMSPrune will run significantly slower than
its current bugged version. In addition, our algorithm uses less memory. To demonstrate the
usefulness of exact algorithms for the problem, we also compare our program with a previous
program called PROJECTION by Buhler and Tompa (which is based on random projection
of the input strings). Our experimental data show that our program can achieve much better
prediction accuracy in all tested cases (within almost the same running time and space).

Keywords: Fixed-parameter algorithm, closest string, closest substring, DNA motif discovery.
∗Department of Mathematical Sciences, Tokyo Denki University, Hatoyama, Saitama 350-0394, Japan. Email:

zzchen@mail.dendai.ac.jp
†Department of Computer Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong. Email:

cswangl@cityu.edu.hk

0

1 Introduction

Given a set S of n strings of equal length L and an integer d (called radius), the closest string
problem asks to compute a center string s′ (if exists) of length L such that the Hamming distance
d(s′, s) between s′ and each string s ∈ S is at most d. A more general problem is the closest
substring problem. Given a set S of n strings of equal length K and two integers d and L, the
closest substring problem asks to compute a center substring s′ of length L such that each string
s ∈ S has a substring t (if exists) of length L with d(s′, t) ≤ d. The two problems have been
formulated and studied in a variety of applications in bioinformatics and computational biology,
such as PCR primer design [6, 9, 11, 15, 21, 23], genetic probe design [11], antisense drug design
[5, 11], finding unbiased consensus of a protein family [2], and motif finding [4, 7, 9, 11, 12, 24]. All
these applications share a task that requires the design of a new DNA or protein sequence that is
very similar to (a substring of) each of the given sequences.

Unfortunately, the closest string and substring problems have been proved to be NP-hard [8, 11].
This has motivated researchers to come up with heuristics without performance guarantee [14, 18,
19], fixed-parameter algorithms [10, 16, 22, 25], and polynomial-time approximation algorithms
[1, 2, 5, 11, 13] for the problems. We here design fixed-parameter algorithms for the problems.

All known fixed-parameter algorithms for the closest string problem take d as the parameter
and run in time exponential in d. Stojanovic et al. [22] presented a linear-time algorithm for
the problem for d = 1 only. Gramm et al. [10] designed the first fixed-parameter algorithm for
the problem. Their algorithm runs in O

(
nL+ nd · (d+ 1)d

)
time. Ma and Sun [16] improved

Gramm et al.’s algorithm to obtain a new fixed-parameter algorithm for the problem that runs
in O

(
nL+ nd · (16(|Σ| − 1))d

)
time, where Σ is the alphabet of the input strings in S. Ma and

Sun’s improvement is significant because their new algorithm is the first for the problem that can
run in polynomial time when the parameter d is logarithmic in the input size. However, the base
16(|Σ| − 1) of the power (16(|Σ| − 1))d in the time bound of their algorithm is very large. An
improved algorithm was give in [25], which runs in O

(
nL+ nd ·

(
23.25(|Σ| − 1)

)d) time.
In this paper, we propose a new algorithm for the closest string problem whose time complexity

is O
(
nL+ nd · 47.21d

)
for protein strings and is O

(
nL+ nd · 13.92d

)
for DNA strings. In compar-

ison, the previous best algorithm in [25] runs in O
(
nL+ nd · 180.75d

)
time for protein strings and

runs in O
(
nL+ nd · 28.54d

)
time for DNA strings. We achieve this improvement by a new tech-

nique that makes use of different letters in Σ. The new technique can be sketched as follows. Like
previous algorithms, our algorithm finds a required center string by selecting an arbitrary input
string (i.e., a string in S) as the initial candidate center string and gradually modifying at most d
letters of the candidate center string so that it becomes a required center string. The modification
goes round by round. In each round, to modify the current candidate center string t, the idea is
to first find another string s ∈ S with d(t, s) > d and then guess at most d positions among the
(at most 2d) positions where t and s have different letters. When using s to modify t, previous
algorithms do not look at the letters of s. In contrast, our algorithm looks at the letters of s and
guesses the positions i of t where the letter of t at position i should be modified to a letter that
differs from both the current letter of t at position i and the letter of s at position i. We then prove
a simple but crucial lemma (Lemma 3.1) which says that the more such positions i exist, the faster
our algorithm is. With this lemma, we then prove a main lemma (Lemma 3.2) which roughly says

that the total number of guesses made by our algorithm is at most
(2d
d

) (
|Σ|+ 2

√
|Σ| − 1

)d
. This

lemma is a significant improvement over the main theorem (Theorem 1) in [16], which roughly says
that the total number of guesses made by the algorithm in [16] is at most

(2d
d

)
(4|Σ| − 4)d. Indeed,

1

the proof of our main lemma looks simpler. The bulk of our paper is to show how to obtain an
even better bound on the total number of guesses made by our algorithm.

For the closest substring problem, Marx [17] designed a fixed-parameter algorithm which runs in
O
(
|Σ|d(log2 d+2) ·N log2 d+O(1)

)
time, where N is the total length of input strings. Ma and Sun [16]

obtained a faster algorithm running in O
(
nm2L+ nd · (16(|Σ| − 1))d ·mblog2(d+1)c+2

)
time with

m = K−L+1, by extending their fixed-parameter algorithm for the closest string problem. We can
also extend one of our new fixed-parameter algorithms for the closest string problem to an algorithm
for the closest substring problem that runs in O

(
(n− 1)m2

(
L+ d · 17.97d ·mblog2(d+1)c

))
time for

DNA strings and runs in O
(
(n− 1)m2

(
L+ d · 61.86d ·mblog2(d+1)c

))
time for protein strings.

Due to its much faster speed, our new algorithm for the closest substring problem can be
implemented into a C program that can give exact solutions for practical data sets of motif detection
problems in a few seconds/minutes. To our knowledge, this is the first practical program that can
give exact solutions and has a good theoretical bound on its running time for the NP-hard closest
substring problem. We apply our program to the following problem proposed in [20]:

Planted (L, d)-Motif Problem: Let M be a fixed but unknown nucleotide sequence
(the motif consensus) of length L. Suppose that M occurs once in each of n back-
ground sequences of common length K, but that each occurrence of M is corrupted by
exactly d point substitutions in positions chosen independently at random. Given the
n sequences, recover the motif occurrences and the consensus M .

As in the previous studies [20, 3], we fix n = 20 and K = 600. We compare our exact
program with the previously best exact program called PMSPrune (due to Davila, Balla, and
Rajasekaran [4]) on randomly generated problem instances. We note in passing that Davila et.
al. already did experiments to show that PMSPrune is much faster than all the other previously
known exact programs for the problem. Our experimental data show that our algorithm runs faster
than PMSPrune for practical cases where (L, d) = (12, 3), (13, 3), (14, 4), (15, 4), or (17, 5), and
also runs faster for challenging cases where (L, d) = (9, 2) or (11, 3). Our algorithm runs slower
than PMSPrune for some hard cases where (L, d) = (17, 6), (18, 6), or (19, 7). It should be pointed
out that we have pointed out a bug in PMSPrune to its authors and they are still busy fixing
it. PMSPrune is complicated and is hence bug-prone because it is based on branch-and-bound.
Indeed, for certain problem instances, its current bugged version misses some solutions that should
be output by the program. We believe that after the bug is fixed, PMSPrune will run significantly
slower than its current bugged version. In contrast, our program is simple and is very likely to be
bug-free. In addition, ours uses only O(nm) space while PMSPrune needs O(nm2) space.

