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Abstract

NMR resonance assignment is one of the key steps in
solving an NMR protein structure. The assignment pro-
cess links resonance peaks to individual residues of the
target protein sequence, providing the prerequisite for es-
tablishing intra- and inter-residue spatial relationships be-
tween atoms. The assignment process is tedious and time-
consuming, which could take many weeks. Though there
exist a number of computer programs to assist the assign-
ment process, many NMR labs are still doing the assign-
ments manually to ensure quality. This paper presents a
new computational method based on our recent work to-
wards automating the assignment process, particularly the
process of backbone resonance peak assignment. We for-
mulate the assignment problem as a constrained weighted
bipartite matching problem. While the problem, in the most
general situation, is NP-hard, we present an efficient solu-
tion based on a branch-and-bound algorithm with effective
bounding techniques and a greedy filtering algorithm for

reducing the search space. Our experimental results on 70
instances of (pseudo) real NMR data derived from 14 pro-
teins demonstrate that the new solution runs much faster
than a recently introduced (exhaustive) two-layer algorithm
and recovers more correct peak assignments than the two-
layer algorithm.

Keywords: NMR, chemical shift, peak assignment, protein
structure, bipartite matching, “greedy” algorithm, branch-
and-bound, combinatorial technique.

1 Introduction

A major objective of bioinformatics is to develop ef-
ficient algorithms for technologies that generate high-
throughput biological data. Due to the efforts of struc-
tural genomics [17], the NMR (nuclear magnetic resonance)
technique has been used as a high-throughput technology to
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quickly identify protein structures at a genome scale. How-
ever, protein structure determination by NMR is still a te-
dious process, compared with other high-throughput tech-
nologies such as DNA sequencing and microarray. Typi-
cally NMR protein structure determination involves the fol-
lowing steps: (i) NMR data generation — producing reso-
nance peaks in 1-, 2-, 3- and 4-D spaces1, which may reflect
both “signature” information of amino acid types and con-
nectivity (adjacency) information between amino acids; (ii)
peak picking — identifying “real” resonance peaks (peaks
generated from protein atoms rather than noise) from NMR
spectral maps; (iii) peak assignment — assigning resonance
peaks, typically peak groups, to individual residues of the
target protein sequence; (iv) structural restraint extraction
— extracting inter-residue distances, dihedral angles, etc.,
based on the peak assignment; and (v) structure calculation
— calculating the protein structure, using molecular simu-
lation and energy minimization, under the identified NMR
restraints. Thanks to advances in NMR technology, run-
ning NMR experiments and collecting necessary data for
structure determination are becoming easier and easier. The
bottleneck for NMR structure determination is often in the
stage of data analysis.

Peak assignment is a very time-consuming process in an
NMR structure determination, and usually it takes weeks
of manual work. The peak assignment process is typically
done in an iterative fashion through establishing relation-
ships between different NMR spectra [16]. It involves (a)
mapping peaks from different NMR spectra to the same
residues, where the peaks originated from the same residue
are represented by a spin system; (b) identifying the pos-
sible amino acid types of each spin system; (c) identi-
fying adjacency relationships (neighboring residues in the
protein sequence) between spin systems and linking them
into contiguous segments; and (d) assigning the segments
and the remaining isolated spin systems to the residues
of the protein sequence. Two key pieces of information
used in the assignment process are (1) different amino acid
types have different distributions of spin systems, and (2)
adjacency information (in the protein sequence) between
spin systems obtained by identifying their common reso-
nance frequencies. A great deal of work has been done
[21, 5, 6, 22, 19, 3, 15, 25, 12], with the aim to automate
the peak assignment process.

One of the most useful piece of information in a man-
ual peak assignment process is the connectivity informa-
tion among adjacent spin systems, which was used in the
above formulation. Existing procedures [21, 7] can be used
to determine which spin systems are connected in the pro-
tein sequence, with some level of accuracy. The result of
such procedures is a set of (short) segments of connected

1The � -D space means a measurement of the chemical shifts of � types
of atoms in a protein.

spin systems, which correspond to some protein sequence
segments. The basic idea of such a procedure is that there
are inter-residual peaks in multidimensional NMR spectra
that convey the connectivity information between residues.
For example, in HNCA spectrum, an inter-residual peak
(
�
H

�
� ,

���
N � ,

���
C � �
	 � ) signifies the sequential adjacency re-

lationship between two intra-residual peaks (spin systems),
(
�
H

�
�
	 � ,

���
N ��	 � ,

���
C � �
	 � ) and (

�
H

�
� ,

���
N � ,

���
C � � ). By iden-

tifying each intra- and inter-residual peak and then correlat-
ing them by using their chemical shifts, it is straightforward
to obtain the connectivity information. In this work, we
have used a pair of HNCA and HN(CO)CA experiments to
infer segments of connected spin systems. We will focus
on the peak assignment of backbone atoms. This is the ini-
tial step for peak assignments, and it is particularly useful
for quickly determining a low-resolution structure of pro-
tein backbones.

