
Approximating Maximum Edge 2-Coloring in
Simple Graphs via Local Improvement

Zhi-Zhong Chen1 and Ruka Tanahashi1

Department of Mathematical Sciences, Tokyo Denki University, Hatoyama, Saitama
350-0394, Japan

Abstract. We present a polynomial-time approximation algorithm for
legally coloring as many edges of a given simple graph as possible using
two colors. It achieves an approximation ratio of 24

29
= 0.827586 This

improves on the previous best ratio of 468
575

= 0.813913

1 Introduction

Given a graph G and a natural number t, the maximum edge t-coloring problem
(called Max Edge t-Coloring for short) is to find a maximum set F of edges
in G such that F can be partitioned into at most t matchings of G. Motivated
by call admittance issues in satellite based telecommunication networks, Feige et
al. [2] introduced the problem and proved its APX-hardness. They also observed
that Max Edge t-Coloring is obviously a special case of the well-known
maximum coverage problem (see [4]). Since the maximum coverage problem
can be approximated by a greedy algorithm within a ratio of 1− (1− 1

t)
t [4], so

can Max Edge t-Coloring. In particular, the greedy algorithm achieves an
approximation ratio of 3

4 for Max Edge 2-Coloring which is the special case
of Max Edge t-Coloring where the input number t is fixed to 2. Feige et al.
[2] has improved the trivial ratio 3

4 = 0.75 to 10
13 ≈ 0.769 by an LP approach.

The APX-hardness proof for Max Edge t-Coloring given by Feige et al. [2]
indeed shows that the problem remains APX-hard even if we restrict the input
graph to a simple graph and fix the input integer t to 2. We call this restriction
(special case) of the problem Max Simple Edge 2-Coloring. Feige et al. [2]
also pointed out that for Max Simple Edge 2-Coloring, an approximation
ratio of 4

5 can be achieved by the following simple algorithm: Given a simple
graph G, first compute a maximum subgraph H of G such that the degree of
each vertex in H is at most 2 and there is no 3-cycle in H, and then remove one
arbitrary edge from each odd cycle of H.

In [1], the authors have improved the ratio to 468
575 . Essentially, the algorithm

in [1] differs from the simple algorithm only in the handling of 5-cycles where
instead of removing one arbitrary edge from each 5-cycle of H, we remove a
random edge from each 5-cycle of H. The intuition behind the algorithm is as
follows: If we delete a random edge from each 5-cycle of H, then for each edge
{u, v} in the optimal solution such that u and v belong to different 5-cycles, both
u and v become of degree 1 in H (after handling the 5-cycles) with a probability
of 4

25 and so can be added into H without losing the edge 2-colorability of H.

In this paper, we further improve the ratio to 24
29 . The basic idea behind

our algorithm is as follows: Instead of removing a random edge from each 5-
cycle of H and removing an arbitrary edge from each other odd cycle of H, we
remove one edge from each odd cycle of H with more care in the hope that
after the removal, a lot of edges {u, v} (in the optimal solution) with u and v
belonging to different odd cycles of H can be added to H. More specifically, we
define a number of operations that modify each odd cycle of H together with its
neighborhood carefully without decreasing the number of edges in H by two or
more; our algorithm just performs these operations on H until none of them is
applicable. The nonapplicability of these operations guarantees that H is edge
2-colorable and its number of edges is close to optimal; the analysis is quite
challenging.

Kosowski et al. [7] also considered Max Simple Edge 2-Coloring. They
presented an approximation algorithm that achieves a ratio of 28∆−12

35∆−21 , where ∆
is the maximum degree of a vertex in the input simple graph. This ratio can be
arbitrarily close to the trivial ratio 4

5 because ∆ can be very large. In particular,
this ratio is smaller than 24

29 when ∆ ≥ 6.
Kosowski et al. [7] showed that approximation algorithms for Max Simple

Edge 2-Coloring can be used to obtain approximation algorithms for cer-
tain packing problems and fault-tolerant guarding problems. Combining their
reductions and our improved approximation algorithm for Max Simple Edge
2-Coloring, we can obtain improved approximation algorithms for their pack-
ing problems and fault-tolerant guarding problems immediately.