Our program can be applied to real biological data as follows. First, use it to output all solutions
(one of which must be correct). Then, use a known scoring scheme to evaluate the solutions so
that the correct one gets the highest score. For example, for the planted (L, d)-motif problem, we
know that the correct solution (i.e., the planted motif consensus) has a Hamming distance of d
from some substring of each input string. Thus, we can give the highest score to each solution
that has a Hamming distance of d from some substring of each input string. We combine this kind
of scoring scheme with our program and compare the resulting program with a previous program
called PROJECTION by Buhler and Tompa [3] which is based on random projection of the input
strings. Our experimental data show that our program almost always recovers the correct solution
and achieves a much better average performance coefficient even in challenging cases such as the
cases where (L, d) = (9, 2), (11, 3), or (15, 5). Similar to PROJECTION, our program typically

2

solves practical cases in only a few seconds/minutes and solves very hard cases (such as the cases
where (L, d) = (18, 6) or (17, 6)) in one or a few hours.

The remainder of this paper is organized as follows. Section 2 contains basic definitions and
notations that will be used throughout this paper. Section 3 presents an algorithm for the closest
string problem and Section 4 presents another. The former algorithm is easier to understand and
can be extended to an algorithm for the closest substring problem. The latter algorithm runs faster
but it does not seem to have a natural extension to the closest substring problem. Section 5 extends
the former algorithm to the closest substring problem. Section 6 discusses the application to the
planted (L, d)-motif problem.

Due to lack of space, the proofs of all lemmas and theorems have been moved to the appendix.

2 Basic Definitions and Notations

Throughout this paper, Σ denotes a fixed alphabet and a string always means one over Σ. For
a finite set S (such as Σ), |S| denotes the number of elements in S. Similarly, for a string s, |s|
denotes the length of s. A string s has |s| positions, namely, 1, 2, . . . , |s|. For convenience, we use
[1..k] to denote the set {1, 2, . . . , k}. The letter of s at position i ∈ [1..|s|] is denoted by s[i]. For
two strings s and t of equal length, P (s, t) denotes the set of positions i ∈ [1..|s|] with s[i] 6= t[i],
while d(s, t) denotes |P (s, t)| (i.e., the Hamming distance between s and t).

3 The First Algorithm

Instead of solving the closest string problem directly, we solve a more general problem called the
extended closest string (ECS) problem. An instance of the ECS problem is a quintuple (S, d, t, P, b),
where S is a set of strings of equal length (say, L), t is a string of the same length L, d is a positive
integer less than or equal to L, P is a subset of [1..L], and b is a nonnegative integer less than or
equal to d. A solution to (S, d, t, P, b) is a string s′ of length L satisfying the following conditions:

1. For every position i ∈ P , s′[i] = t[i].
2. The number of positions i ∈ [1..L] with s′[i] 6= t[i] is at most b.
3. For every string s ∈ S, d(s′, s) ≤ d.

Intuitively speaking, the first two conditions require that the center string s′ be obtained from the
candidate string t by modifying at most b letters whose positions in t are outside P . Given an
instance (S, d, t, P, b), the ECS problem asks to output a solution if one exists. The output has to
be a special symbol (say, NULL) if no solution exists.

Obviously, to solve the closest string problem for a given instance (S, d), it suffices to solve the
ECS problem for the instance (S, d, s, ∅, d), where s is an arbitrary string in S and ∅ is the empty
set. That is, we can solve the closest string problem by calling any algorithm for the ECS problem
once. So, we hereafter focus on the ECS problem instead of the closest string problem.

Intuitively speaking, given an instance (S, d, t, P, b), the ECS problem asks us to modify the
letters of at most b positions (outside P) of t so that t becomes a string s′ with d(s′, s) ≤ d for
every string s ∈ S. A naive way is to first guess at most b positions among the L − |P | positions
(outside P) of t and then modify the letters at the guessed positions. A better idea has been used
in all previous algorithms: First try to find a string s ∈ S with d(t, s) > d and then use s to help
guess the (at most b) positions of t where the letters of t should be modified. For each guessed
position i, all previous algorithms try all possible ways to modify t[i]. Note that there are |Σ| − 1
possible ways to modify t[i]. So, there can be (|Σ| − 1)b possible ways to modify t.

3

Our new observation is that there may be some guessed positions i such that t[i] may be changed
to s[i]. In other words, for such a position i, we do not have to guess a new letter for t[i]. This can
save us a lot of time, as justified by the following lemma:

Lemma 3.1 Let (S, d, t, P, b) be an instance of the ECS problem. Assume that s′ is a solution to
(S, d, t, P, b). Let s be a string in S, let ` = d(t, s)−d, let k be the number of positions i ∈ P (t, s)−P
with s′[i] 6= t[i], let c be the number of positions i ∈ P (t, s)− P with s′[i] 6= t[i] and s′[i] 6= s[i], and
let b′ be the number of positions i ∈ [1..L] − (P ∪ P (t, s)) with s′[i] 6= t[i]. Then, b′ ≤ b − k and
b′ ≤ k − `− c. Consequently, b′ ≤ b−`−c

2 .

We note that Lemma 3.1 is stronger than Lemma 1 in [16] and Lemma 2 in [25].
Based on Lemma 3.1, we now design an algorithm called CloseString for the ECS problem:

Algorithm 1: CloseString

Input: An instance (S, d, t, P, b) of the ECS problem.
Output: A solution to (S, d, t, P, b) if one exists, or NULL otherwise.

1. If there is no s ∈ S with d(t, s) > d, then output t and halt.
2. Find a string s ∈ S with d(t, s) > d.
3. Let ` = d(t, s)− d and R = P (t, s)− P .
4. If ` > min{b, |R|}, then return NULL.
5. For each subset X of R with ` ≤ |X| ≤ b and for each subset Y of X with |Y | ≤

|X| − `, perform the following steps:

5.1. For each position i ∈ X − Y , change t[i] to s[i].

5.2. For all (|Σ|−2)|Y | possible ways to change the letters of t at the positions in
Y (so that the letter of t at each position i ∈ Y is changed to a letter other
than s[i] and t[i]), change the letters of t at the |Y | positions and then call
CloseString(S − {s}, d, t, P ∪R,min{b− |X|, |X| − `− |Y |}) recursively.

6. Output NULL and halt.

To see the correctness of our algorithm, first observe that Step 1 is clearly correct. To see that
Step 4 is also correct, first note that d(t, s) = |P (t, s)| = d+ `. So, in order to satisfy d(t, s) ≤ d, we
need to first select at least ` positions among the positions in P (t, s) and then modify the letters at
the selected positions. By definition, we are allowed to select at most b positions and the selected
positions have to be in R = P (t, s)− P . So, no solution exists if ` > min{b, |R|}. The correctness
of Step 5.2 is guaranteed by Lemma 3.1. This can be seen by viewing |X| in the algorithm as k
in Lemma 3.1, viewing |Y | in the algorithm as c in Lemma 3.1, and viewing b′ in Lemma 3.1 as
the number of positions (outside P ∪P (t, s) = P ∪R) of t where the letters have to be modified in
order to transform t into a solution.

The remainder of this section is devoted to estimating the running time of the algorithm. The
recursive calls made by algorithm CloseString can be organized into a tree in which each node
corresponds to a recursive call and a recursive call A is a child of another call B if and only if B
calls A directly. We call this tree the search tree on input (S, d, t, P, b). The following lemma shows
an upper bound on the size of the search tree.

Lemma 3.2 Let T (d, b) be the number of nodes in the search tree on input (S, d, t, P, b). Then,

T (d, b) ≤
(d+b
b

)
(|Σ| − 1)b 22νb, where ν = log2

1+
√
|Σ|−1√
|Σ|−1

.

