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Abstract

The Degree-∆ Closest Phylogenetic kth Root Problem (∆CPRk) is the
problem of finding a (phylogenetic) tree T from a given graph G = (V,E) such that
(1) the degree of each internal node in T is at least 3 and at most ∆, (2) the external
nodes (i.e. leaves) of T are exactly the elements of V , and (3) the number of disagree-
ments, i.e., |E⊕{{u, v} : u, v are leaves of T and dT (u, v) ≤ k}|, is minimized, where
dT (u, v) denotes the distance between u and v in tree T . This problem arises from
theoretical studies in evolutionary biology and generalizes several important combina-
torial optimization problems such as the maximum matching problem. Unfortunately,
it is known to be NP-hard for all fixed constants ∆, k such that either both ∆ ≥ 3 and
k ≥ 3, or ∆ > 3 and k = 2. This paper presents a polynomial-time 8-approximation
algorithm for ∆CPR2 for any fixed ∆ > 3, a quadratic-time 12-approximation algo-
rithm for 3CPR3, and a polynomial-time approximation scheme for the maximization
version of ∆CPRk for any fixed ∆ and k.

Keywords: Phylogenies, phylogenetic roots, computational biology, approximation
algorithms, randomized algorithms, graph algorithms.

1 Introduction

A phylogeny is a tree where the leaves are labeled by species and each internal node
represents a speciation event whereby an ancestral species gives rise to two or more child
species. The internal nodes of a phylogeny have degrees (in the sense of unrooted trees,
i.e. the number of incident edges) at least 3. Proximity within a phylogeny in general
corresponds to similarity in evolutionary characteristics. Lin et. al. [7] investigated the
computational feasibility of reconstructing phylogenies from similarity data via a graph-
theoretic approach. Specifically, interspecies similarity is represented by a graph G where
the vertices are the species and the adjacency relation represents evidence of evolutionary
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similarity. A phylogeny T is then reconstructed from G such that (1) the leaves of T are the
vertices of G (i.e. species), (2) the degree of each internal node of T is at least 3, and (3) for
any two vertices u and v of G, they are adjacent in G if and only if dT (u, v) ≤ k, where
dT (u, v) denotes the distance between u and v in T and k is a predetermined proximity
threshold.

However, graph G is derived from some similarity data, which is usually inexact in
practice and may have erroneous (spurious or missing) edges. Such errors may cause G
to have no phylogeny, and hence we are interested in finding an approximate phylogeny
for G which is just a tree whose leaves are exactly the vertices of G and whose internal
nodes each are of degree at least 3. For a constant k ≥ 2, a k-disagreement between G and
its approximate phylogeny T is an unordered pair {u, v} of vertices of G such that either
(1) {u, v} ∈ E and dT (u, v) > k, or (2) {u, v} 6∈ E and dT (u, v) ≤ k. For each constant
k ≥ 2, Chen et al. [3] introduced the Closest Phylogenetic kth Root Problem

(CPRk) which asks for an approximate phylogeny T of a given graph G with the fewest
k-disagreements (see Figure 1 for an example). They [3] showed that CPRk is NP-hard
for all k ≥ 2.
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Figure 1: (1) A given graph G. (2) An approximate phylogeny of G with the fewest
(namely, two) 3-disagreements.

To be clear, we hereafter call the vertices in the input graph G of CPRk vertices while
those in the output approximate phylogeny T nodes. If an approximate phylogeny has no
node of degree larger than an integer ∆, then it is called an approximate ∆-phylogeny.

In the practice of phylogeny reconstruction, most phylogenies considered are trees of
degree 3 [10], because speciation events are usually bifurcating events in the evolutionary
process. More specifically, in such phylogenetic trees, each internal node has three neigh-
bors and represents a speciation event that some ancestral species splits into two child
species. Nodes of degrees higher than 3 are introduced only when the input biological
(similarity) data are not sufficient to separate individual speciation events and hence sev-
eral such events may be collapsed into a non-bifurcating (super) speciation event in the
reconstructed phylogeny. These motivated Chen et al. [3] to consider a restricted version
∆CPRk of CPRk for each fixed constant ∆ ≥ 3 where the output must be an approximate
∆-phylogeny. Tsukiji and Chen [11] showed that ∆CPRk is NP-hard if either both ∆ ≥ 3
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and k ≥ 3, or ∆ ≥ 4 and k = 2.

1.1 Previous Results on CPRk and Related Problems

Of special interest is CPR2. CPR2 is closely related to the correlation clustering problem
which has drawn much attention recently (see [1] and the references therein). In the
correlation clustering problem, we are required to modify a given graph G into a cluster
graph by deleting and/or adding the fewest edges, where a cluster graph is a graph in
which each connected component is a clique. Clearly, CPR2 can be reworded as follows:
Given a graph G, modify G into a connected cluster graph or a disconnected cluster graph
with at least two connected components of size 2 or more, by deleting and/or adding the
fewest edges. To the best of our knowledge, the best ratio achieved by (deterministic)
polynomial-time approximation algorithms for the correlation clustering problem is 4 [2].

3CPR2 is essentially identical to the fundamental maximum matching problem for the
following reason: A maximum matching of a given graph G can be easily retrieved from
an approximate 3-phylogeny of G with the fewest 2-disagreements, and vice versa. Many
efficient algorithms are known for the maximum matching problem in the literature.

Shamir et al. [9] study three problems related to CPR2, called the cluster editing,
the cluster deletion, and the cluster completion problems, respectively. Coincidentally, the
cluster editing problem is the same as the correlation clustering problem. In the cluster
deletion (respectively, completion) problem, we are required to remove from (respectively,
add to) G the fewest edges so that it becomes a cluster graph. They show that the cluster
completion problem can be solved in polynomial time while the other two are NP-hard.
They also study the p-cluster versions of the problems where the output cluster graph
must contain exactly p connected components.

A problem closely related to ∆CPR2, called the maximum clustering problem with
given cluster sizes (MCPGCS), has been extensively studied in the literature (see [6] and
the references therein). Given a complete edge-weighted graphG and a sequence of integers
c1, . . . , cp, MCPGCS requires the computation of a maximum-weight cluster subgraph of
G with exactly p connected components whose sizes are exactly c1, . . . , cp, respectively.
This problem has many applications ranging from final exam scheduling to VLSI design
(see [12] and the references therein). ∆CPR2 may be useful in some of these applications
where we only want to put an upper bound on the sizes of the connected components in
the output cluster subgraph.

If Π is a minimization problem requiring the modification of a given graph G by
deleting and/or adding the fewest edges so that G satisfies a certain property P , then the
maximization version of Π is the maximization problem requiring the computation of a
graph H = (V,EH) from a given graph G = (V,E) such that H satisfies property P and
the quantity |V |(|V |−1)

2 − |EH − E| − |E − EH | is maximized. Bansal et al. [1] show that
the maximization version of the correlation clustering problem admits a polynomial-time
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approximation scheme. Shamir et al. [9] present a polynomial-time 0.878-approximation
algorithm for the maximization version of the 2-cluster editing problem.

1.2 Our Contribution

In this paper, we first show that the maximization version of ∆CPRk for any fixed ∆ ≥ 3
and k ≥ 2 admits a polynomial-time approximation scheme (PTAS). We obtain the PTAS
by first designing a randomized PTAS for the problem and then derandomizing it using
the method of conditional expectations.

We then present a polynomial-time 8-approximation algorithm for ∆CPR2 for any
fixed ∆ ≥ 3. The algorithm is a nontrivial modification of the polynomial-time 4-
approximation algorithm for the correlation clustering algorithm given in [2]. More specifi-
cally, we first obtain an LP formulation of ∆CPR2 and then round its (fractional) solution.

∆CPR3 is much more difficult to approximate than ∆CPR2, because the latter can
be formulated as a minimization problem over a metric space while the former cannot.
Despite this, we are able to present a quadratic-time 12-approximation algorithm for
3CPR3. The algorithm and its analysis are quite involved.

1.3 Organization of the Paper

The next section contains basic definitions and notations. Section 3 presents a PTAS for
the maximization version of ∆CPRk. Section 4 gives a polynomial-time 8-approximation
algorithm for ∆CPR2. Section 5 describes a quadratic-time 12-approximation algorithm
for 3CPR3. The final section contains several open problems.

2 Preliminaries

Throughout this paper, a graph is always simple (i.e., has neither multiple edges nor
self-loops) unless stated explicitly otherwise.

Throughout this section, G is a graph. We denote the vertex set and the edge set of
G by V (G) and E(G), respectively. A subgraph of G is proper if it is not identical to G.
The neighborhood of a vertex v in G, denoted NG(v), is the set of vertices in G adjacent to
v; degG(v) = |NG(v)| is the degree of v in G. The maximum degree of G is the maximum
degree of a vertex in G. For U ⊆ V (G), the subgraph of G induced by U is the graph
(U,F ) with F = {{u, v} ∈ E(G) : u, v ∈ U}.