The backbone peak assignment problem with connec-
tivity information has recently been formulated as a con-
strained weighted bipartite matching problem on two dis-
joint groups, one group containing spin systems and the
other containing a sequence of amino acids with predicted
secondary structures [24]. A weighted bipartite match-
ing problem [14] is to find a one-to-one matching between
elements of two groups that maximizes the total weight,
where each matched pair of elements has a pre-specified
weight. NMR peak assignment can be naturally mod-
eled as a weighted bipartite matching problem, where each
weighted edge represents a possible assignment of a spin
system to an amino acid on the protein sequence with a
quantitative confidence value. To incorporate the connec-
tivity information, we can extend the above model to a
constrained weighted bipartite matching problem, i.e. we
define a (partial) neighboring relationship between the ele-
ments of each group and require that neighbors of a group
be matched only with neighbors of the other group. Unfor-
tunately, the constrained bipartite matching problem is NP-
hard, even if the edges are unweighted [24]. Some heuris-
tics have been proposed very recently, including a slow, ex-
haustive two-layer algorithm [24] and some fast approxi-
mation algorithms [8]. These heuristics attempt to find fea-
sible matchings with (approximately) the largest weights,
and may work well for the NMR peak assignment based
on our observation that, in practice, a segment of connected
spin systems typically have a better score at the “correct”
assignment position (i.e. the matching between a spin sys-
tem of NMR peaks and the residue that generates the peaks)
than almost all other (incorrect) assignment positions, espe-
cially as the size of the segment increases. Among these
heuristics, the two-layer algorithm performs the best over-
all in terms of recovering correct assignments. The idea
of the two-layer algorithm is to filter out most of the im-
possible assignments for connected spin systems, and then
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carry out an exhaustive search for all combinations of the
assignments for these connected spin systems to obtain a
global optimal assignment. The method works well in gen-
eral and is able to recover most of the correct assignments in
the our tests, especially when the connectivity information
is “dense”. However, it sometimes produces poor assign-
ments because the correct assignments for some connected
spin systems are filtered out in the first layer. It may also
take an extremely long time because of the exhaustive na-
ture of its second layer, when the filtering in its first layer is
not very effective. Hence, better algorithms for constrained
bipartite matching would be desirable and they may lead to
practical solutions for the real NMR peak assignment prob-
lem.

To overcome the drawbacks in the two-layer algorithm,
we develop a method for finding maximum-weight con-
strained bipartite matchings based on the branch-and-bound
technique and a “greedy” filtering algorithm. The branch-
and-bound algorithm uses an efficient (unconstrained) bi-
partite matching algorithm and the approximation algo-
rithms in [8] to compute necessary lower bound on the so-
lution to help prune the search tree, and returns an optimal
solution, i.e. a feasible matching with the largest weight.
It runs much faster than the exhaustive search used in the
two-layer algorithm. Although the branch-and-bound algo-
rithm works well in terms of assignment accuracy, we intro-
duce a greedy filtering algorithm to accelerate the computa-
tion substantially without affecting the assignment accuracy
significantly. The greedy algorithm divides a constrained
bipartite matching problem for the whole protein into sev-
eral smaller constrained bipartite matching problems based
on some preliminary assignments, and calls the branch-and-
bound algorithm to solve each of these problems. Although
the method (i.e. branch-and-bound augmented with greedy
filtering) may potentially take exponential time in the worst
case, our experiments on real and simulated NMR data il-
lustrate that it runs reasonably fast (much faster than the
two-layer algorithm) when the spin system connectivity is
sufficiently “dense”. In other words, the bounding and fil-
tering techniques become very effective when the graph
contains many large segments of connected spin systems.
In particular, the test results on 70 instances of NMR peak
assignment data derived from 14 proteins, each being as-
sociated with 5 different degrees of connectivity, show that
our new algorithm runs much faster than the two-layer algo-
rithm and recover more correct peak assignments than the
two-layer algorithm in most of the cases.