4

We note that Lemma 3.2 is much stronger than Theorem 1 in [16], which seems to be the main
result in [16]. Indeed, the proof of Lemma 3.2 also looks simpler than that of Theorem 1 in [16].

By Lemma 3.2, T (d, d) can be bounded from above roughly by
(2d
d

)
(|Σ| − 1)d if |Σ| is large

enough. In particular, our upper bound
(2d
d

)
(|Σ| − 1)d 22νd is already better than the upper bound(2d

d

)
(|Σ| − 1)d 21.25d in [25], if |Σ| ≥ 5.
We next show an even better upper bound on T (d, d). The following lemma will be very helpful:

Lemma 3.3 Suppose that α is a real number with 0 < α ≤ 1
2 and m is a positive integer with

1 ≤ bαmc ≤ m− 1. Then,
(m
bαmc

)
≤ α−αm(1− α)−(1−α)m.

Now, we are ready to show the main theorem of this section:

Theorem 3.4 Let µ = 1 +
3
√

2(|Σ|−2)
√

3+
√

3(|Σ|−1)
. Then, T (d, d) ≤

(√
27+
√

27(|Σ|−1)

2 · (µ+ 1)
)d
.

Corollary 3.5 Let µ be as in Theorem 3.4. Algorithm CloseString solves the ECS problem in

O

(
nL+ nd ·

(√
27+
√

27(|Σ|−1)

2 · (µ+ 1)
)d)

time.

The better algorithm in [25] for the closest string problem runs in O
(
nL+ nd ·

(
23.25(|Σ| − 1)

)d)
time, while the algorithm in [16] for the same problem runs in O

(
nL+ nd · (16(|Σ| − 1))d

)
time.

For these two previous algorithms as well as our new algorithm CloseString, their time bounds
contain a power whose exponent is d. Table 1 shows a comparison of the bases of the powers.

Table 1: Comparison of bases of the powers in the time bounds.
|Σ| = 4 (DNA) |Σ| = 20 (protein)

16(|Σ| − 1) [16] 48 304
23.25(|Σ| − 1) [25] 28.54. . . 180.75. . .

√
27+
√

27(|Σ|−1)

2 · (µ+ 1) [this paper] 17.97. . . 61.86. . .

4 The Second Algorithm

Motivated by an idea in [25], we obtain the second algorithm by modifying Step 2 of the algorithm
in Section 3 as follows:

2. Find a string s ∈ S such that d(t, s) is maximized over all strings in S.

We call the modified algorithm CloseString2. The intuition behind CloseString2 is this: By
Lemma 3.1, the larger ` is, the smaller b′ is. Note that b′ means the number of letters of t we need
to further modify. Thus, by maximizing `, we can make our algorithm run faster.

Throughout the remainder of this section, fix an input (S, d, t, P, b) to algorithm CloseString2
and consider the search tree T of CloseString2 on this input. Let r denote the root of T .

During the execution of CloseString2 on input (S, d, t, P, b), d does not change but the other
parameters may change. That is, each node of T corresponds to a recursive call whose input is of
the form (S ′, d, t′, P ′, b′), where S ′ is a subset of S, t′ is a modification of t, P ′ is a superset of P ,
and b′ is an integer smaller than b. So, for each node u of T , we use Su, tu, Pu, and bu to denote the

5

Table 2: Comparison of bases of the powers in the time bounds.

|Σ| = 2 (binary) |Σ| = 4 (DNA) |Σ| = 20 (protein)
16(|Σ| − 1) [16] 16 48 304

23.25(|Σ| − 1) [25] 9.51. . . 28.54. . . 180.75. . .
4
√

8
(
1 +

√
|Σ| − 1

) (√
2 + γ

)
[this paper] 13.92. . . 47.21. . .

4 + 3
√

2 [this paper] 8.24 . . .

first, the third, the fourth, and the fifth parameter, respectively, in the input given to the recursive
call corresponding to u. For example, Sr = S, tr = t, Pr = P , and br = b. Moreover, for each node
u of T , we use su and `u to denote the string s and the integer ` computed in Step 2 and 3 of the
recursive call corresponding to u, respectively.

Obviously, if the set R computed in Step 3 of the algorithm is small, then the number of subsets
X tried in Step 5 should be small. Intuitively speaking, the next lemma shows that |R| cannot be
so large.

Lemma 4.1 Suppose that u is a nonleaf descendant of r in T . Then, |Pu∩P (tu, su)| ≥ d(tu,tr)−`r+`u
2 .

We note in passing that there is a lemma in [25] similar to but much weaker than Lemma 4.1.
The following lemma is similar to Lemma 3.2:

Lemma 4.2 Suppose that r has at least one child in T . For each descendant u of r in T , let
F (d, bu) denote the number of nodes in the subtree of T rooted at u. Then, for each descendant u

of r in T , F (d, bu) ≤
(b 2d−d(tu,tr)+`r+bu

2
c

bu

)
(|Σ| − 1)bu22νbu .

Now, we are ready to prove the main theorem in this section:

Theorem 4.3 Let γ = 1 + |Σ|−2
4
√

2
(
1+
√
|Σ|−1

) . If |Σ| = 2, then the size T (d, d) of tree T is at most

(4 + 3
√

2)d. Otherwise, T (d, d) ≤
(

4
√

8
(
1 +

√
|Σ| − 1

) (√
2 + γ

))d
.

Corollary 4.4 Let γ be as in Theorem 4.3. If |Σ| = 2, then algorithm CloseString2 solves

the ECS problem in time O

(
nL+ nd ·

(
4 + 3

√
2
)d)

; otherwise, it solves the problem in time

O

(
nL+ nd ·

(
4
√

8
(
1 +

√
|Σ| − 1

) (√
2 + γ

))d)
.

The time bound for algorithm CloseString2 may be difficult to appreciate. So, we compare it
with the bounds of the algorithm in [16] and the faster algorithm in [25]. Table 2 summarizes the
result of comparison.

5 Extension to Closest Substring

In this section, we extend algorithm CloseString to an algorithm for the closest substring problem.
We do not know if it is possible to extend algorithm CloseString2 to an algorithm for the closest

6

substring problem, because we do not know how to prove a lemma similar to Lemma 4.1 when the
target problem becomes the closest substring problem.

Again, instead of solving the closest substring problem directly, we solve a more general problem
called the extended closest substring (ECSS) problem. The input to the ECSS problem is a quintuple
(S, t, d, P, b), where S is a set of strings of equal length (say, K), t is a string of some length L with
L ≤ K, d is a positive integer less than or equal to L, P is a subset of [1..L], and b is a nonnegative
integer less than or equal to d. A solution to (S, t, d, P, b) is a string s′ of length L satisfying the
following conditions:

1. For every position i ∈ P , s′[i] = t[i].
2. The number of positions i with s′[i] 6= t[i] is at most b.
3. For every string s ∈ S, s has a substring w of length L with d(s′, w) ≤ d.

Given (S, t, d, P, b), the ECSS problem asks to output a solution if one exists. The output has to
be a special symbol (say, NULL) if no solution exists.

Obviously, to solve the closest substring problem for a given instance (S, d, L), it suffices to
perform the following three steps:

1. Select an arbitrary string s ∈ S.
2. For every substring w of s with |w| = L, solve the ECSS problem for the instance (S, w, d, ∅, d).
3. If no solution is found in Step 2, output NULL and halt.

That is, we can solve the closest substring problem by calling any algorithm for the ECSS problem
K−L+ 1 times, where L is the length of a single input string. So, we hereafter focus on the ECSS
problem instead of the closest substring problem, and design the following algorithm for solving it.