2 Basic Definitions

A graph always means a simple undirected graph. A graph G has a vertex set
V (G) and an edge set E(G). For each v ∈ V (G), NG(v) denotes the set of all
vertices adjacent to v in G and dG(v) = |NG(v)| is the degree of v in G. If
dG(v) = 0, then v is an isolated vertex of G. For each U ⊆ V (G), G[U] denotes
the subgraph of G induced by U .

A path in G is a connected subgraph of G in which exactly two vertices are of
degree 1 and the others are of degree 2. Each path has two endpoints and zero
or more inner vertices. An edge {u, v} of a path P is an inner edge of P if both
u and v are inner vertices of P . The length of a cycle or path C is the number
of edges in C. A cycle of odd (respectively, even) length is an odd (respectively,
even) cycle. A k-cycle is a cycle of length k. Similarly, a k+-cycle is a cycle
of length at least k. A path component (respectively, cycle component) of G is
a connected component of G that is a path (respectively, cycle). A path-cycle
cover of G is a subgraph H of G such that V (H) = V (G) and dH(v) ≤ 2 for
every v ∈ V (H). A cycle cover of G is a path-cycle cover of G in which each
connected component is a cycle. A path-cycle cover C of G is triangle-free if C
does not contain a 3-cycle.

G is edge-2-colorable if each connected component of G is an isolated vertex,
a path, or an even cycle. Note that Max Simple Edge 2-Coloring is the
problem of finding a maximum edge-2-colorable subgraph in a given graph.

3 The Algorithm

Throughout this section, fix a graph G and a maximum edge-2-colorable sub-
graph Opt of G. For convenience, for each path-cycle cover K of G, we define
two numbers as follows:

– n0(K) is the number of isolated vertices in K.
– p(K) is the number of path components in K.

Like the simple algorithm described in Section 1, our algorithm starts by
performing the following step:

1. Compute a maximum triangle-free path-cycle cover H of G.

Since |E(H)| ≥ |E(Opt)|, it suffices to modify H into an edge-2-colorable
subgraph of G without significantly decreasing the number of edges in H. The
simple algorithm achieves an approximation ratio of 4

5 because it simply removes
an arbitrary edge from each odd cycle in H. In order to improve this ratio,
we have to treat 5-cycles (and other short odd cycles) in H more carefully. In
more details, when removing edges from odd cycles in H, we also want to add
some edges of E(G)−E(H) to H. For this purpose, we will define a number of
operations onH that always decrease the number of cycles inH but may decrease
the number of edges in H or not. To tighten the analysis of the approximation
ratio achieved by our algorithm, we set up a charging scheme that charges the
net loss of edges from H (due to the operations) to some edges still remaining
in H. Whenever we do this, we will always maintain the following invariants:

I1. Every edge of H is charged a real number smaller than or equal to 1
9 .

I2. The total charge on the edges of H equals the total number of operations
performed on H that decrease the number of edges in H.

I3. No cycle component of H contains a charged edge.
I4. If a path component P of H contains a charged edge, then the length of P

is at least 6.

Initially, every edge of H is charged nothing. However, as we modify H by
performing operations (to be defined below), some edges of H will be charged.

We first define those operations on H that decrease the number of odd cycles
in H but do not decrease the number of edges in H. In order to do this, the
following three concepts are necessary:

A quadruple (x, y, P, u, v) is a 5-opener for an odd cycle C ofH if the following
hold:

– dH(x) ≤ 1 and y ∈ V (C).
– P is a path component of H, both u and v are inner vertices of P , and x is

not a vertex of P .
– Both {u, x} and {v, y} are contained in E(G)− E(H).

A sextuple (x, y,Q, P, u, v) is a 6-opener for an odd cycle C of H if the
following hold:

– x ∈ V (C) and y ∈ V (C). Moreover, if x = y, then Q is a cycle cover of
G[V (C)− {x}] in which each connected component is an even cycle; other-
wise, Q is a path-cycle cover of G[V (C)] in which one connected component
is a path from x to y and each other connected component is an even cycle.