The paper is organized as follows. Section 2 discusses
the method of scoring a matching between spin systems and
amino acids, which is crucial for the formulation of NMR
peak assignment as a constrained weighted bipartite match-
ing problem. It also explains the source of real NMR spec-
tral data that can be used to test the effectiveness of peak

assignment algorithms. Section 3 describes the constrained
weighted bipartite matching problem, and presents the the
branch-and-bound algorithm for the constrained weighted
bipartite matching problem and the greedy filtering algo-
rithm. Section 4 shows the experimental results on the
performance of the branch-and-boundalgorithm augmented
with greedy filtering. Section 5 concludes the paper with
some suggestions of future research directions.

2 Scoring Scheme and Data Source

NMR resonance of an atom is measured by its chem-
ical shift, a characteristic value of the atom type and its
physi-chemical environment. A combination of chemical
shifts of different atom types of an amino acid, e.g.,

�
H � ,���

C � ,
�
H

�
, and

���
N, provides highly useful information

for distinguishing different types of amino acids. It is pos-
sible to predict the chemical shifts of each amino acid if
we know a protein’s 3-D structure. However, the predic-
tion becomes much more challenging when the structural
information is not available. So far, chemical shift predic-
tion has only been successful for proteins which have close
homologs with known chemical shifts [11] or solved high-
resolution structures [20].

Instead of attempting to predict the chemical shifts of
a protein, we have developed a statistics-based scoring
scheme for assessing the likelihood of an array of partic-
ular chemical shifts that may be produced by a particular
amino acid type. To account for some structural informa-
tion, we include the predicted secondary structures in our
scoring scheme. We have used the PSIPRED program [13]
for secondary structure predictions, which is one of the
best secondary structure prediction programs available with
about 80% accuracy for assigning a residue to an � -helix,�

-strand, or a loop. In the current study, we consider only
the chemical shifts of

���
C � and

�
H � atoms, without using�

H
�

and
���

N’s chemical shifts as we found that they are not
particularly useful for backbone peak assignment.

The basic idea of our scoring scheme is to examine a set
of solved NMR structures with available chemical shifts in
the BioMagResBank database [18], and collect the follow-
ing statistics: the relative frequency of a particular triplet�������	�
���
���
�

, for each amino acid type
���

, each secondary
structure type

�
�
, and each chemical shift range of

���
(orig-

inated from
���

C � or
�
H � ). Then we estimate the expected

frequency of each triplet. The ratio of the two frequen-
cies provides an estimate of the preference of an chem-
ical shift coming from a particular amino acid type sit-
ting inside a particular secondary structure. More specif-
ically, we have divided all chemical shifts of C � and H �

into five bins such that each bin is approximately equally
populated using 220 proteins from the BioMagResBank
database. Hence,

���
will be of a discrete value in the

3



range of � through � . For each
� � ��� � ���	���
�

, we calculate
two scores

� ���������������	�
���
���	� 

�
�

and
� ���������������	�
���
����� �

�
�
;

and use
� ���������������	�
���
���	� 


�
��
 � ���������������	�
���
���	� �

�
�

as the
weight of each edge

� � ���	���
�
(actually this number mul-

tiplied by -1000). Further details of calculating the edge
weights can be found in [24]. Four types of NMR spec-
tra data are used in our work: (1) 2D (

�
H,

���
N)-HSQC, (2)

HNCA, (3) H(CA)NH, and (4) HN(CO)CA.
To test our new algorithm in this work, we selected 14

proteins without solved atomic structures, obtained their
chemical shifts of

���
C � and

�
H � from BioMagResBank

[18], and created connectivities via simulation. Since these
proteins do not have solved atomic structures, none of them
is in the data set that was used to derive the scoring func-
tion. Thus, test results on these proteins will be unbiased
with respect to the score function.

3 Algorithms

We first formulate the peak assignment problem as a
weighted bipartite matching problem. A bipartite graph
is a graph ��� ��� ��� �

whose vertex set
�

can be parti-
tioned into two disjoint sets � and � such that each edge
of
�

has one vertex in � and one vertex in � . We consider
only undirected bipartite graphs, i.e. edges of

�
have no

orientations. A matching of � is a set of edges of
�

, no
two of which share a vertex of

�
. A perfect matching is a

matching that covers all vertices of the graph. In a weighted
bipartite graph, each edge

�����
has a weight � ��� �

. The
maximum weight (perfect) matching problem of � is to find
a (perfect) matching with the highest total weight possible.
The maximum weight matching problem provides a natu-
ral formulation for the peak assignment problem. Let ���� � � ��!"!"! � # represent a protein sequence with $ residues, and
�%�'&)( � � ( � � !*!"! � (�+-, be its observed spin systems. In our
application, each ( � is a 2D vector of chemical shifts of