Algorithm 3: CloseSubstring

Input: An instance (S, t, d, P, b) of the ECSS problem.
Output: A solution to (S, t, d, P, b) if one exists, or NULL otherwise.

1. If every string s ∈ S has a substring w with |w| = |t| and d(t, w) ≤ d, then output
t and halt.

2. Find a string s ∈ S such that s has no substring w with |w| = |t| and d(t, w) ≤ d.
3. If all substrings w of s with |w| = |t| satisfy d(t, w)−d > min{b, |P (t, w)−P |}, then

return NULL.
4. For all substrings w of s with |w| = |t| and d(t, w) − d ≤ min{b, |P (t, w) − P |},

perform the following steps:

4.1. Let R = P (t, w)− P and ` = d(t, w)− d.
4.2. For each subset X of R with ` ≤ |X| ≤ b and for each subset Y of X with

|Y | ≤ |X| − `, perform the following steps:

4.2.1. For each position i ∈ X − Y , change t[i] to w[i].
4.2.2. For all (|Σ| − 2)|Y | possible ways to change the letters of t at the

positions in Y (so that the letter of t at each position i ∈ Y is changed
to a letter other than w[i] and t[i]), change the letters of t at the |Y |
positions and then call CloseSubstring(S − {s}, t, d, P ∪ R,min{b −
|X|, |X| − `− |Y |}) recursively.

5. Output NULL and halt.

Algorithm CloseSubstring is based on the following lemma which is similar to Lemma 3.1; its
proof is omitted here because it is almost identical to that of Lemma 3.1.

7

Lemma 5.1 Let (S, t, d, P, b) be an instance of the ECSS problem. Assume that s′ is a solution to
(S, t, d, P, b). Let s be a string in S, let w be a substring of s with |w| = |t| and d(s′, w) ≤ d, let
` = d(t, w)− d, let k be the number of positions i ∈ P (t, w)−P with s′[i] 6= t[i], let c be the number
of positions i ∈ P (t, w) − P with s′[i] 6= t[i] and s′[i] 6= w[i], and let b′ be the number of positions
i ∈ [1..|t|] − (P ∪ P (t, w)) with s′[i] 6= t[i]. Then, b′ ≤ b − k and b′ ≤ k − ` − c. Consequently,
b′ ≤ b−`−c

2 .

Algorithm CloseSubstring is similar to algorithm CloseString in Section 3. The only differ-
ence is this: If the given input (S, t, d, P, b) has a solution s′, then for each s ∈ S, we need to guess
a substring w of s with |w| = |t| such that d(w, s′) ≤ b. Note that s can have |s| − |t|+ 1 substrings
with |w| = |t|.

As we proved the correctness of algorithm CloseString, we can prove the correctness of al-
gorithm CloseSubstring based on Lemma 5.1. We next estimate its running time. Let T ′(d, b)
denote the size of the search tree of algorithm CloseSubstring on input (S, t, d, P, b). Then, we
have a lemma similar to Lemma 3.2:

Lemma 5.2 Let ν be as in Lemma 3.2, and let K be the length of a single string in S. Then,
T ′(d, b) ≤

(d+b
b

)
· (|Σ| − 1)b · 22νb · (K − |t|+ 1)blog2(b+1)c.

The following theorem shows that when b = d, we have a better bound on T ′(d, b) than the one
in Lemma 5.2. Its proof is very similar to that of Theorem 3.4.

Theorem 5.3 T ′(d, d) ≤
(√

27+
√

27(|Σ|−1)

2 · (µ+ 1)
)d
· (K − |t|+ 1)blog2(d+1)c , where µ is as in

Theorem 3.4.

Corollary 5.4 Let m = K −L+ 1. Algorithm CloseSubstring solves the ECSS problem in time

O

(
(n− 1)m2

(
L+ d ·

(√
27+
√

27(|Σ|−1)

2 · (µ+ 1)
)d
·mblog2(d+1)c

))
.

When implementing Algorithm CloseSubstring, it is important to perform the following pre-
processing:

• For each string s ∈ S, compute the set Ws of all substrings w of s with |w| = |t| and
d(t, w) ≤ 2d.

Suppose that we have done the above preprocessing. Then, when performing Steps 1 through 4 of
the algorithm, we don’t have to search for w in the whole s but rather only in Ws. This simple
idea was first used in [4] and can save us a lot of time.

6 Application to the Planted (L, d)-Motif Problem

A program for the planted (L, d)-motif problem is exact if it finds all center substrings for each
given input. Since one of the center substrings must be the planted motif consensus, we can use
a known scoring scheme to evaluate the center substrings so that the planted motif consensus gets
the highest score.

We have implemented our algorithm in Section 5 for the closest substring problem into an exact
program (in C) for the planted (L, d)-motif problem. We call the program Provable because its
time comlexity can be proved rigorously to be good, as already shown in Section 5. As in previous
studies, we produce problem instances as follows: First, a motif consensus M of length L is chosen

8

Table 3: Performance Comparison of PROJECTION and Provable.
PROJECTION Provable

(L, d) a.p.c. Correct a.p.c. Correct
(10, 2) 0.80 100/100 0.88 100/100
(11, 2) 0.94 100/100 0.96 100/100
(12, 3) 0.77 96/100 0.93 100/100
(13, 3) 0.94 100/100 0.97 100/100
(14, 4) 0.71 86/100 0.86 100/100
(15, 4) 0.93 100/100 0.93 100/100
(16, 5) 0.67 77/100 0.88 100/100
(17, 5) 0.94 98/100 0.96 100/100
(18, 6) 0.73 82/100 0.90 100/100
(19, 6) 0.94 98/100 0.98 100/100
(9, 2) 0.28 11/20 0.55 90/100
(11, 3) 0.02 1/20 0.61 93/100
(13, 4) 0.06 2/20 0.57 90/100
(15, 5) 0.02 0/20 0.68 95/100

by picking L bases at random. Second, n = 20 occurrences of the motif are created by randomly
choosing d positions per occurrence (without replacement) and mutating the base at each chosen
position to a different, randomly chosen base. Third, we construct n = 20 background sequences
of length K = 600 using n ·K bases chosen at random. Finally, we assign each motif occurrence
to a random position in a background sequence, one occurrence per sequence. All random choices
are made uniformly and independently with equal base frequencies.

For each randomly generated instance, we first run Provable to obtain all center substrings. To
evaluate the center substrings, we use an obvious scoring scheme that favors those center substrings
which have a distance of d to at least one substring of each input string. If two or more center
substrings get the highest score, we select one of them randomly as the candidate motif consensus.
Table 3 summarizes the experimental results together with a performance comparison to a previous
program called PROJECTION by Buhler and Tompa [3].

In Table 3, the column titled “a.p.c.” stands for the average performance coefficient (defined by
Pevzner and Sze [20]) over 100 random problem instances and the column titled “Correct” shows
the number of instances (out of 100) yielding correct motif consensus. Moreover, the data about
PROJECTION are copied from the paper [3]. As can be seen from Table 3, for the tested cases, our
algorithm can almost always find the planted motif consensus M and predict better occurrences of
M in the input strings than PROJECTION.

To show that Provable runs fast, we compare it against the previously fastest exact program
(called PMSPrune [4]) for the planted (L, d)-motif problem. Table 4, copied from the paper [4],
summarizes the average running times of PMSPrune and other previously known exact programs
for some challenging cases of the planted (L, d)-motif problem.