– P is a path component of H and both u and v are inner vertices of P .
– Both {u, x} and {v, y} are contained in E(G)− E(H).

An operation (to be performed) on H is robust if the following holds:
– If G has no edge {u, v} before the operation such that u is an isolated vertex

in H and either v is an isolated vertex in H or v appears in a cycle component
of H, then neither does it after the operation.

Based on the above concepts, we are now ready to define six robust operations
on H that decrease the number of odd cycles in H but do not decrease the
number of edges in H.

Type 1: Suppose that {u, v} is an edge in E(G)−E(H) such that dH(u) ≤ 1
and v is a vertex of some cycle C of H. Then, a Type-1 operation on H using
{u, v} modifies H by deleting one (arbitrary) edge of C incident to v and adding
edge {u, v}. Obviously, this operation is robust and does not change |E(H)|.
(Comment: If dH(u) = 0 before a Type-1 operation, then n0(H) decreases by 1
and p(H) increases by 1 after the operation. Similarly, if dH(u) = 1 before a
Type-1 operation, then neither n0(H) nor p(H) changes after the operation.)

Type 2: Suppose that some odd cycle C of H has a 5-opener (x, y, P, u, v)
with {u, v} ∈ E(H) (see Figure 1). Then, a Type-2 operation on H using
(x, y, P, u, v) modifies H by deleting edge {u, v}, deleting one (arbitrary) edge of
C incident to y, and adding edges {u, x} and {v, y}. Obviously, this operation is
robust and does not change the number of edges in H. However, edge {u, v} may
have been charged before this operation. If that is the case, we move its charge
to {u, x}. Moreover, if the path component Q of H containing edge {u, x} after
this operation is of length at most 5, then we move the charges on the edges of Q
to edge {v, y} and the edges of C still remaining in H. (Comment: A Type-2 op-
eration on H maintains Invariants I1 through I4. Moreover, if dH(x) = 0 before
a Type-2 operation, then n0(H) decreases by 1 and p(H) increases by 1 after
the operation. Similarly, if dH(x) = 1 before a Type-2 operation, then neither
n0(H) nor p(H) changes after the operation.)

u

C

v

x y

P u v P

C

x y

Fig. 1. A Type-2 operation, where bold edges are in H.

Type 3: Suppose that some odd cycle C of H has a 5-opener (x, y, P, u, v)
such that E(G)−E(H) contains the edge {w, s}, where w is the neighbor of v in
the subpath of P between u and v and s is the endpoint of P with distP (s, u) <
distP (s, v) (see Figure 2 in the appendix). Then, a Type-3 operation on H using
(x, y, P, u, v) modifies H by deleting edge {v, w}, deleting one (arbitrary) edge

eu of P incident to u, deleting one (arbitrary) edge of C incident to y, and
adding edges {u, x}, {v, y}, and {s, w}. Obviously, this operation is robust and
does not change the number of edges in H. Note that {v, w} or eu may have
been charged before this operation. If that is the case, we move their charges to
edges {u, x} and {s, w}, respectively. Moreover, if the path component Q of H
containing edge {u, x} after this operation is of length at most 5, then we move
the charges on the edges of Q to edge {v, y} and the edges of C still remaining
in H. (Comment: A Type-3 operation on H maintains Invariants I1 through I4.
Moreover, if dH(x) = 0 before a Type-3 operation, then n0(H) decreases by 1
and p(H) increases by 1 after the operation. Similarly, if dH(x) = 1 before a
Type-3 operation, then neither n0(H) nor p(H) changes after the operation.)

u

x

Ps w v

C

y

u

x

Ps w v

C

y

Fig. 2. A Type-3 operation, where bold edges are in H.

Type 4: Suppose that there is a quadruple (x, P, u, v) satisfying the following
conditions (see Figure 3 in the appendix):

– x is a vertex of a cycle component C of H.
– P is a path component of H and {u, v} is an inner edge of P .
– E(G)−E(H) contains both {u, x} and {s, v}, where s is the endpoint of P

with distP (s, u) < distP (s, v).