If P is a path or cycle in G, then the length of P is the number of edges in P . A path
is trivial if its length is 0. An endpoint of a path P is a vertex v of P with degP (v) ≤ 1.
Note that a trivial path has a unique endpoint. A triangle in G is a cycle of length 3.
The distance between two vertices u and v in G, denoted by dG(u, v), is the length of the
shortest path between u and v in G. If G contains no path between u and v, then we
define dG(u, v) =∞.
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A matching of G is a set of pairwise nonadjacent edges of G. A maximum matching
of G is a matching whose size is maximized over all matchings of G. A clique of G is a
subgraph of G in which each pair of vertices are adjacent. The size of a clique C is the
number of vertices in C. For each positive integer r, we use Kr to denote a clique of size r.

G is a cane if it can be obtained from a triangle T and a path P with V (T )∩V (P ) = ∅
by adding a new edge to connect one vertex of T to one endpoint of P . G is a double-ended
cane if it can be obtained from two vertex-disjoint triangles T1 and T2 by adding a new
path to connect one vertex of T1 to one vertex of T2.

G is a forest if it has no cycles. G is a tree if it is a connected forest. If G is a forest,
then we call each u ∈ V (G) with degG(u) = 1 a leaf of G, and call each x ∈ V (G) with
degG(x) ≥ 2 an internal node of G.

Let H be a graph with V (H) = V (G). For two vertices u and v of G, we call {u, v} a
disagreement between G and H if {u, v} ∈ E(G)−E(H) or {u, v} ∈ E(H)−E(G); and call
{u, v} an agreement between G and H if either {u, v} ∈ E(G) ∩ E(H), or {u, v} 6∈ E(G)
and {u, v} 6∈ E(H). We use D(G,H) (respectively, A(G,H)) to denote the number of
disagreements (respectively, agreements) between G and H.

Let ∆ ≥ 3 be an integer. An approximate ∆-semi-phylogeny of G is a forest T such
that V (G) ⊆ V (T ), degT (u) ≤ 1 for every u ∈ V (G), and the maximum degree of T is at
most ∆. If an approximate ∆-semi-phylogeny T of G is a tree and has no internal node of
degree 2, then we call T an approximate ∆-phylogeny of G. Two vertices of G are siblings
in an approximate ∆-semi-phylogeny T of G if they are adjacent to the same internal node
in T .

Let k ≥ 2 be an integer, let ∆ ≥ 3 be an integer, and let T be an approximate ∆-semi-
phylogeny of G. We use T k to denote the graph whose vertices are the vertices of G and
whose edges are those {u, v} with dT (u, v) ≤ k. If T is an approximate ∆-phylogeny of G
with D(G,T k) = 0, then we call T a kth root ∆-phylogeny of G.

For ∆ ≥ 3, a ∆-phylogeny is a tree in which the degree of each internal node is at
least 3 and at most ∆. As before, for an integer k ≥ 2 and a ∆-phylogeny T , we use T k to
denote the graph whose vertices are the leaves of T and whose edges are those {u, v} with
dT (u, v) ≤ k. For two integers k ≥ 2 and ∆ ≥ 3, a k-densest ∆-phylogeny is a ∆-phylogeny
T such that |E(T k)| is maximized over all ∆-phylogenies with the same number of leaves
as T .

3 PTAS for the Maximization Version of ∆CPRk

This section presents a PTAS for the maximization version of ∆CPRk for any fixed ∆ ≥ 3
and k ≥ 2. Recall that a PTAS for the maximization version of ∆CPRk is an algorithm A
such that for every given graph G and error parameter ε > 0, A outputs an approximate
∆-phylogeny T of G in time polynomial in |V (G)| such that A(G,T kopt) ≤ (1+ ε)A(G,T k),
where Topt is an approximate ∆-phylogeny of G such that A(G,T kopt) is maximized over
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all approximate ∆-phylogenies of G.
We start by presenting a PTAS for the simplest problem (namely, the maximization

version of 3CPR3) because it is simple and very efficient.

Lemma 3.1 Let n ≥ 6 be an integer, and let T be a 3-densest 3-phylogeny with n leaves.
Then, |E(T 3)| = n+ 1.

Proof. First, suppose that T 3 is connected. Then, the subtree of T induced by the
set of its internal nodes must be a path P . Moreover, each endpoint of P is adjacent to
exactly two leaves in T while each internal node of P is adjacent to exactly one leaf in T .
Thus, T 3 is a double-ended cane because n ≥ 6. Consequently, |E(T 3)| = n+ 1.

Next, suppose that T 3 is disconnected. Consider a connected component C of T 3. Let
TC be the subtree of T whose leaves are exactly the vertices in V (C). Note that E(C) =
E(T 3

C). We claim that |E(C)| ≤ |V (C)|. The claim is clearly true when |V (C)| ≤ 3. So,
assume |V (C)| ≥ 4. Then, by the connectivity of C, the subtree of TC induced by the set
of its internal nodes is a path Q and each internal node of Q is adjacent to exactly one
leaf in TC . Each endpoint of Q is adjacent to one or two leaves in TC . Moreover, since TC
is a proper subtree of T , at least one endpoint of Q is adjacent to exactly one leaf in TC .
Thus, T 3

C is a proper subgraph of a double-ended cane. Hence, |E(T 3
C)| ≤ |V (C)|. This

completes the proof of the claim. By the claim, it is clear that |E(T 3)| ≤ n. 2

The following corollary is immediate from the proof of Lemma 3.1 and will be very
useful in Section 5.

Corollary 3.2 A connected graph with at least six vertices has a 3rd root 3-phylogeny if
and only if it is a double-ended cane. Moreover, a disconnected graph G has a 3rd root
3-phylogeny only if every connected component of G is a proper subgraph of a double-ended
cane.

Theorem 3.3 The maximization version of 3CPR3 admits a PTAS which runs in almost
linear time.

Proof. Given a graph G = (V,E) and an error parameter ε > 0, the PTAS works as
follows.

1. Let n = |V |. If n is small enough (say, n < 15.5 + 16
ε ), then compute an approxi-

mate 3-phylogeny T of G by brute force such that A(G,T 3) is maximized over all
approximate 3-phylogenies of G, output it, and halt.

2. Let v1, . . . , v` be the vertices of G whose degrees in G are smaller than dn2 e.

3. If ` > 0, then for each vi ∈ {v1, . . . , v`}, add enough edges from vi to other vertices
so that the degree of vi in G becomes dn2 e.
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4. Find a Hamiltonian path P = u1, . . . , un in G. (Comment: Dirac’s classic theorem
asserts that if a graph has no vertex adjacent to less than half its vertices, then the
graph is Hamiltonian.)

5. Output an approximate 3-phylogeny T of G such that T 3 contains P as a subgraph
and |E(T 3)| = n+ 1. (Comment: By the proof of Lemma 3.1, it is easy to construct
T .)

Let α = 0.5n(n−1)−m
n+1 , where m is the number of edges in G. Let Topt be an approximate

3-phylogeny of G such that A(G,T 3
opt) is maximized over all approximate 3-phylogenies of

G. In the best case, all edges in T 3
opt are contained in G. So, by Lemma 3.1, A(G,T 3

opt) ≤
α(n+ 1) + (n+ 1). For the output T of the above algorithm, we claim that A(G,T 3

opt) ≤
(1 + ε)A(G,T 3). The claim is clearly true if n < 15.5 + 16

ε (cf. Step 1). So, we hereafter
assume that n ≥ 15.5 + 16

ε .
We claim that ` ≤ 2n − 4m

n−1 . To see this, first note that 2m =
∑
v∈V degG(v) ≤

`(dn2 e − 1) + (n− `)(n− 1) because G has exactly ` vertices of degree smaller than n
2 . So,

2m ≤ `(n+1
2 −1)+(n− `)(n−1), or equivalently ` ≤ 2n− 4m

n−1 . This establishes the claim.

The above claim together with the definition of α implies that ` ≤ 4α(n+1)
n−1 . Thus, at

most 8α(n+1)
n−1 edges of P are not edges of G. Hence, at most 2+ 8α(n+1)

n−1 edges of T 3 are not

edges of G. Therefore, A(G,T 3) ≥ (α(n+1)−2− 8α(n+1)
n−1 )+((n+1)−2− 8α(n+1)

n−1 ) = α(n+

1)−4− 16α(n+1)
n−1 . Now, since A(G,T 3

opt) ≤ α(n+1)+(n+1), A(G,T 3
opt) ≤ (1+ ε)A(G,T 3)

if and only if (α+1)ε
1+ε −

16α
n−1 −

4
n+1 ≥ 0. Thus, it remains to show the last inequality. To

this end, we denote the left side of the inequality by f(α), i.e., we view the left side as a
linear function of α. The minimum value of α is 0 at which we have f(α) ≥ 0 because
n ≥ 15.5+ 16

ε . Moreover, the maximum value of α is n(n−1)
2(n+1) at which we also have f(α) ≥ 0

because n ≥ 15.5 + 16
ε . Hence, by the linearity of f(α), we always have f(α) ≥ 0.