Since PMSPrune is obviously the previously fastest, we ignore the other previously known
exact programs and only run Provable and PMSPrune on the same randomly generated instances
and counted their running times. Table 5 summarizes the average running times of Provable and
PMSPrune on a 3.33 GHz Windows PC for practical problem instances, each randomly generated
as described above. As can be seen from the table, our program runs faster for the cases where

9

Table 4: [4] Time Comparison of PMSPrune and others in Challenging Cases of (L, d).
Program (11, 3) (13, 4) (15, 5) (17, 6) (19, 7)

PMSPrune 5s 53s 9m 69m 9.2h
PMSP 6.9s 152s 35m 12h −
Voting 8.6s 108s 22m − −

RISOTTO 54s 600s 100m 12h −

(L, d) = (12, 3), (13, 3), (14, 4), (15, 4), or (17, 5).

Table 5: Time Comparison of Provable and PMSPrune in Practical Cases of (L, d).
Program (10, 2) (11, 2) (12, 3) (13, 3) (14, 4) (15, 4) (16, 5) (17, 5) (18, 6)
Provable 0.20s 0.20s 0.81s 0.33s 15.98s 2.42s 4.55m 48.73s 59.30m

PMSPrune 0.16s 0.11s 1.36s 0.51s 20.25s 5.07s 3.97m 50.71s 34.83m

Table 6 summarizes the average running times of Provable and PMSPrune on a 3.33 GHz
Windows PC for challenging problem instances, each randomly generated as described above. As
can be seen from the table, our program runs faster for the cases where (L, d) = (9, 2) or (11, 3).

Table 6: Time Comparison of Provable and PMSPrune in Challenging Cases of (L, d).
Program (9, 2) (11, 3) (13, 4) (15, 5) (17, 6) (19, 7)
Provable 0.33s 6.09s 107.08s 25.97m 5.13h 49.85h

PMSPrune 0.58s 6.38s 61.39s 8.55m 1.23h 12.75h

As can be seen from Tables 5 and 6, Provable runs slower than PMSPrune for some hard cases
such as the cases where (L, d) = (18, 6), (17, 6), or (19, 7). It should be pointed out that we have
pointed out a bug in PMSPrune to its authors and they are still busy fixing it. PMSPrune is
complicated and is hence bug-prone because it is based on branch-and-bound. Indeed, for certain
problem instances, its current bugged version misses some solutions that should be output by the
program. We believe that after the bug is fixed, PMSPrune will run significantly slower than its
current bugged version. In contrast, our program is simple and is very likely to be bug-free.

Table 7 summarizes the behavior of Provable and that of PMSPrune when the motif length
L changes. As can be seen from the table, both programs do not necessarily slow down when L
increases; instead, they significantly slow down when (L, d) becomes a challenging instance.

Table 7: Time Comparison of Provable and PMSPrune for Different L.
Program (17, 6) (18, 6) (19, 6) (20, 6)
Provable 5.13h 62.50m 11.58m 2.20m

PMSPrune 1.23h 34.83m 10.19m 2.41m

In summary, it turns out that except really hard challenging cases of (L, d) (such as (17, 6) and
(19, 7)), our new program Provable runs well compared to (the bugged version of) PMSPrune.

10

References

[1] A. Andoni, P. Indyk, and M. Patrascu. On the Optimality of the Dimensionality reduction
Method. Proceedings of 47th IEEE Symposium on Foundations of Computer Science, pp. 449-
458, 2006.

[2] A. Ben-Dor, G. Lancia, J. Perone, and R. Ravi. Banishing Bias from Consensus Sequences.
Proceedings of 8th Symposium on Combinatorial Pattern Matching, Lecture in Computer Sci-
ence, 1264 (1997) 247-261.

[3] J. Buhler and M. Tompa. Finding Motifs Using Random Projections. Journal of Computational
Biology, 9 (2002) 225-242.

[4] J. Davila, S. Balla, and S. Rajasekaran. Fast and Practical Algorithms for Planted (l, d) Motif
Search. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 4 (2007)
544-552.

[5] X. Deng, G. Li, Z. Li, B. Ma, and L. Wang. Genetic Design of Drugs without Side-Effects.
SIAM Journal on Computing, 32 (2003) 1073-1090.

[6] J. Dopazo, A. Rodŕiguez, J. C. Sáiz, and F. Sobrino. Design of Primers for PCR Amplification
of Highly Variable Genomes. CABIOS, 9 (1993) 123-125.

[7] M. R. Fellows, J. Gramm, and R. Niedermeier. On the Parameterized Intractability of Motif
Search Problems. Combinatorica, 26 (2006) 141-167.

[8] M. Frances and A. Litman. On Covering Problems of Codes. Theoretical Computer Science,
30 (1997) 113-119.

[9] J. Gramm, F. Huffner, and R. Niedermeier. Closest Strings, Primer Design, and Motif Search.
Currents in Computational Molecular Biology, poster abstracts of RECOMB 2002, pp. 74-75,
2002.

[10] J. Gramm, R. Niedermeier, and P. Rossmanith. Fixed-Parameter Algorithms for Closest String
and Related Problems. Algorithmica, 37 (2003) 25-42.

[11] K. Lanctot, M. Li, B. Ma, S. Wang, and L. Zhang. Distinguishing String Selection Problems.
Information and Computation, 185 (2003) 41-55. A preliminary version appeared in Proceed-
ings of 10th ACM-SIAM Symposium on Discrete Algorithms, pp. 633-642, 2003.

[12] M. Li, B. Ma, and L. Wang. Finding Similar Regions in Many Sequences. J. Comput. Syst. Sci.,
65 (2002) 111-132. A preliminary version appeared in Proceedings of the 31st ACM Symposium
on Theory of Computing, pp. 473-482, 1999.

[13] M. Li, B. Ma, and L. Wang. On the Closest String and Substring Problems. J. ACM, 49 (2002)
157-171.

[14] X. Liu, H. He, and O. Sýkora. Parallel Genetic Algorithm and Parallel Simulated Anneal-
ing Algorithm for the Closest String Problem. Proceedings of ADMA 2005, Lecture Notes in
Computer Science, 3584 (2005) 591-597.

[15] K. Lucas, M. Busch, S. össinger, and J. A. Thompson. An Improved Microcomputer Program
for Finding Gene- or Gene Family-Specific Oligonucleotides Suitable as Primers for Polymerase
Chain Reactions or as Probes. CABIOS, 7 (1991) 525-529.

11

[16] B. Ma and X. Sun. More Efficient Algorithms for Closest String and Substring Problems.
Proceedings of 12th International Conference on Research in Computational Molecular Biology,
Lecture Notes in Computer Science, 4955 (2008) 396-409. Also to appear in SIAM Journal
on Computing.

[17] D. Marx. The Closest Substring Problem with Small Distances. Proceedings of 46th IEEE
Symposium on Foundations of Computer Science, pp. 63-72, 2005.

[18] H. Mauch, M. J. Melzer, and J. S. Hu. Genetic Algorithm Approach for the Closest String
Problem. Proceedings of the 2nd IEEE Computer Society Bioinformatics Conference, pp. 560-
561, 2003.

[19] C. N. Meneses, Z. Lu, C. A. S. Oliveira, and P. M. Pardalos. Optimal Solutions for the Closest
String Problem via Integer Programming. INFORMS Journal on Computing, 2004.

[20] P. Pevzner and S.-H. Sze. Combinatorial Approaches to Finding Subtle Signals in DNA Se-
quences. Proceedings of 8th Int. Conf. Intelligent Systems for Molecular Biology, pp. 269-278,
2000.

[21] V. Proutski and E. C. Holme. Primer Master: A New Program for the Design and Analysis of
PCR Primers. CABIOS, 12 (1996) 253-255.