Then, a Type-4 operation on H using (x, P, u, v) modifies H by deleting edge
{u, v}, deleting one (arbitrary) edge of C incident to x, and adding edges {u, x}
and {s, v}. Obviously, this operation is robust and does not change the number
of edges in H. However, {u, v} may have been charged before this operation. If
that is the case, we move its charge to {u, x}. (Comment: A Type-4 operation
on H maintains Invariants I1 through I4, and changes neither n0(H) nor p(H).)

u

C

x

P
s v u

C

x

P
s v

Fig. 3. A Type-4 operation, where bold edges are in H.

Type 5: Suppose that there is a quintuple (x, P, u, v, w) satisfying the fol-
lowing conditions (see Figure 4 in the appendix):

– x is a vertex of a cycle component C of H.
– P is a path component of H, u is an inner vertex of P , {v, w} is an inner

edge of P , and distP (u, v) < distP (u,w).
– E(G)−E(H) contains {u, x}, {s, w}, and {t, v}, where s is the endpoint of
P with distP (s, u) < distP (s, v) and t is the other endpoint of P .

Then, a Type-5 operation on H using (x, P, u, v, w) modifies H by deleting edge
{v, w}, deleting one (arbitrary) edge eu of P incident to u, deleting one (arbi-
trary) edge of C incident to x, and adding {s, w}, {t, v}, and {u, x}. Obviously,
this operation is robust and does not change the number of edges in H. However,
{v, w} and eu may have been charged before this operation. If that is the case,
we move their charges to {u, x} and {s, w}, respectively. (Comment: A Type-5
operation on H maintains Invariants I1 through I4, and changes neither n0(H)
nor p(H).)

u

C

x

Ps v w t u

C

x

Ps v w t

Fig. 4. A Type-5 operation, where bold edges are in H.

Type 6: Suppose that some odd cycle C of H with length at most 9 has a 6-
opener (x, y,Q, P, u, v) such that {u, v} ∈ E(H) (see Figure 5 in the appendix).
Then, a Type-6 operation on H using (x, y,Q, P, u, v) modifies H by deleting
edge {u, v}, deleting all edges of C, adding edges {u, x} and {v, y}, and adding
all edges of Q. Obviously, this operation does not change the number of edges in
H, and is robust because (1) it does not create a new isolated vertex in H and
(2) if it creates one or more new cycles in H then V (C ′) ⊆ V (C) for each new
cycle C ′. However, {u, v} may have been charged before this operation. If that
is the case, we move its charge to {u, x}. (Comment: A Type-6 operation on H
maintains Invariants I1 through I4, and changes neither n0(H) nor p(H).)

u

C

x

Pv u

C

x

Pv u

C

x

Pv u

C

x

Pv

y y

Fig. 5. A Type-6 operation, where bold edges are in H.

Using the above operations, our algorithm then proceeds to modifying H by
performing the following step:

2. Repeat performing a Type-i operation on H with 1 ≤ i ≤ 6, until
none is applicable.

Obviously, H remains a triangle-free path-cycle cover of G. Moreover, the
following fact holds:

Lemma 1. After Step 2, G has no edge {u, v} such that u is an isolated vertex
in H and either v is an isolated vertex in H or v appears in a cycle component
of H.

Unfortunately, H may still have odd cycles after Step 2. So, we need to
perform new types of operations on H that always decrease the number of odd
cycles in H but may also decrease the number of edges in H. Before defining

the new operations on H, we define two concepts as follows. Two cycles C1 and
C2 of H are pairable if at least one of them is odd and their total length is at
least 10. A quintuple (x, y, P, u, v) is an opener for two pairable cycles C1 and
C2 of H if the following hold:

– x is a vertex of C1 and y is a vertex of C2.
– P is either a path component of H or a 4-cycle of H other than C1 and C2.
– u and v are distinct vertices of P with dH(u) = dH(v) = 2.
– Both {u, x} and {v, y} are in E(G)− E(H).