Finally, we note that the above algorithm runs in almost linear time because Step 4 is
the most time-consuming and it can be done in almost linear time [5]. 2

We next present a PTAS for the maximization version of ∆CPRk for any fixed ∆ ≥ 3
and k ≥ 2. The PTAS needs a polynomial-time subroutine to construct a k-densest
∆-phylogeny. Such a subroutine exists as shown in the following lemma:

Lemma 3.4 Let ∆ ≥ 3 and k ≥ 2 be constant integers. Then, given a positive integer
n ≥ 3 in unary, we can construct a k-densest ∆-phylogeny with n leaves in O(n∆+1) time.

Proof. By a dynamic programming method. We define a ∆-quasi-phylogeny to be a
tree T with maximum degree ≤ ∆ such that T has a distinguished internal node α, all
internal nodes of T except α are of degree at least 3 in T , and the degree of α in T is at
most ∆− 1 (and at least 2). As before, we use T k to denote the graph whose vertices are
the leaves of T and whose edges are the unordered pairs {u, v} with dT (u, v) ≤ k.
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We say that a k-tuple (p, `1, . . . , `k−1) is proper if p ≤ n − 1,
∑k−1
i=1 `i ≤ p, and 0 ≤

`i ≤ (∆ − 1)i for each i ∈ {1, . . . , k − 1}. For each proper k-tuple (p, `1, . . . , `k−1), let
Mp(`1, . . . , `k−1) denote the maximum size of E(T k) where T ranges over all ∆-quasi-
phylogenies satisfying the following conditions:

1. T has exactly p leaves.

2. For each i ∈ {1, 2, . . . , k − 1}, `i is the number of leaves of T whose distance from
the distinguished internal node of T is exactly i.

If there is no ∆-quasi-phylogeny T satisfying the above conditions, Mp(`1, . . . , `k−1) =
−∞. Otherwise, we define a witness ∆-quasi-phylogeny for the k-tuple (p, `1, . . . , `k−1) to
be a ∆-quasi-phylogeny T that satisfies the above conditions and |E(T k)| is maximized.

Obviously, M2(`1, . . . , `k−1) = 1 only when `1 = 2 and `2 = · · · = `k−1 = 0; for other
values of `1, . . . , `k−1, M2(`1, . . . , `k−1) = −∞. Moreover, it is easy to construct a witness
∆-quasi-phylogeny for (2, 2, 0, . . . , 0).

For each proper k-tuple t = (p, `1, . . . , `k−1), we define a proper decomposition of t to
be a set of proper k-tuples (p1, `1,1, . . . , `1,k−1), . . . , (ph, `h,1, . . . , `h,k−1) with 0 ≤ h ≤
∆− 1− `1 that satisfy the following conditions:

1. h+ `1 ≥ 2,
∑h
i=1 pi = p− `1, and pi ≥ 2 for each 1 ≤ i ≤ h.

2. For each 1 ≤ j ≤ k − 2,
∑h
i=1 `i,j = `j+1.

The value of this proper decomposition is the sum of
∑h
i=1Mpi(`i,1, . . . , `i,k−1), `1(`1−1)

2 ,
`1
∑k−1
j=2 `j , and

∑h−1
i1=1

∑h
i2=i1+1

∑k−3
j1=1(`i1,j1

∑k−2−j1
j2=1 `i2,j2). This value is the size of E(T k),

where T is the ∆-quasi-phylogeny obtained from h given witness ∆-quasi-phylogenies
T1, . . . , Th for (p1, `1,1, . . . , `1,k−1), . . . , (ph, `h,1, . . . , `h,k−1) as follows:

1. Introduce a new (internal) node α and connect it to `1 other new (leaf) nodes.

2. For each 1 ≤ i ≤ h, connect α to the distinguished internal node of Ti.

3. Specify α as the distinguished internal node of T .

It should be clear that Mp(`1, . . . , `k−1) is the maximum value of a proper decomposi-
tion of (p, `1, . . . , `k−1).

We compute Mp(`1, . . . , `k−1) and a witness ∆-quasi-phylogeny Tp(`1, . . . , `k−1) for all
proper k-tuples (p, `1, . . . , `k−1), in the increasing order of p. Note that for each proper k-
tuple (n−1, `1, . . . , `k−1), we can use Tn−1(`1, . . . , `k−1) to construct a ∆-phylogeny T with
n leaves by connecting a new leaf to the distinguished internal node of Tn−1(`1, . . . , `k−1);
the size of E(T k) is Mn−1(`1, . . . , `k−1)+

∑k−1
j=1 `j . So, we find a (k−1)-tuple (`1, . . . , `k−1)

that maximizes Mn−1(`1, . . . , `k−1) +
∑k−1
j=1 `j . Then, by connecting a new leaf to the

distinguished internal node of Tn−1(`1, . . . , `k−1), we obtain a k-densest ∆-phylogeny with
n leaves.
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Finally, we point out that the above dynamic programming can be done in O(n∆+1)
time. 2

Theorem 3.5 For every constant ∆ ≥ 3 and k ≥ 2, the maximization version of ∆CPRk

admits a randomized PTAS. Moreover, the randomized PTAS runs in Tk,∆(n)+O(n) time,
where Tk,∆(n) is the time needed to construct a k-densest ∆-phylogeny with n leaves.

Proof. Given a graph G = (V,E) and an error parameter ε, the randomized PTAS
works as follows.

1. Use Lemma 3.4 to construct a k-densest ∆-phylogeny T with leaf set V (G).

2. Let n = |V |, m = |E|, and m′ = |E(T k)|.

3. If n is so small that εn(n − 1) < (4 + 2ε)m′, then compute an approximate ∆-
phylogeny Topt of G by brute force such that A(G,T kopt) is maximized over all ap-
proximate ∆-phylogenies of G, output T kopt, and halt. (Comment: It is easy to see
that m′ ≤ (∆−1)k−1n/2. Indeed, we can claim that m′ is at most ∆(∆−1)(k−2)/2n

(respectively, (∆ − 1)(k+1)/2n) if k is even (respectively, odd). To see this claim,
first observe that T k is a chordal graph in which the maximum size of a clique
is at most ∆(∆ − 1)(k−2)/2 (respectively, (∆ − 1)(k+1)/2) if k is even (respectively,
odd) [11]. The claim follows from this observation and the well-known fact that a
chordal graph H without cliques of size s + 1 can have at most s|V (H)| − s(s+1)

2

edges. By the claim, m′ = O(n) and hence n must be a small constant in order to
satisfy εn(n− 1) < (4 + 2ε)m′.)

4. Generate a permutation σ of V uniformly at random.

5. Use σ to permute the labels of the leaves of T .

6. Output T .

Let Topt be an approximate ∆-phylogeny of G such that A(G,T kopt) is maximized over
all approximate ∆-phylogenies of G. In the best case, all edges in T kopt are contained in
G. So, A(G,T kopt) ≤

n(n−1)
2 −m+m′.

For the output T of the above algorithm, we claim that the expected value of A(G,T k)
is not smaller than A(G,T kopt)/(1 + ε). The claim is clearly true if n is small enough (cf.
Step 3). So, we assume that n is not small. Consider two arbitrary unordered pairs {u, v}
and {u′, v′}. Since σ is a random permutation of V , the probability that {u, v} is an
edge of T k is equal to the probability that {u′, v′} is an edge of T k no matter whether
{u, v} ∩ {u′, v′} = ∅ or not. Hence, the probability that {u, v} is an edge of T k is 2m′

n(n−1) .

Thus, the expected number of edges that are in both G and T k is 2mm′

n(n−1) . Moreover,



10

the expected number of edges that are in neither G nor T k is (n(n−1)
2 −m)(1 − 2m′

n(n−1)).
Obviously, the sum of these two expected numbers is equal to the expected value of
A(G,T k). Now, we can use elementary calculus to show that the ratio of A(G,T kopt) to
the expected value of A(G,T k) is not larger than 1 + ε.

The time complexity of the randomized PTAS is clearly as stated in the theorem. 2

Corollary 3.6 For every constant ∆ > 3 and k ≥ 2, the maximization version of ∆CPRk

admits a PTAS. Moreover, the PTAS runs in Tk,∆(n) +O(n2(n+m)) time.

Proof. It suffices to derandomize the randomized PTAS in Theorem 3.5. This is done
by the method of conditional expectations. Let T be as in Step 1 of the randomized PTAS.
By the proof of Theorem 3.5, after the labels of the leaves of T are randomly permuted,
the expected value E of A(G,T k) will be at least A(G,T kopt)/(1 + ε).