[22] N. Stojanovic, P. Berman, D. Gumucio, R. Hardison, and W. Miller. A Linear-Time Algorithm
for the 1-Mismatch Problem. Proceedings of 5th International Workshop on Algorithms and
Data Structures, pp. 126-135, 1997.

[23] Y. Wang, W. Chen, X. Li, and B. Cheng. Degenerated Primer Design to Amplify the Heavy
Chain Variable Region from Immunoglobulin cDNA. BMC Bioinformatics, 7 (suppl. 4), S9
(2006).

[24] L. Wang and L. Dong. Randomized Algorithms for Motif Detection. Journal of Bioinformatics
and Computational Biology, 3 (2005) 1038-1052.

[25] L. Wang and B. Zhu. Efficient Algorithms for the Closest String and Distinguishing String
Selection Problems. Proceedings of 3rd International Workshop on Frontiers in Algorithms,
Lecture Notes in Computer Science, 5598 (2009) 261-270.

12

Appendix: Omitted Proofs

Proof of Lemma 3.1: (See Figure 1.) Obviously, d(t, s′) = k+b′. Since s′ is a solution to instance
(S, d, t, P, b), d(t, s′) ≤ b. Thus, b′ ≤ b− k.

Let a = |P ∩ P (t, s)|, and let h be the number of positions i ∈ P (t, s)− P with t[i] = s′[i] (see
Figure 1). Then, |P (t, s)| = a+h+k and d(s′, s) = a+h+c+b′. So, by assumption, a+h+k = d+`
and a+ h+ c+ b′ ≤ d. Thus, b′ ≤ k − `− c. 2�yt

s'
s

P(t, s)
P k

c

b'

a h
Figure 1: Strings t, s, and s′ in Lemma 3.1, where for each position i ∈ [1..L], t[i] = s′[i] (respec-
tively, t[i] = s[i] or s′[i] = s[i]) if and only if t[i] and s′[i] (respectively, t[i] and s[i], or s′[i] and s[i])
are illustrated in the same color.

Proof of Lemma 3.2: By induction on b. In case b = 0, the algorithm will output either t or
NULL without making a recursive call; so, T (d, 0) = 1 and the lemma holds. Similarly, in case b
is small enough that the algorithm does not make a recursive call, we have T (d, b) = 1 and the
lemma holds. So, assume that b is large enough that the algorithm makes at least one recursive
call. Then, by the algorithm, we have the following inequality:

T (d, b) ≤
b∑
k=`

(
d+ `

k

)
k−∑̀
c=0

(
k

c

)
(|Σ| − 2)c T (d,min{b− k, k − `− c}). (6.1)

Let m = min{b− k, k − `− c}. Then, by the induction hypothesis,

T (d, b) ≤
b∑
k=`

(
d+ `

k

)
k−∑̀
c=0

(
k

c

)
(|Σ| − 2)c

(
d+m

m

)
(|Σ| − 1)m 22νm.

Since m ≤ b− k, m ≤ b−`−c
2 , and d ≥ b,

T (d, b) ≤
b∑
k=`

(
d+ `

k

)
k−∑̀
c=0

(
k

c

)
(|Σ| − 2)c

(
d+ b− k
b− k

)
(|Σ| − 1)

b−`−c
2 2ν(b−`−c)

= (|Σ| − 1)
b−`
2 2ν(b−`)

b∑
k=`

(
d+ `

k

)(
d+ b− k
b− k

)
k−∑̀
c=0

(
k

c

)(
|Σ| − 2√
|Σ| − 1 · 2ν

)c

≤ (|Σ| − 1)
b−`
2 2ν(b−`)

b∑
k=`

(
d+ b

k

)(
d+ b− k
b− k

)(
1 +

|Σ| − 2√
|Σ| − 1 · 2ν

)k

= (|Σ| − 1)
b−`
2 2ν(b−`)

(
d+ b

b

)
b∑
k=`

(
b

k

)(
1 +

|Σ| − 2√
|Σ| − 1 · 2ν

)k

≤ (|Σ| − 1)
b
2 2νb

(
d+ b

b

)(
2 +

|Σ| − 2√
|Σ| − 1 · 2ν

)b

13

So, to finish the proof, it suffices to show that
(

2 + |Σ|−2√
|Σ|−1·2ν

)b
≤ (|Σ| − 1)

b
2 2νb, or equivalently

2 + |Σ|−2√
|Σ|−1·2ν

≤ 2ν
√
|Σ| − 1. The last inequality is further equivalent to

(
2ν − 1√

|Σ|−1

)2

≥ 1. This

inequality holds because ν = log2
1+
√
|Σ|−1√
|Σ|−1

. 2

Proof of Lemma 3.3: By Stirling’s formula, for any integer h ≥ 0, h! =
√

2πh
(
h
e

)h
eλh with

1
12h+1 < λh <

1
12h , where π is the ratio of the circumference of a circle to its diameter and e is the

base of the natural logarithm. So,(
m

bαmc

)
=

m!
(bαmc)! (m− bαmc)!

≤
√

2πm
(
m
e

)m
e

1
12m√

2πbαmc
(
bαmc
e

)bαmc
e

1
12bαmc+1

√
2π(m− bαmc)

(
m−bαmc

e

)m−bαmc
e

1
12(m−bαmc)+1

≤ mm

bαmcbαmc (m− bαmc)m−bαmc
.

The last inequality holds because the assumption 1 ≤ bαmc ≤ m− 1 guarantees that 2πbαmc(m−
bαmc) ≥ m and 12bαmc+ 1 ≤ 12m.

Now, since α ≤ 1
2 and the function f(x) = xx(m − x)m−x is decreasing when 0 ≤ x ≤ m

2 , we
have (

m

bαmc

)
≤ mm

(αm)αm(m− αm)m−αm
= α−αm(1− α)−(1−α)m.

2

Proof of Theorem 3.4: As mentioned in the proof of Lemma 3.2, if our algorithm makes no
recursive calls, then T (d, d) = 1 and hence the theorem clearly holds. So, assume that our algorithm
makes at least one recursive call. Then, by Inequality 6.1, we have

T (d, d) ≤
d∑
k=`

(
d+ `

k

)
k−∑̀
c=0

(
k

c

)
(|Σ| − 2)c T (d,min{d− k, k − `− c}). (6.2)

Using Inequality 6.2 and the fact that T (d, 0) ≤ 1, one can easily verify that T (1, 1) ≤ 2 and

T (2, 2) ≤ 6|Σ| − 6. Since 2 ≤
√

27+
√

27(|Σ|−1)

2 · (µ+ 1) and 6|Σ| − 6 ≤
(√

27+
√

27(|Σ|−1)

2 · (µ+ 1)
)2

,

the theorem holds when d ≤ 2. So, in the sequel, we assume that d ≥ 3.
For convenience, let b′ = min{d− k, k − `− c}. Then, by Lemma 3.2,

T (d, d) ≤
d∑
k=`

(
d+ `

k

)
k−∑̀
c=0

(
k

c

)
(|Σ| − 2)c

(
d+ b′

b′

)
(|Σ| − 1)b

′
22νb′ .

Since b′ ≤ d−`−c
2 , b′ ≤ bd+b′

3 c. Moreover, since d ≥ 3, 1 ≤ bd+b′

3 c ≤ d+ b′ − 1. So, by Lemma 3.3,

T (d, d) ≤
d∑
k=`

(
d+ `

k

)
k−∑̀
c=0

(
k

c

)
(|Σ| − 2)c

(
3
3
√

4

)d+b′

(|Σ| − 1)b
′
22νb′ .