Now, we are ready to define the new types of robust operations on H as
follows:

Type 7: Suppose that C is an odd cycle of H with length at least 11. Then,
a Type-7 operation on H using C modifies H by deleting one (arbitrary) edge
from C. Clearly, the net loss in the number of edges in H is 1. We charge this
loss evenly to the edges of C still remaining in H. In more details, if C was a
k-cycle before the operation, then a charge of 1

k−1 is charged to each edge of
C still remaining in H after the operation. Since k ≥ 11, the charge assigned
to one edge here is at most 1

10 . Obviously, this operation is robust. (Comment:
A Type-7 operation on H maintains Invariants I1 through I4, does not change
n0(H), and increases p(H) by 1.)

Type 8: Suppose that C1 and C2 are two pairable cycles of H such that
there is an edge {u, v} ∈ E(G) with u ∈ V (C1) and v ∈ V (C2). Then, a Type-8
operation on H using {u, v} modifies H by deleting one (arbitrary) edge of C1

incident to u, deleting one (arbitrary) edge of C2 incident to v, and adding edge
{u, v}. Note that this operation decreases the number of edges in H by 1. So,
the net loss in the number of edges in H is 1. We charge this loss evenly to edge
{u, v} and the edges of C1 and C2 still remaining in H. In more details, if C1

was a k-cycle and C2 was an `-cycle in H before the operation, then a charge of
1

k+`−1 is assigned to {u, v} and each edge of C1 and C2 still remaining in H after
the operation. Since k ≥ 5 and ` ≥ 5, the charge assigned to one edge here is
at most 1

9 . Obviously, this operation is robust. (Comment: A Type-8 operation
on H maintains Invariants I1 through I4, does not change n0(H), and increases
p(H) by 1.)

Type 9: Suppose that two odd cycles C1 and C2 of H have an opener
(x, y, P, u, v) with {u, v} ∈ E(H) (see Figure 6 in the appendix). Then, a Type-9
operation on H using (x, y, P, u, v) modifies H by deleting edge {u, v}, deleting
one (arbitrary) edge of C1 incident to x, deleting one (arbitrary) edge of C2

incident to y, and adding edges {u, x} and {v, y}. Note that edge {u, v} may
have been charged before this operation. If that is the case, we move its charge
to edge {u, x}. Moreover, the operation decreases the number of edges in H by 1.
So, the net loss in the number of edges in H is 1. We charge this loss evenly
to edge {v, y} and the edges of C1 and C2 still remaining in H. Obviously, the
charge assigned to one edge here is at most 1

9 . It is also clear that this operation is
robust. (Comment: A Type-9 operation on H maintains Invariants I1 through I4,
does not change n0(H), and increases p(H) by 1.)

u

C1

v

x

C2

y

u

C1

v

x

C2

y

P P

Fig. 6. A Type-9 operation, where bold edges are in H.

Type 10: Suppose that two odd cycles C1 and C2 of H have an opener
(x, y, P, u, v) such that E(G) − E(H) contains the edge {w, s}, where w is the
neighbor of v in the subpath of P between u and v and s is the endpoint of P
with distP (s, u) < distP (s, v) (see Figure 7 in the appendix). Then, a Type-10
operation on H using (x, y, P, u, v) modifies H by deleting edge {v, w}, deleting
one (arbitrary) edge eu of P incident to u, deleting one (arbitrary) edge of C1

incident to x, deleting one (arbitrary) edge of C2 incident to y, and adding
edges {u, x}, {v, y}, and {s, w}. Note that {v, w} or eu may have been charged
before this operation. If that is the case, we move their charges to edges {u, x}
and {v, y}, respectively. Moreover, the operation decreases the number of edges
in H by 1. So, the net loss in the number of edges in H is 1. We charge this
loss evenly to edge {s, w} and the edges of C1 and C2 still remaining in H.
Obviously, the charge assigned to one edge here is at most 1

9 . It is also clear
that this operation is robust. (Comment: A Type-10 operation on H maintains
Invariants I1 through I4, does not change n0(H), and increases p(H) by 1.)

u

C1

x

Ps w v

C2

y

u

C1

x

Ps w v

C2

y

Fig. 7. A Type-10 operation, where bold edges are in H.