It suffices to (deterministically) fix the labels of the leaves of T so that A(G,T k) ≥ E .
To this end, we remove the labels of the leaves of T , and then (deterministically) assign
the vertices of G (as labels) to the leaves of T one by one as follows. Let v1, . . . , vn be an
arbitrary ordering of the vertices of G. Suppose that we have already assigned v1, . . . , vi−1

(1 ≤ i ≤ n) to some nodes α1, . . . , αi−1 of T respectively so that if vi, . . . , vn are randomly
one-to-one assigned to the remaining unlabeled leaves of T , then the expected value of
A(G,T k) will be at least E . This is trivially true when i = 1. We want to assign vi so that
if vi+1, . . . , vn are randomly one-to-one assigned to the remaining unlabeled leaves of T ,
then the expected value of A(G,T k) will be at least E . To this end, for each unlabeled leaf
αj of T , we compute the conditional expectation Eαj of A(G,T k) given that v1, . . . , vi are
assigned to α1, . . . , αi, respectively. Before describing how to compute Eαj , we first note
that maxαj Eαj ≥ E (where the maximization is taken over all unlabeled leaves of T ) and
that we can assign vi to the αj such that Eαj is maximized.

The computation of Eαj is based on linearity of expectation. For each unordered pair
{u, v} of vertices of G, let pu,v be the conditional probability that {u, v} is an agreement
between G and T k, given that v1, . . . , vi are assigned to α1, . . . , αi, respectively. Then,
Eαj =

∑
{u,v} pu,v, where the summation is taken over all unordered pairs. So, we need to

consider how to compute pu,v. There are three cases:
Case 1: {u, v} ⊆ {v1, . . . , vi}. In this case, either pu,v = 0 or pu,v = 1. If either

{u, v} ∈ E(G) and the two leaves of T labeled u and v are at most distance k apart, or
{u, v} 6∈ E(G) and the two leaves of T labeled u and v are at least distance k + 1 apart,
then pu,v = 1; otherwise, pu,v = 0. Obviously, we can compute the sum of all pu,v such
that {u, v} ⊆ {v1, . . . , vi}, in linear total time.

Case 2: |{u, v}∩{v1, . . . , vi}| = 1. We assume that u ∈ {v1, . . . , vi} but v 6∈ {v1, . . . , vi};
the other case is similar. Let au be the number of unlabeled leaves of T that are within a
distance of at most k from u. Obviously, if {u, v} is an edge of G, then pu,v = au/(n− i);
otherwise, pu,v = 1 − au/(n − i). So, pu,v can be computed in O(1) time. Since pu,v is
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independent of v, we can compute the sum of all pu,v such that |{u, v} ∩ {v1, . . . , vi}| = 1,
in linear total time.

Case 3: {u, v} ∩ {v1, . . . , vi} = ∅. Let b be the number of unordered pairs {β, γ} of
unlabeled leaves of T that are at most distance k apart in T . Obviously, if {u, v} is an edge
of G, then pu,v = 2b

(n−i)(n−i−1) ; otherwise, pu,v = 1− 2b
(n−i)(n−i−1) . Since pu,v is independent

of u and v, we can compute the sum of all pu,v such that {u, v}∩{v1, . . . , vi} = ∅, in linear
total time.

In summary, we can compute Eαj in linear time. Thus, we can assign vi to the best αj
in O((n− i)(n+m)) time. So, the total running time is Tk,∆(n) +O(n2(n+m)). 2

Although the above PTAS runs in polynomial time, it is not very efficient because
Tk,∆(n) can be very large. We can make the PTAS very efficient if we can find out the
structure of a k-densest ∆-phylogeny with n leaves. Obviously, we can do this when k = 2.
We can also do this when k = 3, by the proofs of Lemma 3.1 and the following lemma:

Lemma 3.7 Let ∆ > 3 and n > 2∆−2 be integers. Let T be a 3-densest ∆-phylogeny with
n leaves. Then, there are constants a, b, c such that |E(T 3)| = (1.5∆−3.5)n+a∆2+b∆+c.

Proof. We may assume that there is no node of degree 2 in T , because we can delete
such a node and connect its original neighbors by a new edge without decreasing |E(T 3)|.

Let v be an internal node of T . Node v is unsaturated if its degree in T is smaller than
∆, and is saturated otherwise. Node v is extreme if all but one of its neighbors in T are
leaves of T . Node v is branching if at least three of its neighbors in T are internal nodes
of T .

We will define two types of operations on T . Given two distinct unsaturated internal
nodes x and y of T such that both x and y are adjacent to at least one leaf in T , the
first-type operation on T modifies T as follows:

1. Let nx (respectively, ny) be the number of leaves adjacent to x (respectively, y) in
T .

2. If the degree of each leaf adjacent to y in T 3 is not smaller than the degree of each
leaf adjacent to x in T 3, then select min{nx,∆ − degT (y)} leaves adjacent to x in
T , delete the edges from them to x, and add edges from them to y; otherwise, select
min{ny,∆ − degT (x)} leaves adjacent to y in T , delete the edges from them to y,
and add edges from them to x.

3. If x (respectively, y) becomes of degree 1, then delete x (respectively, y).

4. If x (respectively, y) becomes of degree 2, then delete x (respectively, y) and connect
its two original neighbors by a new edge.
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A simple inspection shows that the first-type operation on T does not decrease |E(T 3)|.
Note that each nonbranching node of T is adjacent to at least one leaf in T because
the degree of each internal node in T is at least 3. So, if the first-type operation is not
applicable to T , then T has at most one unsaturated nonbranching node.

The second-type operation on T can be used only when T has at least one branching
node and the first-type operation is not applicable to T . The operation works on T as
follows:

1. If T has an unsaturated nonbranching internal node, then root T at such a node;
otherwise, root T at an arbitrary extreme internal node.

2. Find a branching node x of T such that no descendant of x in T is a branching node
of T .

3. Let x1 and x2 be two internal children of x in T . (Comment: Both x1 and x2 are
saturated, because otherwise we would be able to apply the first-type operation on
T .)

4. If x1 is extreme, then let y1 = x1; otherwise, let y1 be the extreme descendant of x1

in T .

5. Let u1 be a child of y1 in T .

6. Delete edges {y1, u1} and {x, x2}, and add edges {x, u1} and {y1, x2}.

7. Unroot T .

A simple calculation shows that the second-type operation on T does not decrease |E(T 3)|.
If neither the first-type nor the second-type operation is applicable to T , then the

subtree of T induced by the set of its internal nodes is a path and there is at most one
unsaturated internal node x in T . If x exists and is not extreme in T , then we further
modify T as follows:

1. Let y 6= x be an extreme internal node of T . (Comment: y is saturated.)

2. Let nx be the number of leaves adjacent to x in T . (Comment: nx ≥ 1.)

3. Select ∆ − 2 − nx leaves adjacent to y in T , delete the edges from them to y, and
add edges from them to x.

A simple calculation shows that the above modification of T does not decrease |E(T 3)|.
Now, T has the following properties:

• The subtree of T induced by the set of its internal nodes is a path P . (Comment:
We call P the backbone of T .)
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• Each internal node of P is adjacent to exactly ∆− 2 leaves in T .

• At least one endpoint of P is adjacent to exactly ∆− 1 leaves in T . (Comment: We
call the other endpoint of P the tail of P .)

When T has the above properties, we say that T is in the canonical form.
If T is in the canonical form, a simple calculation shows that |E(T 3)| = (1.5∆−3.5)n−

∆2 + 4.5∆−4.5 + 0.5`2− (0.5∆−1)`, where ` is the number of leaves of T adjacent to the
tail of the backbone of T . Note that ` = ∆− 2 if n− (∆− 1) ≡ 0 (mod ∆− 2), ` = ∆− 1
if n− (∆− 1) ≡ 1 (mod ∆− 2), and ` equals (n−∆ + 1) mod (∆− 2) otherwise. 2

Corollary 3.8 For every constant ∆ ≥ 3, both the maximization version of ∆CPR2 and
that of ∆CPR3 admit a linear-time randomized PTAS and also admit an O(n2(n+m))-
time PTAS.

4 Approximation Algorithm for ∆CPR2

In this section, we present a polynomial-time 8-approximation algorithm for ∆CPR2 for
any constant ∆ ≥ 4. Throughout the rest of this section, fix a graph G = (V,E). We
assume that |V | ≥ ∆ + 1 and |E| ≥ 1; otherwise, we can trivially solve the problem for G
in linear time.

Our algorithm is a nontrivial modification of a 4-approximation algorithm for the
correlation clustering problem due to Charikar et al. [2]. Recall that in the correlation
clustering problem, we are required to modify G into a cluster graph by deleting and/or
adding the fewest edges, where a cluster graph is a graph in which each connected com-
ponent is a clique. For convenience, we call each connected component of a cluster graph
a cluster.