�
H �

and
���

C � . Ideally, each � � of � has one spin system, corre-
sponding to exactly one (�. . Due to the non-trivial nature
of resonance peak picking [4], some of the actual peaks
may not be picked (missing from the � list) and some of
the peaks in � could be noise. A bipartite graph represen-
tation of the peak assignment problem can be defined as
follows. Every residue � � is made a vertex of set � and
�/�0&)( � � ( � � !*!"! � ( + , as given. Each pair of vertices � � and
( . are connected by an edge with the weight of � � � �

� ( . �
(the integer value of 12�)3435376 ���8������� � ��� � ���	���
�

). One could
formulate the peak assignment problem as finding a maxi-
mum weight matching for the above bipartite graph. An
efficient algorithm for finding a maximum weight bipar-
tite matching, e.g. the implementation by Goldberg and
Kennedy [10] using a technique called push and relabel,
could be used for this purpose. However, our experience
with this approach has shown that the resulting assign-

ments are usually unsatisfactory because the connectivity
is totally ignored. Thus, here we formulate the peak as-
signment problem with connectivity information as a con-
strained bipartite matching problem. Let �9� � �;:�� ��� �
be a bipartite graph, where each edge

� � �
� (<. �=�'�

has
a weight � � � �

� (<. � . In addition, consecutive elements of
�/�0&)( � � !8!)! � (�+>, may form non-overlapping strings, e.g.,
�?�@&)( � � ( � ( � (�A � ( � (�B � (�C � !)!8! � ( + 	 � ( + 	 � ( + 	 � ( + , . A
constrained bipartite matching is a bipartite matching such
that if (�D !8!)! (4E is a string of � and (�D is matched with � � ,
then (<D8F � should be matched with � � F � , !)!8! , and (4E should
be matched with � � FHGIE 	 D8J , i.e. a string of � should be
matched with consecutive elements of � in order. The con-
strained bipartite matching problem is to find a constrained
matching that has the maximum possible weight. The con-
strained bipartite matching problem is shown to be NP-hard
and MAX SNP-hard [8, 24], even if all edges have unit
weight and every string in � has length at most K .

In this section, we will describe three algorithms: (1)
two approximation algorithms introduced in [8] that will be
used to estimate lower bounds in the branch-and-bound al-
gorithm; (2) the branch-and-bound algorithm for assigning
spin systems to residues on a protein sequence in the con-
strained bipartite matching problem. (3) the greedy filtering
algorithm to speed up the branch-and-bound algorithm by
reducing the search space.

3.1 Two efficient approximation algorithms

Following the notations above, we consider an instance
of constrained weighted bipartite matching: �?� � �L:
� �M� �

, where �N�@& � �
� � � � !8!8! � � #5O , , �?�@&<( �QP8P)P ( � O �

( � O F �QP)P8P ( �*R � !8!)! � ( �TS P8P)P ( # R , , and
�VU �96W� is the set

of edges. Here, ( �YX[Z O F �QP8P)P ( �*X in � denotes a string of con-
secutively adjacent spin systems. We may assume that for
every substring (�.)(<. F � of a string in � ,

� � �
� (<. �\�]�

if and
only if

� � � F �
� ( . F �

�W�^�
. Based on �_� � ��:`� ��� �

,
we construct a new edge-weighted bipartite graph �-ab�� �c:d� �M� a � as follows: For each � �

� � and each string
( . ( . F � P)P8P (4e � � such that

� � �
� ( . �f�W�

, let
� � �

� ( . � be a
super-edge in

� a and its weight be the total weight of edges
& � � � Fhg � ( . Fhg �i� 3kjml�jonp1rqs, in

�
.

We have recently developed two efficient approximation
algorithms for computing a feasible matching for �-a [8].
The idea behind the first approximation algorithm is as fol-
lows. Let t0u denote an optimal matching on � a . It can be
easily shown that there is a vertex such that every (super-)
edge incident to which conflicts with at most two edges in
t u . Using this fact and the local ratio technique in [2], we
can construct a recursive algorithm to find a (good) feasible
matching on �2a with weight at least half of the optimum.
(The algorithm in fact, as we were informed very recently,
follows directly from the recent result of Bar-Noy et al. [1]
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on interval scheduling.)
The key idea behind the second is that if the length of

the longest string in � is at most four times the length
of the shortest string, then a simple greedy algorithm al-
ways finds a constrained bipartite matching whose weight
is at least one-sixth of the optimal. So, if we partition the
strings of � into ����� A�� groups, where � is the length of the
longest string in � , and greedily find a constrained bipartite
matching between each group and � , then the weight of the
heaviest matching is at least ��� �
	 ����� A
� � � ��� ��� ����� � � �
times the optimal. The algorithm runs in � ��� � �"� � � ����� � � �
time. Moreover, it outputs a matching with weight at least
��� �
� ����� � �

times the optimal.
Although the first ( K -approximation) algorithm has a bet-

ter performance guarantee than the second (
� ����� � ) algo-

rithm in the worst case, our experimental results in [8]
showed that the second algorithm in fact performs bet-
ter generally on real NMR peak assignment data both in
terms of maximizing the weight of the output matching and
in terms of recovering a large number of correct match-
ing edges. Because of the crude nature of some of the
steps in the approximation algorithms, it is easy to see that
these algorithms will fail to recover many correct match-
ing edges when the strings in � are distributed in the worst
cases. Nevertheless, they can be very effective in provid-
ing lower bounds in a branch-and-bound algorithm. Let � �

denote the weight of the matching found by the
� ����� � -

approximation algorithm and � � denote the weight of the
matching found by the K -approximation algorithm. Then
we will use ����� &�� � � � � , to lower bound the weight of
t u (the optimal feasible matching). Moreover, we will
also use K�� � , in addition to the weight of the optimal
(unconstrained) bipartite matching found by Goldberg and
Kennedy algorithm, to upper bound the weight of t u .
3.2 Branch-and-bound algorithm

Branch-and-bound is a systematic method for solving
optimization problems. It is a general optimization tech-
nique that applies to many problems. Due to the inherent
exponential complexity of many combinatorial problems,
branch-and-bound may take exponential time in the worst
case. On the other hand, if applied carefully, it can run rea-
sonably fast on average for practical applications while not
being able to overcome the worst case. The general idea of
the branch and bound algorithm is to construct a search tree
and apply a carefully selected criterion to determine which
node to expand the search. Another criterion is to tell the
algorithm when an optimal solution has been found. In this
way, a substantial portion of the search space for the opti-
mal solution can be avoided, in particular, when the lower
bound for the maximum solution can be defined well (as
done in our case).

The basic idea of applying the branch-and-bound algo-
rithm in the assignment of protein backbone NMR peaks
is to identify the lower bound of the total matching score
and exclude any branch of possible matchings with scores
smaller than the lower bound during the search for the
matching with the globally maximum score. The scoring
function has a physical meaning, i.e. a positive value indi-
cates a favorable matching and a negative value indicates an
unfavorable matching. For the correct peak assignment, the
total score should be positive, although some pairs between
spin systems and residues may contribute negative scores.
Hence, 3 is a natural lower bound of the total matching
score. If we find that a branch of possible matchings that
satisfy the constraints have negative score, we can skip the
whole branch for the purpose of searching the globally max-
imum score. As shown in Figure 1, possible matchings that
satisfy the constraints predominantly have negative scores.
That means a substantial portion of the search space can be
ignored during the search. In fact, we can do even better
than that. Our efficient approximation algorithms can de-
fine a positive lower bound that is very close to the globally
maximum score. This will further exclude many possible
matchings during the search. Figure 1 also suggests that the
branch-and-bound algorithm may be more effective when
the connectivity is dense, as a big portion of possible match-
ings have negative scores.

Here we show the mathematical formulation of our al-
gorithm. A string is long if it contains at least three spin
systems. Given � ab� � ��:o� �M� a � , it is easy to notice
that when a super-edge

� � �
� ( . � is included into a match-

ing and ( . ( . F � !)!8! (4e is the long string involved, then any
other edges incident to vertices � �

� � � F �
� !)!8! � � � F e 	 . should

be removed from further consideration. Moreover, we can
use this rule to remove the conflicting super-edges from fur-
ther consideration as well. Assume that (�.8(<. F � !)!8! ( e is
the n th long string. Let � � e � � e�� denote the range of index�

such that
� � �

� ( . � is an edge of
� a . For simplicity, we

call � � e � � e � the matching range of the n th long string. To
build a branch-and-bound tree, set � a to be the root node.
Compute approximately optimal matchings for the root by
calling the K -approximation and

� ����� � -approximation al-
gorithms, and let ��� be the maximum of the weights of the
two output matchings. ��� will be used as a global vari-
able in the algorithm that keeps the best lower bound of the
optimal matching(s).