After Step 2, no matter how many times we perform Type-i operations on H
with 1 ≤ i ≤ 10, G cannot have an edge {u, v} such that u is an isolated vertex
in H and either v is an isolated vertex in H or v appears in a cycle component
of H. This follows from Lemma 1 and the fact that every Type-i operation on
H with 1 ≤ i ≤ 10 is robust. However, after performing a Type-i operation on
H with 7 ≤ i ≤ 10, the following new type of robust operations on H may be
applicable:

Type 11: Suppose that {u, v} is an edge in E(G)−E(H) such that dH(u) =
1, dH(v) ≤ 1, and no connected component of H contains both u and v. Then,
a Type-11 operation on H using {u, v} modifies H by adding edge {u, v}. Ob-
viously, this operation is robust and increases the number of edges in H by 1.
(Comment: If dH(v) = 0 before a Type-11 operation, then p(H) does not change
and n0(H) decreases by 1 after the operation. Similarly, if dH(v) = 1 before a
Type-11 operation, then n0(H) does not change and p(H) decreases by 1 after
the operation.)

Using the above operations, our algorithm then proceeds to modifying H by
performing the following steps:

3. Repeat using a Type-i operation to modify H with 1 ≤ i ≤ 11, until
none is applicable.

4. For each odd cycle C of H, remove one (arbitrary) edge from C.
(Comment: Each odd cycle modified in this step is a 5-, 7-, or 9-
cycle.)

5. Output H.

4 Performance Analysis

For 1 ≤ i ≤ 4, let Hi be the triangle-free path-cycle cover H of G immedi-
ately after Step i of our algorithm. In order to analyze the approximation ratio
achieved by our algorithm, we need to define several notations as follows:

– Let n, m, nis, and npc be the numbers of vertices, edges, isolated vertices,
and path components in H2, respectively. (Comment: m ≥ |E(Opt)|.)

– Let m− be the number of Type-i operations with 7 ≤ i ≤ 10 performed in
Step 3.

– Let m+,−1 be the number of Type-11 operations performed Step 3 that
decrease the number of isolated vertices in H by 1.

– Let m+,0 be the number of Type-11 operations performed Step 3 that do
not change the number of isolated vertices in H.

– Let n0,−1 be the number of Type-i operations with 1 ≤ i ≤ 3 performed in
Step 3 that decrease the number of isolated vertices in H by 1.

– For each i ∈ {5, 7, 9}, let ci be the number of i-cycles in H3.
– Let mc and muc be the numbers of charged edges and uncharged edges in
H3, respectively.)

Lemma 2. The following statements hold:

1. m− ≤ 1
10 (m+m+,0 +m+,−1 −muc).

2. |E(H4)| = m−m− +m+,0 +m+,−1 − c5 − c7 − c9.
3. |E(H4)| ≥ 9

10 (m+m+,0 +m+,−1)− (1
2c5 + 3

10c7 + 1
10c9).

Proof. By the algorithm, |E(H3)| = m−m−+m+,0+m+,−1. On the other hand,
|E(H3)| = mc+muc by definition. So, mc = m−m−+m+,0 +m+,−1−muc. We
also have m− ≤ 1

9mc by Invariant I2. Thus, m− ≤ 1
10 (m+m+,0 +m+,−1−muc).

By Step 3, |E(H4)| = |E(H3)| − c5 − c7 − c9. So, by the first equality in the
last paragraph, |E(H4)| = m−m− +m+,0 +m+,−1 − c5 − c7 − c9.

By Statements 1 and 2, |E(H4)| ≥ 9
10 (m+m+,0+m+,−1)+ 1

10muc−c5−c7−c9.
We also have muc ≥ 5c5 + 7c7 + 9c9, because each edge in a cycle component of
H3 is uncharged according to Invariant I3. Combining these two inequalities, we
have Statement 3. 2

Lemma 3. The following statements hold:

1. n− n0(H3)− 2p(H3) = m− npc − 2m− + 2m+,0 +m+,−1 − n0,−1.
2. p(H3) = npc +m− −m+,0 + n0,−1.