The 4-approximation algorithm in [2] is based on the following IP formulation of the
correlation clustering problem (for G):

minimize
∑

{u,v}∈E
xu,v +

∑
{u,v}6∈E

(1− xu,v) (4.1)

such that xu,w ≤ xu,v + xv,w for all distinct vertices u, v, w

xu,v ∈ {0, 1} for all distinct vertices u, v.

In IP (4.1), two vertices u and v are in the same cluster if and only if xu,v = 0. The LP
relaxation is obtained by replacing the integer requirements in IP (4.1) with 0 ≤ xu,v ≤ 1
for all vertices u, v.

For an integer ∆ ≥ 3, a ∆-cluster graph is a graph in which each connected component
is a clique of size at most ∆ − 1. Roughly speaking, in our problem ∆CPR2, we want a



14

∆-cluster graph. So, we modify IP (4.1) by adding more constraints to ensure that the
size of each cluster is at most ∆− 1 as follows:

minimize
∑

{u,v}∈E
xu,v +

∑
{u,v}6∈E

(1− xu,v) (4.2)

such that xu,w ≤ xu,v + xv,w for all distinct vertices u, v, w∑
v∈V,v 6=u

xu,v ≥ |V | − (∆− 1) for all vertices u

∑
{u,v}⊆S,u6=v

xu,v ≥
|S|(|S| − 1)

2
− (∆− 1)(∆− 2)

2
− (|S| −∆ + 1)(|S| −∆)

2

for all S ⊆ V with |S| ≤ 2(∆− 1)

xu,v ∈ {0, 1} for all distinct vertices u, v.

In IP (4.2), the second group of constraints ensures that each cluster in the output
cluster graph contains at most ∆−1 vertices. Note that a ∆-cluster graph with ` ≤ 2(∆−1)
vertices can have at most (∆−1)(∆−2)

2 + (`−∆+1)(`−∆)
2 edges. Thus, for every ∆-cluster graph

H and for every set S of at most 2(∆ − 1) vertices of H, the subgraph of H induced by
S can have at most (∆−1)(∆−2)

2 + (|S|−∆+1)(|S|−∆)
2 edges. This property leads to the third

group of constraints in IP (4.2). Now, since T 2 is a ∆-cluster graph for each approximate
∆-phylogeny T of G, we see that IP (4.2) is a relaxation of ∆CPR2.

We obtain the LP relaxation of IP (4.2) by replacing the integer requirements in IP (4.2)
with 0 ≤ xu,v ≤ 1 for all vertices u, v.

In order to describe our approximation algorithm for ∆CPR2, we need to review the
4-approximation algorithm in [2] as follows:

1. Solve the LP relaxation of IP (4.1) to obtain an optimal vector (. . . , xu,v, . . .).

2. Initialize U = V .

3. While U is nonempty, repeat the following steps (in turn):

(a) Select a vertex u arbitrarily from U .

(b) Let W be the set of all v ∈ U − {u} such that xu,v ≤ ε, where 0 < ε < 2
3 is a

fixed constant to be determined later.

(c) If
∑
v∈W xu,v/|W | ≥ ε/2, then construct a new singleton cluster C = {u} and

jump to Step 3e.

(d) If
∑
v∈W xu,v/|W | < ε/2, then construct a new cluster C = {u} ∪W .

(e) Remove all vertices of C from U .
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Lemma 4.1 Let H be the cluster graph output by the above algorithm. Then, D(G,H) ≤
max{2

ε ,
1

1−1.5ε} ·OPTLP , where OPTLP is the optimal value of a solution to the LP relax-
ation of IP (4.1).

Proof. Chariker et al. [2] fix the constant ε to be 0.5 and show that D(G,H) ≤
4 · OPTLP . A careful inspection of their proof reveals that D(G,H) ≤ max{2

ε ,
1

1−1.5ε} ·
OPTLP for any fixed constant 0 < ε < 2

3 . 2

We modify the above approximation algorithm (so that it outputs a ∆-cluster graph)
by first replacing IP (4.1) in Step 1 with IP (4.2) and then modifying Step 3d as follows:

(3d’) If
∑
v∈W xu,v/|W | < ε/2 and |W | ≤ ∆−2, then construct a new cluster C = {u}∪W ;

otherwise, construct two new clusters D1 = {u} ∪W ′ and D2 = W −W ′, where
W ′ ⊆W , |W ′| = ∆− 2, and xu,w1 ≤ xu,w2 for all w1 ∈W ′ and w2 ∈W −W ′.

The following lemma shows the correctness of our algorithm when ε ≤ 1
2 :

Lemma 4.2 At each repetition of the while-loop of our algorithm, |W | < ∆−1
1−ε .

Proof. For a contradiction, assume that |W | ≥ ∆−1
1−ε . Then,

∑
v∈V,v 6=u xu,v =

∑
v∈W xu,v+∑

v∈V−({u}∪W ) xu,v ≤ ε|W | + (|V | − |W | − 1) ≤ |V | −∆, contradicting the second group
of constraints in IP (4.2). 2

Lemma 4.3 Let H be the cluster graph output by our algorithm where we fix ε = 1
3 . Then,

D(G,H) ≤ 8 ·OPTLP , where OPTLP is the optimal value of a solution to the relaxation
of IP (4.2).

Proof. Suppose that Steps 3a through 3e were repeated exactly h times in our
algorithm. For each 1 ≤ i ≤ h, if only one cluster is constructed at the ith repetition
of Step 3d’, then let Ci denote it; otherwise, let Di,1 and Di,2 denote the two clusters
constructed then, and let Ci = Di,1 ∪Di,2.

Consider the cluster graph H ′ with clusters C1, . . . , Ch. As in the proof of Lemma 4.1,
we can observe that the proof in [2] indeed shows that D(G,H ′) ≤ max{2

ε ,
1

1−1.5ε}·OPTLP ,
even though our LP has more constraints than theirs. So, it remains to show that splitting
Ci into Di,1 and Di,2 does not introduce too many disagreements.

Suppose ε < 1
2 (this ensures the correctness of our algorithm). Fix a constant δ > 0

such that 1 − 2ε ≥ δ · 2ε. Consider an i ∈ {1, . . . , h} such that Di,1 and Di,2 were
constructed in our algorithm. Let s1 = |Di,1| and s2 = |Di,2|. By Lemma 4.2 and our
algorithm, s1 = ∆ − 1 and s2 ≤ ∆ − 1. Since G can have at most s1s2 edges between
Di,1 and Di,2, splitting Ci into Di,1 and Di,2 introduces at most s1s2 new disagreements.
On the other hand, by the third group of constraints in the LP relaxation of IP (4.2),∑
{v,w}⊆Ci,v 6=w xv,w ≥

|Ci|(|Ci|−1)
2 − (∆−1)(∆−2)

2 − (|Ci|−∆+1)(|Ci|−∆)
2 = s1s2. Thus, splitting
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Ci into Di,1 and Di,2 introduces at most
∑
{v,w}⊆Ci,v 6=w xv,w new disagreements. Moreover,

for each {v, w} ⊆ Ci, xv,w ≤ xu,v + xu,w ≤ 2ε and so 1 − xv,w ≥ 1 − 2ε ≥ δ · 2ε ≥ δxv,w.
Therefore, the number of new disagreements introduced by splitting Ci into Di,1 and Di,2

is at most
∑
{v,w}⊆Ci,v 6=w xv,w ≤

∑
{v,w}⊆Ci,{v,w}∈E xv,w + 1

δ

∑
{v,w}⊆Ci,{v,w}6∈E(1− xv,w) ≤

1
δ (
∑
{v,w}⊆Ci,{v,w}∈E xv,w +

∑
{v,w}⊆Ci,v 6=w(1− xv,w)).

By the discussion in the last paragraph, the total number of new disagreements is at
most 1

δ · OPTLP . Thus, the total number of disagreements between G and the cluster
graph output by our algorithm is at most (max{2

ε ,
1

1−1.5ε} + 1
δ ) · OPTLP , which achieves

the value of 8 when ε = 1
3 and δ = 1

2 . 2

Remark. By Lemma 4.2, we can modify the third group of constraints in IP (4.2)
by changing the condition |S| ≤ 2(∆ − 1) to |S| ≤ 1.5∆ − 0.5. This modification does
not change the correctness and the approximation ratio of our algorithm, and makes our
algorithm slightly more efficient.

Theorem 4.4 There is a polynomial-time 8-approximation algorithm for ∆CPR2.

Proof. Let H be the ∆-cluster graph output by our above algorithm. Let Topt be an
approximate ∆-phylogeny of G such that D(G,T 2

opt) is minimized over all approximate
∆-phylogenies of G. Clearly, T 2

opt is a ∆-cluster graph. So, D(G,T 2
opt) ≥ OPTLP , where

OPTLP is as in Lemma 4.3. Thus, it suffices to show how to construct an approximate
∆-phylogeny of G from H.