Generally, for each branching node under consideration,
if for every long string of index n , we have � e � � e , then the
node is treated as a leaf node. In such a leaf node, every long
string has to be assigned to its incident super-edge. If these
super-edges agree with each other, we can delete all the
super-edges from the graph and call Goldberg and Kennedy
algorithm to compute a partial maximum weight matching
for the remaining graph. The output partial matching com-
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Figure 1. Distribution of scores for possible matchings that satisfy the constraints for protein 1avf.
(a) All possible matchings when the number of adjacent pairs of spin systems is at K�3�� of the total
number of residues. (b) A sampling of 500,000 possible matchings when the number of adjacent
pairs of spin systems is at �43�� of the total number of residues.

bined with the super-edges deleted earlier form a perfect
matching of the instance. Note that this perfect matching
is a feasible matching of � a , the instance represented at the
root. Therefore, if its weight is greater than � � , then we
update ��� with this weight. On the other hand, if we de-
tect that there is a pair of conflicting super-edges, then this
leaf node is killed, since it does not yield any interesting
matching.

Suppose that the branching node is not a leaf. That
is, there is some long string with index n whose match-
ing range satisfies

� e�� � e , or equivalently there are more
than one super-edges incident to that long string. In this
case, we compute approximately optimal matchings for the
node instance by calling the K -approximation and

� ����� � -
approximation algorithms. Let � � be the weight of the
matching found by the K -approximation algorithm. Since
K�� � is an upper bound of the optimal feasible matching
weight for this branching node instance, if K�� ��� � �
then we know that any feasible matching for this instance
has its weight less than � � and thus would not be an op-
timal feasible matching for � a . In this case, the branching
node is killed. A similar analysis can be done using Gold-
berg and Kennedy algorithm. Otherwise, if the larger of
the weights of the above two approximately optimal match-
ings is greater than ��� , then we have just found a better
feasible matching and we can update ��� using this value.
The branch-and-bound algorithm then searches or prunes
the children of the node, which are defined below, in a stan-
dard way.

The children of a branching (non-leaf) node are defined
as follows. Look for a longest range of the long strings,

say � � e ��� e�� , and bipartition it to form two child nodes. In
the left child node, the n -th long string has matching range
� � e � � ae � , where

� ae j � � e 
;� e � �4K and is the largest index
such that

� ���
	� � ( . � is an edge in
� a . Similarly, in the right

child node, the n -th long string has matching range � � ae � � e � ,
where ��ae � � � e 
m� e � ��K and is the smallest index such that� �
� 	� � ( . � is an edge in

� a .
At the end, � � records the weight of an optimal feasi-

ble matching. Using a simple tracking technique, we can
store the optimal matching itself as well. A pseudo-code
for the branching and bounding steps at each node is given
in Figure 2.

3.3 Augmenting branch-and-bound with greedy
filtering

A major problem in the two-layer algorithm is its filter-
ing procedure. The filtering procedure aims at removing
improbable assignments of a string of constrained consec-
utive spin systems. Although in almost all cases the cor-
rect assignment of the string is not filtered out, an incor-
rect assignment can happen. An incorrect assignment of a
string affects the assignments of other strings since differ-
ent strings cannot overlap with each other in the solution.
Hence, the cascade effect may result in very poor NMR
peak assignment. To overcome this problem, we employ
a greedy algorithm that takes the best immediate, or local
solution for locating most probable assignments of all the
long strings. As shown in [24], the correct assignment of a
long string can stand out easily from the scoring function,
compared with a short string. The greedy algorithm can
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BRANCH-AND-BOUNDing at one node: current lower bound � �
if (no ranges are longer than � )

if (no pair of conflicting super-edges)
remove super-edges and collect their total weight � � ;
remove edges incident to the residues to which long strings match;
call Goldberg and Kennedy algorithm to get a partial matching with weight � � ;
if ( � � � �


 � � � � � )
����� � ;

else
find a longest range, say

� ��e � � e � ;
branching to two child nodes:

one with range
� ��e � � ae � and the other with

� ��ae � � e � for the n -th long string;
for (each of the child node)

call Goldberg and Kennedy algorithm to get an optimal unconstrained matching with weight � � ;
if ( � � � ��� )

kill the node;
else

call K -approximation algorithm to get an approximately optimal matching with weight � � ;
if ( K�� � � � � )

kill the node;
else

call
� ����� � -approximation algorithm to get another approximately optimal matching
with weight � � ;

if ( ����� &�� � � � � , � ��� )
����� ����� &�� � � � � ,

recursively call BRANCH-AND-BOUND at this child node;

Figure 2. The branching and bounding steps at a node.

provide a limited number of probable combinations for the
assignments of long strings. For each combination, we can
fix the long strings and solve the assignments of the short
strings and unconnected spin systems using the branch-and-
bound algorithm. In this way, we can save computing time
substantially. The greedy algorithm may find suboptimal
solutions, but we have observed in our experiments that it
works much better than the filtering procedure used in the
two-layer algorithm.