Proof. Immediately before Step 3, n−n0(H)−2p(H) = m−npc because p(H) =
npc and the number of vertices on a path is 1 plus the number of edges on the
path. Now, to prove the lemma, it suffices to see how the values of n− n0(H)−
2p(H) and p(H) change when performing an operation in Step 3. The comment
on the definition of each type of operations helps. 2

In order to analyze the algorithm, we need more definitions:
– For i ∈ {0, 1}, let Ti be the set of all vertices v in H3 with dH3(v) = i.
– Let T2 be the set of all vertices v in H3 such that v appears in an odd cycle

of H3.
– Let T = T0 ∪ T1 ∪ T2.
– For i ∈ {0, 1, 2}, let Ti be the set of vertices u ∈ V (G) − T such that

the number of edges {u, v} ∈ E(Opt) with v ∈ T is exactly i. (Comment:
V (G)− T = T0 ∪ T1 ∪ T2.)

– Let ETopt be the set of all edges {u, v} in Opt such that both u and v are
vertices of T .

– Let C−2 be the set of all odd cycles in H3 such that Opt contains at most
|V (C)| − 2 edges {u, v} with {u, v} ⊆ V (C).

Lemma 4. |ETopt| ≤ p(H3)+4c5 +6c7 +8c9−|C−2| ≤ npc+m−−m+,0 +n0,−1 +
4c5 + 6c7 + 8c9 − |C−2|.

Proof. First, we claim that each vertex u ∈ T0 is an isolated vertex in G[T]. To
see this, consider an arbitrary u ∈ T0. Because of Lemma 1 and the fact that
all Type-i operations with 1 ≤ i ≤ 11 are robust, there is no vertex v ∈ T0 ∪ T2

with {u, v} ∈ E(G). Moreover, since no Type-11 operation can be applied to
H3, there is no vertex v ∈ T1 with {u, v} ∈ E(G). So, the claim holds.

Next, we claim that there is no edge {u, v} ∈ E(G) with u ∈ T1 and v ∈ T2.
This follows from the fact that no Type-1 operation can be applied to H3.

By the above two claims, each edge in ETopt is either in G[T1] or in G[T2].
Since no Type-11 operation can be applied to H3, there is no edge {u, v} ∈ E(G)
with {u, v} ⊆ T1 such that u and v belong to different connected components
of H3. So, there are at most p(H3) edges in G[T1]. Consequently, to show the
first inequality in the lemma, it remains to show that ETopt contains at most
4c5 + 6c7 + 8c9 − |C−2| edges {u, v} with {u, v} ⊆ T2.

Suppose that {u, v} is an edge in ETopt with {u, v} ⊆ T2. Since no Type-8
operation can be applied to H3, x and y belong to the same cycle component of
H3[T2]. On the other hand, since each cycle C in H3[T2] is an odd cycle, ETopt
can contain at most |E(C)| − 1 edges {u, v} with {u, v} ⊆ V (C). In particular,
for each cycle C ∈ C−2, ETopt can contain at most |E(C)| − 2 edges {u, v} with
{u, v} ⊆ V (C). Hence, ETopt contains at most 4c5 + 6c7 + 8c9−|C−2| edges {u, v}
with {u, v} ⊆ T2. This completes the proof of the first inequality in the lemma.
The second follows from the first and Statement 2 in Lemma 3. 2

Lemma 5. |ETopt| ≥ |E(Opt)| − 2m+ 2npc + 4m−− 4m+,0− 2m+,−1 + 2n0,−1 +
10c5 + 14c7 + 18c9 + |T0|+ 1

2 |T1|.

Proof. The idea behind the proof is to obtain an upper bound on |E(Opt)−ETopt|.
A trivial upper bound is 2(n−|T |), because each edge in E(Opt)−ETopt must be
incident to a vertex in V (G)− T and each vertex in V (G)− T can be adjacent
to at most two edges in Opt. This bound is not good enough because each edge
{u, v} ∈ E(Opt) with {u, v} ⊆ V (G)− T is counted twice.