Let C1, . . . , Ch be the clusters of H. Since |V | ≥ ∆+1, h ≥ 2. We may assume that the
subgraph of G induced by the set of vertices in singleton clusters of H contains no edges at
all, because otherwise we can decrease D(G,H) by adding one edge of G to H to connect
two singleton clusters of H into one (nonsingleton) cluster. By this assumption, at least
one cluster of H is nonsingleton because G has at least one edge. If at least two clusters
of H, say C1 and C2, are nonsingleton, then we can construct a 2nd root ∆-phylogeny T
of H as follows:

1. For each i ∈ {1, . . . , h}, introduce an internal node xi and connect each vertex of Ci
to xi by an edge.

2. Use h− 1 edges to connect x1, . . . , xh into a path with endpoints x1 and x2.

Hence, we may assume that exactly one cluster of H, say C1, is nonsingleton and the
others are singleton. For each i ∈ {2, . . . , h}, let vi be the unique vertex in Ci. Then, the
subgraph of G induced by {v2, . . . , vh} has no edges at all. Now, |C1| ≤ ∆−1 and removing
the vertices of C1 from G yields a graph with no edges at all; this simple structure of G
enables us to construct Topt in polynomial time. We omit the tedious details here and
only sketch the ideas in the next paragraph.
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The first idea is to divide {v2, ..., vh} into groups so that two vertices vi and vj with
2 ≤ i 6= j ≤ h are in the same group if and only if NG(vi) = NG(vj). Note that there
can be at most 2|C1| groups. Let U1, . . . , Uq be the groups. The second idea is to try
each partition π = {C1,1, . . . , C1,p} of C1 (into nonempty subsets) and each pq-tuple t =
(s1,1, . . . , s1,q, . . . , sp,1, . . . , sp,q) of nonnegative integers, where sj,1+· · ·+sj,q+|C1,j | ≤ ∆−1
for each j ∈ {1, . . . , p}, and s1,i + · · ·+ sp,i ≤ |Ui| for each i ∈ {1, . . . , q}. Note that π and
t together correspond to a ∆-cluster graph Gπ,t in a natrual way: Initially C1,1, . . . , C1,p

are the clusters of Gπ,t, then sj,i vertices of Ui are added to cluster C1,j , and finally the
remaining isolated vertices are added to Gπ,t as singleton clusters. If Gπ,t has at least two
nonsingleton clusters, we define the cost of Gπ,t to be D(G,Gπ,t); otherwise, we define the
cost of Gπ,t to be D(G,Gπ,t) + (2− b), where b is the number of nonsingleton clusters in
Gπ,t. Now, the last idea is to find the cheapest Gπ,t. From this Gπ,t, it is easy to construct
an approximate ∆-phylogeny T of G such that D(T 2, G) equals the cost of Gπ,t. One can
easily verify that D(T 2, G) = D(T 2

opt, G). 2

5 Approximation Algorithm for 3CPR3

As mentioned before (in Section 1.2), ∆CPR3 is much more difficult to approximate
than ∆CPR2. In this section, trying to give some insight into ∆CPR3, we consider the
simplest case of ∆CPR3, namely, 3CPR3. Indeed, except Lemma 5.4, all the lemmas in
this section can be generalized to ∆CPR3 with the constant factors being replaced by
appropriate factors depending on ∆.

Throughout this section, G denotes a graph with at least six vertices and Topt denotes
an approximate 3-phylogeny of G such that D(G,T 3

opt) is minimized over all approximate
3-phylogenies of G. Our goal is to design a quadratic-time approximation algorithm that
outputs an approximate 3-phylogeny T of G with D(G,T 3) ≤ 12 ·D(G,T 3

opt) + 3.
First, several definitions are necessary. Two vertices u and v ofG are indistinguishable if

{u, v} ∈ E(G) and NG(u)∪{u} = NG(v)∪{v}. Construct an auxiliary graph A = (V,EA),
where EA consists of all {u, v} such that u and v are indistinguishable. Obviously, each
connected component of A is a clique of both A and G, and is hence called a critical
clique of G. Let M be a maximum matching of A. Since A is simply a collection of
disjoint cliques, computing M is trivial. Further construct two auxiliary graphs B and H
by performing the following steps in turn:

1. Initialize B to be a copy of G, and then assign a unit weight to each edge of B.

2. While M is nonempty, perform the following steps:

(a) Select an arbitrary edge {u, v} ∈M , and delete it from M .

(b) Modify B by merging u and v into a supervertex s(u, v). (Comment: Each edge
incident to s(u, v) can have at most one other edge parallel to it.)
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(c) For each pair of parallel edges e1 and e2 incident to s(u, v), delete e2 and add
the weight of e2 to that of e1.

3. Compute a maximum-weight spanning subgraph H of B such that the degree of each
supervertex in H is at most 1 and the degree of each (other) vertex in H is at most 2.
(Comment: This step takes O(|V (B)|2) time if we use Pulleyblank’s algorithm for
the b-matching problem [8].)

4. While H has a supervertex, perform the following steps:

(a) Select an arbitrary supervertex s(u, v).

(b) Modify H by (1) splitting s(u, v) back into the two original vertices u and v,
(2) connecting u and v by an edge, and (3) replacing each edge {s(u, v), w} orig-
inally incident to s(u, v) in H with the two edges {u,w} and {v, w}. (Comment:
w may be a vertex or supervertex of H.)

Note that the weight of each edge of B is 1, 2, or 4. In more details, the weight of an
edge of B is 4 if both its endpoints are supervertices, is 2 if exactly one of its endpoints is
a supervertex, and is 1 if both its endpoints are not supervertices.

The following lemma shows that D(G,H) = |E(G) − E(H)| + |E(H) − E(G)| =
|E(G) − E(H)| ≤ 4 ·D(G,T 3

opt). To see this, let B′ be the graph obtained by modifying
the above construction of B by replacing G with T 3, where T is as in the following lemma.
Obviously, B′ is a subgraph of B, the degree of each supervertex in B′ is at most 1, and
the degree of each (other) vertex in B′ is at most 2. Thus, D(G,H) = |E(G)− E(H)| ≤
|E(G)− E(T 3)| = D(G,T 3) ≤ 4 ·D(G,T 3

opt).

Lemma 5.1 G has an approximate 3-semi-phylogeny T with the following properties:

1. T 3 is a subgraph of G,

2. Two vertices u and v of G are siblings in T if and only if {u, v} ∈M , and

3. D(G,T 3) ≤ 4 ·D(G,T 3
opt).

Proof. If two vertices of G are indistinguishable, then we can exchange their positions
in Topt without altering D(G,T 3

opt). So, we can assume that if two vertices u and v of G
are indistinguishable and are siblings in Topt, then {u, v} ∈M .

We initialize T to be a copy of Topt, and start to modify T so that it satisfies the
conditions (1) and (2) in the lemma. In the course of modifying T , we may disconnect T ,
but we will always maintain that T is an approximate 3-semi-phylogeny of G.

We next detail how to modify T . We say that an edge e of T is deletable, if deleting e
from T does not increase D(G,T 3). We repeat deleting deletable edges from T until it has
no deletable edges. Then, we can claim that T 3 is a subgraph of G. For a contradiction,
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assume that u and v are nonadjacent vertices of G with dT (u, v) ≤ 3. Obviously, one of
the following two cases occurs:

Case 1: dT (u, v) = 2. In this case, u and v are siblings in T . Thus, u can have at most
one other neighbor than v in T 3 because |V (G)| ≥ 6 and T is a subgraph of Topt. Let e
be the edge incident to u in T . If we delete e from T , then we get rid of the disagreement
{u, v} between G and T 3, and can get at most one new disagreement between G and T 3.
So, deleting e from T does not increase D(G,T 3), a contradiction against the nonexistence
of deletable edges in T .

Case 2: dT (u, v) = 3. In this case, u and v are not siblings in T . Let x (respectively,
y) be the node of T adjacent to u (respectively, v). Since dT (u, v) = 3, {x, y} is an edge
of T . If neither x nor y is adjacent to a vertex of G other than u and v, then deleting the
edge {x, y} from T removes the disagreement {u, v} between G and T 3 without incurring a
new disagreement between G and T 3, a contradiction against the nonexistence of deletable
edges in T . Moreover, at most one of x and y is adjacent to a vertex of G other than u and
v because V (G) ≥ 6 and T is a subgraph of Topt. So, we may assume that x is adjacent
to a vertex w of G other than u but v is the unique vertex of G adjacent to y in T . Now,
if we delete edge {x, y} from T , then we get rid of the disagreement {u, v} between G and
T 3, and can get at most one new disagreement (namely, {v, w}) between G and T 3. So,
deleting e from T does not increase D(G,T 3), a contradiction against the nonexistence of
deletable edges in T .