14

Moreover, we clearly have b′ ≤ d−`−c
2 and 2ν = 1+

√
|Σ|−1√
|Σ|−1

. Thus,

T (d, d) ≤
d∑
k=`

(
d+ `

k

)
k−∑̀
c=0

(
k

c

)
(|Σ| − 2)c

(
3
3
√

4

)d+ d−`−c
2 (

2ν
√
|Σ| − 1

)d−`−c

=

(√
3

3
√

2

)3d−` (
1 +

√
|Σ| − 1

)d−` d∑
k=`

(
d+ `

k

)
k−∑̀
c=0

(
k

c

)(
3
√

2(|Σ| − 2)√
3 +

√
3(|Σ| − 1)

)c
.

≤
(√

3
3
√

2

)3d−` (
1 +

√
|Σ| − 1

)d−` d∑
k=`

(
d+ `

k

)(
1 +

3
√

2(|Σ| − 2)√
3 +

√
3(|Σ| − 1)

)k
.

=

(√
3

3
√

2

)3d−` (
1 +

√
|Σ| − 1

)d−` d∑
k=`

(
d+ `

k

)
µk

≤
(√

3
3
√

2

)3d−` (
1 +

√
|Σ| − 1

)d−`
(1 + µ)d+`

≤
(√

27 +
√

27(|Σ| − 1)
2

)d
(µ+ 1)d

(
3
√

2(µ+ 1)√
3 +

√
3(|Σ| − 1)

)`

≤
(√

27 +
√

27(|Σ| − 1)
2

· (µ+ 1)

)d
,

where the last inequality holds because 3
√

2(µ + 1) ≤
√

3 +
√

3(|Σ| − 1) for |Σ| ≥ 2. This finishes
the proof. 2

Proof of Corollary 3.5: Obviously, each leaf of the search tree takes O(nL) time. As observed in
previous works (e.g., [16]), we can improve this time bound by carefully remembering the previous
distances and only updating the O(d) positions changed. The conclusion is this: With an O(nL)-
time preprocessing, each leaf of the search tree takes O(nd) time. So, by Theorem 3.4, the total
time complexity of algorithm CloseString is as stated in the corollary. 2

Proof of Lemma 4.1: For convenience, we use Q(w1, w2) to denote the set of positions i ∈ [1..|w1|]
with w1[i] = w2[i] for two strings w1 and w2 of equal length. Moreover, for ease of explanation, we
define the following notations (cf. Figure 2):

• i = |P (tr, sr) ∩ P (tr, tu) ∩Q(tr, su)|.

• j = |P (tr, sr) ∩ P (tr, tu) ∩ P (tr, su)|.

• j′ = |P (tr, sr) ∩ P (tr, tu) ∩ P (tr, su) ∩ P (tu, su)|.

• h = |P (tr, sr) ∩Q(tr, tu) ∩ P (tr, su)|.

• g = |P (tr, sr) ∩Q(tr, tu) ∩Q(tr, su)|.

• x = | (Pu − P (tr, sr)) ∩Q(tr, tu) ∩ P (tr, su)|.

• y = | (Pu − P (tr, sr)) ∩ P (tr, tu) ∩ P (tr, su)|.

• y′ = | (Pu − P (tr, sr)) ∩ P (tr, tu) ∩ P (tr, su) ∩ P (tu, su)|.

15

• z = | (Pu − P (tr, sr)) ∩ P (tr, tu) ∩Q(tr, su)|.

• a = | (P (tu, su)− Pu) |, or equivalently a = | (P (tr, su)− Pu) |.

By the above definitions, we have the following five equations immediately:

d(tr, sr) = i+ j + h+ g = d+ `r (6.3)
d(tr, su) = j + h+ x+ y + a (6.4)
d(tu, su) = i+ j′ + h+ x+ y′ + z + a = d+ `u (6.5)
d(tr, tu) = i+ j + y + z (6.6)

|Pu ∩ P (tu, su)| = i+ j′ + h+ x+ y′ + z. (6.7)

By Step 2 of algorithm CloseString2, d(tr, su) ≤ d(tr, sr). So, Equations 6.3 and 6.4 imply
the following inequality:

x+ y + a ≤ i+ g. (6.8)

By Equations 6.6 and 6.7, in order to finish the proof, we need only to prove the following
inequality:

i+ j′ + h+ x+ y′ + z ≥ i+ j − `r + y + z + `u
2

. (6.9)

By Equation 6.3, Inequality 6.9 is equivalent to the following inequality:

2i+ 2j′ + 3h+ 2x+ 2y′ + z + g ≥ d+ `u + y. (6.10)

By Equation 6.5, Inequality 6.10 is equivalent to the following inequality:

i+ j′ + 2h+ x+ y′ + g ≥ a+ y. (6.11)

By Inequality 6.8, Inequality 6.11 holds. This finishes the proof. 2�yt P

zi h

u

P(t , s)r r

u

su

j g a

tr

x y

Figure 2: Strings tr, tu, and su in Lemma 4.1, where for each position i ∈ [1..L], (1) tr[i] = tu[i]
(respectively, tr[i] = su[i] or tu[i] = su[i]) if tr[i] and tu[i] (respectively, tr[i] and su[i], or tu[i] and
su[i]) are illustrated in the same color, and (2) tr[i] 6= tu[i] (respectively, tr[i] 6= su[i] or tu[i] 6= su[i])
if one of tr[i] and tu[i] (respectively, tr[i] and su[i], or tu[i] and su[i]) is colored white but the other
is not colored white.

Proof of Lemma 4.2: The proof is similar to that of Lemma 3.2 and is by induction on bu. In
case bu is small enough that algorithm CloseString2 on input (Su, d, tu, Pu, bu) does not make a
recursive call, we have F (d, bu) = 1 and the lemma holds. So, assume that bu is large enough that

16

algorithm CloseString2 on input (Su, d, tu, Pu, bu) makes at least one recursive call. Then, by the
algorithm and Lemma 4.1,

F (d, bu) ≤
bu∑
k=`u

(
d+ `u − dd(tu,tr)−`r+`u

2 e
k

)
k−`u∑
c=0

(
k

c

)
(|Σ| − 2)cF (d,min{bu − k, k − `u − c})

=
bu∑
k=`u

(
b2d−d(tu,tr)+`r+`u

2 c
k

)
k−`u∑
c=0

(
k

c

)
(|Σ| − 2)cF (d,min{bu − k, k − `u − c}). (6.12)

Let h = b2d−d(tu,tr)+`r+bu
2 c and m = min{bu − k, k − `u − c}. Note that `u ≤ bu and k means

the number of positions i ∈ [1..L] such that tu[i] is changed by algorithm CloseString2 on input
(Su, d, tu, Pu, bu). Now, by Inequality 6.12 and the induction hypothesis,

F (d, bu) ≤
bu∑
k=`u

(
h

k

)
k−`u∑
c=0

(
k

c

)
(|Σ| − 2)c

(
b2d−d(tu,tr)−k+`r+m

2 c
m

)
(|Σ| − 1)m 22νm. (6.13)

By Lemma 3.1, bu ≤ br
2 . So, bu ≤ d

2 for br ≤ d. We also have d(tu, tr) + bu ≤ br. Using these
facts, one can verify that 2d−d(tu,tr)−2k+`r+bu

2 ≥ 2(bu − k). Thus, by the fact that m ≤ bu − k, we
have

F (d, bu) ≤
bu∑
k=`u

(
h

k

)
k−`u∑
c=0

(
k

c

)
(|Σ| − 2)c

(
b2d−d(tu,tr)−2k+`r+bu

2 c
bu − k

)
(|Σ| − 1)m 22νm

=
bu∑
k=`u

(
h

k

)
k−`u∑
c=0

(
k

c

)
(|Σ| − 2)c

(
h− k
bu − k

)
(|Σ| − 1)m 22νm. (6.14)