We now describe how the greedy algorithm works. Con-
sider an instance of constrained weighted bipartite match-
ing with a set of

�
long strings �@� &�� �

�
� � � !)!8! � ���), ,

where string � � with length q contains spin systems &)( � O �
( � O F �

� P8P)P � ( � O F . 	 � , . Our greedy algorithm proceeds as fol-
lows for some pre-specified n :

1. Sort the
�

long strings according to their lengths so that
in � � &�� �

�
� � � !8!)! � � � , , � � is the longest and � � is

the shortest.

2. Find the best n assignments for � � on the protein se-
quence, i.e., �

�
� , �

�
� , ..., � e� .

3. For each assignment � .� , ��j � j^n , find the best n

assignments for � � . Out of the n � combinations of � �

and � � assignments, select the top n combinations.

4. For each combination of � � and � � assignments, find
the best n assignments for � � . Out of the n � combina-
tions of � � , � � , and � � assignments, select the top n
combinations.

5. Repeat the above steps for � A � � �
� !8!)! � � � .

After ��� is considered, we will have obtained the best n
assignments for all the long strings in � . These results can
be combined with the branch-and-bound algorithm as fol-
lows. For each of above n assignments, we use the branch-
and-bound algorithm to find an optimal assignment for the
remaining short strings and isolated spin systems. Then we
obtain the total score by adding the score of the long string
assignment and the score of the assignment of the short
strings and individual spin systems. We rank the above n
overall assignments according to the total score, and use the
best total score assignment as the final solution.

In our experiments, it was observed that nd�%�<3 seems
to give the best result.
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� ����� �������
	 �������
	 ��� ��� � ����� �������
	 ��������	 ��� ���
bmr4027 5 158 1896284 1934329 33 33 bmr4144 5 78 949170 997603 16 14
bmr4027 6 1921093 37 36 bmr4144 6 993361 11 30
bmr4027 7 1911828 74 79 bmr4144 7 954633 64 34
bmr4027 8 1894532 128 113 bmr4144 8 954585 67 67
bmr4027 9 1896606 156 155 bmr4144 9 952241 75 75
bmr4288 5 105 1249465 1255475 12 38 bmr4302 5 115 1298321 1331391 24 34
bmr4288 6 1261696 26 52 bmr4302 6 1324395 43 44
bmr4288 7 1251020 57 55 bmr4302 7 1323495 62 65
bmr4288 8 1238344 66 N/A bmr4302 8 1308217 103 N/A
bmr4288 9 1249465 105 105 bmr4302 9 1298321 110 111
bmr4309 5 178 2048987 2117910 25 46 bmr4316 5 89 1029827 1009329 30 42
bmr4309 6 2110992 57 59 bmr4316 6 1022505 35 60
bmr4309 7 2093595 77 122 bmr4316 7 1029827 79 79
bmr4309 8 2067295 101 106 bmr4316 8 1029827 89 87
bmr4309 9 2048987 178 176 bmr4316 9 1029827 89 89
bmr4318 5 215 2390881 2497294 20 38 bmr4353 5 126 1498891 1532518 17 17
bmr4318 6 2481789 35 38 bmr4353 6 1524784 24 35
bmr4318 7 2444439 52 87 bmr4353 7 1516244 44 29
bmr4318 8 2420829 62 113 bmr4353 8 1472871 80 N/A
bmr4318 9 2393435 201 N/A bmr4353 9 1498891 126 126
bmr4391 5 66 710914 753046 18 13 bmr4393 5 156 1850868 1874095 41 30
bmr4391 6 745501 10 10 bmr4393 6 1871616 59 45
bmr4391 7 735683 26 0 bmr4393 7 1862221 76 74
bmr4391 8 723111 42 18 bmr4393 8 1853749 130 128
bmr4391 9 710914 66 N/A bmr4393 9 1851298 152 143
bmr4579 5 86 950173 967647 15 13 bmr4670 5 120 1391055 1435721 22 35
bmr4579 6 976720 32 15 bmr4670 6 1429449 30 48
bmr4579 7 958335 44 42 bmr4670 7 1402335 38 45
bmr4579 8 956115 63 49 bmr4670 8 1391055 116 N/A
bmr4579 9 950173 86 86 bmr4670 9 1391055 116 N/A
bmr4752 5 68 882755 884307 21 28 bmr4929 5 114 1477704 1496460 23 24
bmr4752 6 892520 32 28 bmr4929 6 1496954 32 24
bmr4752 7 887292 41 43 bmr4929 7 1490155 56 65
bmr4752 8 882755 68 N/A bmr4929 8 1481593 88 86
bmr4752 9 882755 68 68 bmr4929 9 1477704 114 112