So, the above claim holds. By the claim, it remains to modify T so that u and v

become siblings in T for every {u, v} ∈ M . Let Γ be the set of disagreements between
G and T 3 at this point of time. Note that |Γ| ≤ D(G,T 3

opt). When we modify T in the
future, we may increase D(G,T 3) but we will charge the increase to the pairs in Γ so that
each pair in Γ gets a total charge of at most 3.

We modify T by performing two types of operations on T . Either type of operations
may delete existing edges from T , add new nodes and edges to T , and mark some good
connected components of T . Here, a connected component C of T is good if there is an edge
{u, v} in M such that u and v are siblings in C and C has exactly three nodes (including
u and v). Before and after performing either type of operations, we will maintain the
following five invariants:

• T is an approximate 3-semi-phylogeny of G.

• T 3 is a subgraph of G.

• Each unmarked connected component of T has at least one node x with x 6∈ V (G)
and degT (x) ≤ 2.

• Each marked connected component of T is good.

• For each disagreement {u, v} between G and T 3 that is not contained in Γ, u or v is
contained in a marked connected component of T .
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We next define the first type of operations on T . This type of operations can be applied
whenever there is an edge {u, v} ∈M satisfying the following three conditions:

1. u and v are not siblings in T .

2. The set Su,v = (NT 3(u)− {v}) ∪ (NT 3(v)− {u}) contains at most one vertex of G.

3. If Su,v contains a (unique) vertex w, then NT 3(w) ⊆ {u, v}.

Given an edge {u, v} ∈ M satisfying the above conditions, the first-type operation
works on T as follows:

1. For each w ∈ {u, v}∪Su,v, if T has an edge incident to w, then delete the edge from
T .

2. Introduce a new internal node x and add edges {x, u} and {x, v} (so that u and v

become siblings in T ).

3. If |Su,v| = 1, then introduce another internal node y and add edges {x, y} and {y, w},
where w is the unique vertex in Su,v.

Obviously, performing the first-type operation on T does not increase D(G,T 3), and does
not violate the above invariants.

We next define the second type of operations on T . Note that the second-type operation
can be applied to T only when the first-type operation cannot be applied to T . Given an
edge {u, v} ∈M such that u and v are not siblings in T , the second-type operation works
on T as follows:

1. If T has an edge incident to u, delete the edge from T .

2. If T has an edge incident to v, delete the edge from T .

3. Introduce a new internal node x, and add edges {x, u} and {x, v} (so that u and v

become siblings in T ).

4. Mark the connected component of T containing u and v.

Obviously, performing the second-type operation on T does not violate the above invari-
ants, but may increase D(G,T 3). We next investigate the increase by a case analysis. For
convenience, we use Tb (respectively, Ta) to denote the tree T before (respectively, after)
applying the second-type operation for a given edge {u, v} ∈M .

Case (a): dTb(u, v) ≥ 4. Let S = NT 3
b
(u)∩NT 3

b
(v). Since the maximum degree of T is

at most 3, |S| ≤ 1. Moreover, if w is a vertex in NT 3
b
(u)−S, then {v, w} is in E(G)−E(T 3

b )
and is hence in Γ by the last invariant above. Similarly, if w is a vertex in NT 3

b
(v)−S, then

{u,w} ∈ Γ. Obviously, D(G,Ta)−D(G,Tb) is |NT 3(u)|+ |NT 3(v)| − 1; we evenly charge
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D(G,Ta)−D(G,Tb) to the pairs in {{u, v}} ∪ {{v, w} | w ∈ NT 3
b
(u)− S} ∪ {{u,w} | w ∈

NT 3
b
(v)−S}. Clearly, each of the pairs has not been charged before (by the last invariant

above), and gets a charge of at most 1 here (because |S| ≤ 1).
Case (b): dTb(u, v) = 3. Let x (respectively, y) be the internal node adjacent to u

(respectively, v) in T . Note that {x, y} is an edge in T . Let nu (respectively, nv) be
the number of vertices of G other than u (respectively, v) adjacent to x (respectively, y)
in T . By the third invariant above, nu + nv ≤ 1. For convenience, let Wu = NT 3

b
(u) −

({v} ∪NT 3
b
(v)) and Wv = NT 3

b
(v)− ({u} ∪NT 3

b
(u)). Since the first-type operation is not

applicable to Tb, |Wu| + |Wv| ≥ 1. Moreover, if w is a vertex in Wu, then {v, w} is in
E(G) − E(T 3

b ) and is hence in Γ by the last invariant above. Similarly, if w is a vertex
in Wv, then {u,w} ∈ Γ. Obviously, D(G,Ta)−D(G,Tb) is |Wu|+ |Wv|+ 2(nu + nv); we
evenly charge D(G,Ta)−D(G,Tb) to the pairs in {{v, w} | w ∈Wu}∪{{u,w} | w ∈Wv}.
Clearly, each of the pairs has not been charged before (by the last invariant above), and
gets a charge of at most 3 here (because nu + nv ≤ 1 and |Wu|+ |Wv| ≥ 1).

We repeat performing the above two types of operations on T until none of them is
applicable. Then, it is clear that T has the first two properties in the lemma. Moreover,
by the above invariants, each pair in Γ is charged at most once. So, T also satisfies the
third property in the lemma. 2

As mentioned before, Lemma 5.1 implies that D(G,H) = |E(G) − E(H)| ≤ 4 ·
D(G,T 3

opt). It remains to construct an approximate 3-phylogeny T from H such that
D(H,T 3) is not so large compared to D(G,T 3

opt). To this end, first note that our con-
struction of H implies that each connected component C of H satisfies one of the following:

• C is a K1 (i.e., a vertex).

• C is a K2 (i.e., an edge).

• C is a K3 (i.e., a triangle).

• C is a K4.

• C is a long path (i.e., a path of length 2 or more).

• C is a long cycle (i.e., a cycle of length 4 or more).

• C is a cane.

• C is a double-ended cane.

• C is a degenerate cane (i.e., a graph with five vertices in which the degree of one
vertex is 4 and the degree of each other vertex is 2).

Lemma 5.2 Suppose that G is connected. Then, we can construct an approximate 3-
phylogeny T of G with D(G,T 3) ≤ 9 ·D(G,T 3

opt) + 2 in quadratic time.
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Proof. First consider the case where H is connected. In this case, since |V (H)| =
|V (G)| ≥ 6, our construction of H implies that H is a long path, long cycle, cane, or
double-ended cane. If H is a double-ended cane, then it has a 3rd root phylogeny T (cf.
Corollary 3.2) and so we have D(G,T 3) = D(G,H) ≤ 4 ·D(G,T 3

opt). So, we may assume
that H is not a double-ended cane. Then, G is not a double-ended cane, either (by the
construction of H). Thus, D(G,T 3

opt) ≥ 1 by Corollary 3.2. Moreover, we can transform
H to a double-ended cane by deleting at most one edge and adding at most two edges, and
further construct a 3rd root phylogeny T of the double-ended cane. Obviously, D(G,T 3) ≤
D(G,H) + D(H,T 3) ≤ 4 · D(G,T 3

opt) + 3 ≤ 7 · D(G,T 3
opt), because D(G,T 3

opt) ≥ 1 and
D(G,H) ≤ 4 ·D(G,T 3

opt).
Next consider the case where H is disconnected. Let nc be the number of connected

components in H. Since G is connected, |E(G)−E(H)| ≥ nc−1. So, nc ≤ D(G,H)+1 ≤
4 ·D(G,T 3

opt)+1. We construct an approximate 3-phylogeny of G in three steps as follows.
Step 1: For each connected component C of H that is a K4, long cycle, double-ended

cane, or degenerate cane, we delete the fewest edges from C so that it becomes a proper
subgraph of a double-ended cane. Let ne be the total number of edges deleted in this
step. (Comment: Obviously, ne ≤ D(G,T 3

opt). Moreover, after this step, every connected
component of H is a proper subgraph of a double-ended cane.)

Step 2: Whenever H has a connected component C that is a path, we use a new edge
to connect C to another connected component C ′ so that they together form a K2, long
path, or cane. Let na be the total number of edges added here. (Comment: Obviously,
na ≤ nc− 1. Moreover, after this step, H is a path, a cane, or a collection of triangles and
canes.)

Step 3: If H has at most two connected components, we transform H into a double-
ended cane by adding at most two more edges to H, and then construct a 3rd root
phylogeny T of H. Otherwise, H has at least three connected components and we can
construct a 3rd root phylogeny T of H in linear time (as shown in Lemma 6 in [4]).

In summary, the total number of edges deleted or added in Steps 1 through 3 is at
most ne + na + 2 ≤ 5 ·D(G,T 3

opt) + 2. So, D(G,T 3) ≤ 9 ·D(G,T 3
opt) + 2. Moreover, our

algorithm clearly runs in quadratic time. 2

Hereafter, we assume that G is disconnected. If a connected component C of G is a
single vertex or a path of length at least 2, then we say that C is troublesome; otherwise,
we say that C is helpful. Note that each troublesome connected component of G is also a
connected component of H.