Since m ≤ bu−`u−c
2 , Inequality 6.14 implies the following:

F (d, bu) ≤ (|Σ| − 1)
bu−`u

2 2ν(bu−`u)
bu∑
k=`u

(
h

k

)(
h− k
bu − k

)
k−`u∑
c=0

(
k

c

)(
|Σ| − 2√
|Σ| − 1 · 2ν

)c

≤ (|Σ| − 1)
bu−`u

2 2ν(bu−`u)
bu∑
k=`u

(
h

k

)(
h− k
bu − k

)(
1 +

|Σ| − 2√
|Σ| − 1 · 2ν

)k

= (|Σ| − 1)
bu−`u

2 2ν(bu−`u)

(
h

bu

)
bu∑
k=`u

(
bu
k

)(
1 +

|Σ| − 2√
|Σ| − 1 · 2ν

)k

≤ (|Σ| − 1)
bu
2 2νbu

(
h

bu

)(
2 +

|Σ| − 2√
|Σ| − 1 · 2ν

)bu

≤
(
h

bu

)
(|Σ| − 1)bu 22νbu ,

where the last inequality follows from the definition of ν. This finishes the proof. 2

Proof of Theorem 4.3: The proof is similar to that of Theorem 3.4. If our algorithm makes
no recursive calls, then T (d, d) = 1 and hence the theorem clearly holds. So, assume that our
algorithm makes at least one recursive call. Then, by the algorithm, we have

T (d, d) ≤
d∑

k=`r

(
d+ `r
k

)
k−`r∑
c=0

(
k

c

)
(|Σ| − 2)c F (d,min{d− k, k − `r − c}). (6.15)

17

For convenience, let m = min{d− k, k − `r − c}. Then, by Lemma 4.2,

T (d, d) ≤
d∑

k=`r

(
d+ `r
k

)
k−`r∑
c=0

(
k

c

)
(|Σ| − 2)c

(
b2d−k+`r+m

2 c
m

)
(|Σ| − 1)m 22νm

≤
d∑

k=`r

(
d+ `r
k

)
k−`r∑
c=0

(
k

c

)
(|Σ| − 2)c 2

2d−k+`r+m
2 (|Σ| − 1)m 22νm

=
d∑

k=`r

2
2d−k+`r

2

(
d+ `r
k

)
k−`r∑
c=0

(
k

c

)
(|Σ| − 2)c

(√
2
(
|Σ|+ 2

√
|Σ| − 1

))m
. (6.16)

Recall that m ≤ d−`r−c
2 . Also note that

√
2
(
|Σ|+ 2

√
|Σ| − 1

)
=
(
|Σ|−2
γ−1

)2
. So, by Inequal-

ity 6.16, we have

T (d, d) ≤
d∑

k=`r

2
2d−k+`r

2

(
d+ `r
k

)(|Σ| − 2
γ − 1

)d−`r k−`r∑
c=0

(
k

c

)
(γ − 1)c

≤ 2d+ `r
2

(|Σ| − 2
γ − 1

)d−`r d∑
k=`r

(
d+ `r
k

)(
γ√
2

)k

≤ 2d+ `r
2

(|Σ| − 2
γ − 1

)d−`r (
1 +

γ√
2

)d+`r

.

=
(

4

√
8
(

1 +
√
|Σ| − 1

)(√
2 + γ

))d √
2 + γ

4
√

2
(
1 +

√
|Σ| − 1

)
`r (6.17)

If |Σ| = 2, then by Inequality 6.17 and the fact that `r ≤ d, T (d, d) ≤
(
4 + 3

√
2
)d

. Oth-

erwise,
√

2 + γ ≤ 4
√

2
(
1 +

√
|Σ| − 1

)
and hence T (d, d) ≤

(
4
√

8
(
1 +

√
|Σ| − 1

) (√
2 + γ

))d
by

Inequality 6.17. This completes the proof. 2

Proof of Lemma 5.2: The proof is similar to that of Lemma 3.2 and hence is by induction on b.
In case b is small enough that the algorithm does not make a recursive call, we have T ′(d, b) = 1
and the lemma holds. So, assume that b is large enough that the algorithm makes at least one
recursive call. For a string w of length |t|, let `(w) denote d(t, w)− d. Then, by the algorithm, we
have the following inequality:

T ′(d, b) ≤
∑
w

b∑
k=`(w)

(
d+ `(w)

k

) k−`(w)∑
c=0

(
k

c

)
(|Σ| − 2)c T ′(d,min{b− k, k − `(w)− c}), (6.18)

where w ranges over all length-|t| substrings of the string s selected in Step 2.
Let ` = minw `(w), where w ranges over all length-|t| substrings of the string s selected in

Step 2. For convenience, let m = min{b−k, k− `− c} and h = K−L+ 1. Then, by Inequality 6.18
and the induction hypothesis,

T ′(d, b) ≤ h
b∑
k=`

(
d+ b

k

)
k−∑̀
c=0

(
k

c

)
(|Σ| − 2)chblog2(m+1)c

(
d+m

m

)
(|Σ| − 1)m22νm

≤ hblog2(b+1)c
b∑
k=`

(
d+ b

k

)
k−∑̀
c=0

(
k

c

)
(|Σ| − 2)c

(
d+m

m

)
(|Σ| − 1)m22νm,

18

where the last inequality holds because m ≤ b−`−c
2 ≤ b−1

2 .
As in the proof of Lemma 3.2, we can prove the following inequality:

b∑
k=`

(
d+ b

k

)
k−∑̀
c=0

(
k

c

)
(|Σ| − 2)c

(
d+m

m

)
(|Σ| − 1)m 22νm ≤

(
d+ b

b

)
(|Σ| − 1)b · 22νb

This finishes the proof. 2

Proof of Theorem 5.3: If our algorithm makes no recursive calls, then the theorem clearly holds.
So, assume that our algorithm makes at least one recursive call. Then, by Inequality 6.18, we have

T ′(d, d) ≤
∑
w

d∑
k=`(w)

(
d+ `(w)

k

) k−`(w)∑
c=0

(
k

c

)
(|Σ| − 2)c T ′(d,min{d− k, k − `(w)− c}).

Using this inequality, one can easily verify that the theorem holds when d ≤ 2. So, in the sequel,
we assume that d ≥ 3.

For convenience, let b′ = min{d − k, k − `(w) − c} and h = K − L + 1. Note that b′ ≤ d−1−c
2 .

By Lemma 5.2,

T ′(d, d) ≤
∑
w

d∑
k=`(w)

(
d+ `(w)

k

) k−`(w)∑
c=0

(
k

c

)
(|Σ| − 2)c

(
d+ b′

b′

)
(|Σ| − 1)b

′
22νb′hblog2(b′+1)c

≤ hblog2(d+1)c−1
∑
w

d∑
k=`(w)

(
d+ `(w)

k

) k−`(w)∑
c=0

(
k

c

)
(|Σ| − 2)c

(
d+ b′

b′

)
(|Σ| − 1)b

′
22νb′ .

As in the proof of Theorem 3.4, we can prove the following inequality:

d∑
k=`(w)

(
d+ `(w)

k

) k−`(w)∑
c=0

(
k

c

)
(|Σ|−2)c

(
d+ b′

b′

)
(|Σ| − 1)b

′
22νb′ ≤

(√
27 +

√
27(|Σ| − 1)
2

· (µ+ 1)

)d
.

This finishes the proof. 2

19