Table 1. Summary on the performances of the branch-and-bound (augmented with greedy filtering)
and the two-layer algorithms on � 3 instances of NMR peak assignment. The number after the un-
derscore symbol in the name of each instance indicates the “density” of adjacency information in
the instance (more precisely, 5 means that the number of adjacent pairs of spin systems is ��3�� of
the total number of residues). We start from density index 5 because most graphs have this level
of density in actual NMR experiments. t u represents the correct assignment and, t�� (or t�� ) is
the assignment computed by the branch-and-bound (or the two-layer, respectively) algorithm. The
parameters � � � � t u�� t � � and � � � � t u�� t�� � , show how many correct matching edges were recov-
ered by the branch-and-bound and two-layer algorithms, respectively. Each N/A indicates the failure
of a computation by two-layer algorithm. The weights shown in the table are the integer values of
12�<34353-6 � ������� � ��� � �
� �	���
�

).
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4 Results

We have tested our new method described above (i.e.
branch-and-bound augmented with greedy filtering) on 14
proteins, each with 5 cases of connectivity, as shown in Ta-
ble 1. The computing time on a Pentium III with 1GHz CPU
and 1GB memory takes from less than 1 second to an hour
for each case. There are 8 cases where the 2-layer algo-
rithm failed since the algorithm was taking too long (on a
supercomputer) and had to be killed before any result could
be obtained. The new method succeeded on all these in-
stances. The weight of its output matching is generally bet-
ter than that obtained by the two-layer algorithm. It is in fact
often better than the weight of the correct matching where
every spin system is assigned correctly (see the Discussion
Section for the reasons behind this). The number of correct
matching edges recovered by the new algorithm is better
than that of the two-layer algorithm in most of the cases. In
some cases the improvement is very significant.

5 Discussion

In summary, we have developed an improved computa-
tional method for automated NMR peak assignment based
on branch-and-bound and a greedy filtering technique. Our
result on � 3 instances of NMR peak assignment shows that
new method is quite promising. In particular, the method is
clearly superior to the two-layer algorithm and the two ap-
proximation algorithms that we recently developed. As the
framework is especially designed for problems where only
limited NMR peaks are available and the peaks could be
noisy, we expect that it will make a useful tool for NMR
structure determination for large proteins, in conjunction
with computational prediction and modeling tools. Though
the development of the framework is still in its early stage,
the tests have shown some highly encouraging results. In
particular, using the HNCA spectrum alone for the connec-
tivity information, or using the

���
C � chemical shifts with-

out the
�
H � chemical shifts, we can align a significant por-

tion of the spin systems correctly. Our planned further re-
search can be outlined as follows.

More realistic models for treating segments. In our
current model, all segments are assumed to be correct. In
reality, segment determination is a nontrivial issue. Due to
artificial and missing peaks, segments could be inconsis-
tent with each other, e.g., they could overlap. In our cur-
rent implementation, overlapping segments are broken into
smaller pieces to avoid conflicts but some connectivity in-
formation could be lost in this way. A more general model
for segments will be developed to deal with the ambiguity
and conflicting information.

Improved scoring scheme. Our current scoring
scheme is mainly based on resonance frequency distribu-

tions of different single amino acid types. The scoring
scheme has a limited discerning power, since the correct as-
signment generally does not have the best score. In particu-
lar, the scheme depends on predicted secondary structures,
which have about a 20% error [13]. Clearly, more work
on the scoring function is needed in the future. A great
deal of additional information can be used to enhance the
discerning power of the scoring scheme. We will examine
how environment information, say an amino acid sitting in
the middle of a particular tripeptide, may help improve the
scoring scheme. We are also planning to investigate how a
predicted 3D structure by threading [23] can be used to help
design more effective scoring schemes.

More experiments on NMR data. Our current ap-
proach involves only four different NMR spectra. A typical
NMR structure determination process may use more than
ten spectra. We will extend our framework to other NMR
experiments, which are suitable for our goals, i.e. getting
backbone assignments for large proteins [9]. We may in-
clude a pair of CBCANH and CBCA(CO)NH experiments
to use

���
C � chemical shifts for our scoring scheme. The

expanded list of NMR spectral data should clearly increase
the assignment specificity.

Assignments of NOEs. Another challenging issue re-
lated to the peak assignment problem is the assignment of
nuclear Overhauser effects (NOEs). The quality of assigned
NOEs, as well as the quantity of assigned NOEs, directly
affect the quality of the protein structure. The fundamen-
tal difficulty is that it requires full knowledge of protein 3D
structure. We expect that our capability of the protein struc-
ture prediction may help to solve this problem.
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