Lemma 5.3 For each helpful connected component C of G, we can use H to construct
an approximate connected 3-semi-phylogeny TC of C in quadratic time such that TC has
exactly one node of degree 2. Moreover, the total number of edges deleted or added in all
the constructions of the approximate 3-semi-phylogenies TC is at most 5 ·D(G,T 3

opt) + 1.
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Proof. A simple modification of the proof of Lemma 5.2. 2

We want to use the troublesome connected components of G and the approximate 3-
semi-phylogenies TC to construct an approximate 3-semi-phylogeny T of G. The following
lemma shows that we can do this without incurring too many new disagreements.

Lemma 5.4 Let nt (respectively, nh) be the number of troublesome (respectively, helpful)
connected components of G. Then, D(G,T 3

opt) ≥ 1
3(nt − nh + 1).

Proof. We first define several notations as follows:

• n1: The number of troublesome connected components of G that are also connected
components of T 3

opt.

• n2: The number of troublesome connected components C of G such that T 3
opt has a

connected component C ′ with V (C) = V (C ′) and E(C) ⊂ E(C ′).

• n3: The number of troublesome connected components C of G such that T 3
opt has a

connected component C ′ with V (C) ⊂ V (C ′) and E(C) ⊂ E(C ′).

• n4: The number of troublesome connected components C of G such that at least
one edge of C is not in T 3

opt.

• m1: The number of edges e ∈ E(G)−E(T 3
opt) such that e appears in a troublesome

connected component of G.

• m2: The number of edges e ∈ E(G) − E(T 3
opt) such that e appears in a helpful

connected component of G.

Obviously, nt = n1 + n2 + n3 + n4, m1 ≥ n4, and D(G,T 3
opt) ≥ n2 + n3/2 +m1 +m2.

Let nc be the number of connected components in T 3
opt. Obviously, nc ≤ n1+n2+n3/2+

(n4+m1)+(nh+m2). We claim that nc ≥ 2n1+1; the proof is given in the next paragraph.
By the claim, n2 +n3/2 +m1 +m2 ≥ n1−n4−nh + 1. So, D(G,T 3

opt) ≥ n1−n4−nh + 1.
Hence, D(G,T 3

opt) ≥ 2
3(n2 + n3

2 +m1 +m2) + 1
3(n1 − n4 − nh + 1) ≥ 1

3(nt − nh + 1).
It remains to prove the claim. Let C1, . . . , Cn1 be the troublesome connected compo-

nents of G that are also connected components of T 3
opt. For each i ∈ {1, . . . , n1} such that

Ci is a single vertex vi, let Ti be the edge between vi and its neighbor in Topt. Moreover,
for each i ∈ {1, . . . , n1} such that Ci is a path of length 2 or more, let Ti be the smallest
subtree of Topt containing the vertices of Ci (note that the vertices of Ci are the leaves of Ti
and removing them from Ti yields a path). Furthermore, for each i ∈ {1, . . . , n1}, we say
that an edge e of Topt is associated with Ci if e is not in Ti but is incident to a node of Ti.
Obviously, for each i ∈ {1, . . . , n1}, exactly two edges are associated with Ci. Moreover,
since each Ci is a connected component of T 3

opt, each edge of Topt can be associated with
at most one Ci. The crucial point is that removing an edge associated with a Ci increases
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the number of connected components of Topt by 1 and does not affect T 3
opt. Therefore, if

we remove the 2n1 edges associated with C1, . . . , Cn1 from Topt, we obtain a forest with
2n1 + 1 connected components and T 3

opt remains the same as before. This completes the
proof of the claim. 2

For an approximate 3-semi-phylogeny F of G, we say that a connected component C of
F is helpful if C has exactly one node of degree 2, and say that C is troublesome otherwise.

Theorem 5.5 We can construct an approximate 3-phylogeny T of G with D(G,T 3) ≤
12 ·D(G,T 3

opt) + 3 in quadratic time.

Proof. By Lemma 5.2, we may assume that G is disconnected. For each connected com-
ponent C of G, we construct an approximate connected 3-semi-phylogeny TC as follows. If
C is helpful, then we use H to construct TC as in Lemma 5.3; we call the node of degree 2
in TC the port of TC . If C is troublesome and is a single vertex v, we construct TC by
simply letting TC = v. If C is troublesome and is a path of length 2 or more, we can easily
construct TC with D(C, T 3

C) = 0 such that TC contains exactly two nodes of degree 2;
we call each node of degree 2 in TC a port of TC . Let T be the forest whose connected
components are the trees TC . Then, by Lemmas 5.1 and 5.3, D(G,T 3) ≤ 9 ·D(G,T 3

opt)+1.
We next connect the connected components TC of T into an approximate 3-phylogeny

of G as follows:

1. While T has at least two helpful connected components and Ct has at least one
troublesome connected component, modify T by performing the following steps:

(a) Pick two arbitrary helpful connected components T1 and T2, and pick one ar-
bitrary troublesome connected component T3.

(b) Connect T1 and T2 into a single tree T4 by introducing a new node x and
connecting it to the unique port of T1 and that of T2.

(c) If T3 is a single node, then we connect T3 and T4 into a single tree T5 by
introducing a new node y and connecting it to x and the node of T3. (Comment:
y is the only node of degree 2 in T5, and we call it the port of T5. Also note
that D(G,T 3) remains unchanged in this step.)

(d) If T3 is not a single node, then we connect T3 and T4 into a single tree T5 by
connecting x to one port of T3. (Comment: Since T3 is not a single node, it
has exactly two ports. So, T5 has exactly one port. Also note that D(G,T 3)
remains unchanged in this step.)

2. While T has at least two helpful connected components, modify T by performing
the following steps:

(a) Pick two arbitrary helpful connected components T1 and T2.
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(b) Connect T1 and T2 into a single tree T3 by introducing a new node x and
connecting it to the unique port of T1 and that of T2. (Comment: D(G,T 3)
remains unchanged in this step.)

3. Let p (respectively, q) be the number of troublesome (respectively, helpful) connected
components in T . (Comment: p ≤ nt −max{0, nh − 1}.)

4. If p = 0, then modify T by deleting the unique degree-2 node and connecting its
two original neighbors, and halt. (Comment: This step increases D(G,T 3) by at
most 3.)

5. Let St be the subgraph of T 3 induced by the set of those vertices of G that appear in
troublesome connected components of T . (Comment: St is a collection of p vertex-
disjoint paths. Moreover, St cannot be a single edge.)

6. If q = 0, then transform St into a double-ended cane by adding p + 1 new edges,
replace T by a 3rd root phylogeny of the double-ended cane, and halt. (Comment:
This step increases D(G,T 3) by p+ 1.)

7. If St is a single vertex v, then modify T by using a new edge to connect v to the
unique degree-2 node of the helpful connected component of T , and halt. (Comment:
This step increases D(G,T 3) by at most 3.)

8. Transform St into a cane by adding p new edges.

9. Construct a connected approximate 3-semi-phylogeny Tt of St with D(St, T 3
t ) = 0

such that Tt contains exactly one node of degree 2.

10. Modify T by replacing the troublesome connected components of T with Tt and
connecting the unique degree-2 node of Tt to that of the helpful connected component
of T . (Comment: This step increases D(G,T 3) by at most p+ 2.)

The above steps increase D(G,T 3) by at most max{3, p + 2} ≤ nt − nh + 3, which
does not exceed 3 ·D(G,T 3

opt) + 2 by Lemma 5.4. Thus, by the last inequality in the first
paragraph of this proof, D(G,T 3) ≤ 12 ·D(G,T 3

opt) + 3. Moreover, our algorithm clearly
runs in quadratic time. 2

Remark. As shown in [4], we can decide whether a given graph has a 3rd root 3-
phylogeny in linear time. So, if D(G,T 3

opt) is a constant, then we can construct Topt in
polynomial time. Hence, Theorem 5.5 indeed implies a polynomial-time r-approximation
algorithm for 3CPR3, where r is asymptotically 12.
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6 Open Problems

This work leaves quite a few open problems. The first asks for a nontrivial approximation
algorithm for CPRk or its maximization version for k ≥ 3. A seemingly easier problem is
to ask whether ∆CPRk admits a polynomial-time r-approximation algorithm, where r is
a constant (preferably independent of ∆ and k).

Theorem 3.5 says that if we can efficiently construct a k-densest ∆-phylogeny with a
given number of leaves, then we have a very efficient PTAS for the maximization version of
∆CPRk. So, it would be very interesting if we could find out the structure of a k-densest
∆-phylogeny with a given number of leaves for k ≥ 4 and ∆ ≥ 3.

Finally, we want to ask whether CPRk and ∆CPRk are fixed-parameter tractable or
not.
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