To get a better bound, we set up a savings account for each vertex in V (G)−
T . Initially, we deposit two credits to the account of each vertex. The total
credits amount to 2(n − |T |) (namely, the trivial upper bound). Next, for each
edge {u, v} ∈ E(Opt) with {u, v} ⊆ V (G) − T , we pay a half credit from the
account of u and another half credit from the account of v. After this, for each
edge {u, v} ∈ E(Opt) with u ∈ V (G)−T and v ∈ T , we pay one credit from the
account of u. Obviously, we paid a total of |E(Opt)−ETopt| credits. We want to
estimate the number of credits that are still left in the accounts of the vertices
in V (G)− T . First, for each vertex u ∈ T0, we paid at most one credit, because
u is incident to at most two edges in E(Opt)−ETopt and each of them has both
of its endpoints in V (G) − T . So, the total number of credits still left in the
accounts of the vertices in T0 is at least |T0|. Second, for each vertex u ∈ T1,
we paid at most one and a half credits, because u is incident to at most two
edges in E(Opt) − ETopt and one of them has an endpoint in T . Thus, the total
number of credits still left in the accounts of the vertices in T1 is at least 1

2 |T1|.
In summary, we have shown that |E(Opt)− ETopt| ≤ 2(n− |T |)− |T0| − 1

2 |T1|.
Obviously, |T | = n0(H3) + 2p(H3) + 5c5 + 7c7 + 9c9. So, by Statement 1 in

Lemma 3, |T | = n−(m−npc−2m−+2m+,0+m+,−1−n0,−1)+5c5+7c7+9c9. In
other words, n−|T | = m−npc−2m−+2m+,0 +m+,−1−n0,−1−5c5−7c7−9c9.
Hence, by the last inequality in the last paragraph, |E(Opt) − ETopt| ≤ 2m −
2npc − 4m− + 4m+,0 + 2m+,−1 − 2n0,−1 − 10c5 − 14c7 − 18c9 − |T0| − 1

2 |T1|. So,
the lemma holds. 2

Lemma 6. |E(H4)| ≥ 37
45 |E(Opt)|.

Proof. Combining Lemmas 4 and 5, we have |E(Opt)| ≤ 2m − npc − 3m− +
3m+,0 + 2m+,−1 − n0,−1 − 6c5 − 8c7 − 10c9. So, by Statement 2 in Lemma 2,
3|E(H4)|−|E(Opt)| ≥ m+m+,−1+npc+n0,−1+3c5+5c7+7c9. Thus, 3c5+5c7+
7c9 ≤ 3|E(H4)|− |E(Opt)|−m. Hence, 1

2c5 + 3
10c7 + 1

10c9 ≤
1
6 (3c5 + 5c7 + 7c9) ≤

1
2 |E(H4)| − 1

6 |E(Opt)| − 1
6m. Therefore, by Statement 3 in Lemma 2, we have

|E(H4)| ≥ 9
10m−(1

2 |E(H4)|− 1
6 |E(Opt)|− 1

6m). Rearranging this inequality and
using the fact that m ≥ |E(Opt)|, we finally obtain |E(H4)| ≥ 37

45 |E(Opt)|. 2

Note that 37
45 = 0.8222 . . . which is better than the previously best ratio. To

show that our algorithm indeed achieves an even better ratio, our idea is to show
that |C−2|+|T0|+ 1

2 |T1| is large. This holds basically because no Type-i operation
with i ∈ {1, . . . , 11} can be applied to H3. The proof is very complicated and will
appear in the full version of this paper. In summary, we have our main result:

Theorem 1. There is an O(n2m2)-time approximation algorithm for Max Sim-
ple Edge 2-Coloring achieving a ratio of 24

29 , where n (respectively, m) is the
number of vertices (respectively, edges) in the input graph.

5 An Application
Let G be a graph. An edge cover of G is a set F of edges of G such that each
vertex of G is incident to at least one edge of F . For a natural number k, a
[1,∆]-factor k-packing of G is a collection of k disjoint edge covers of G. The size
of a [1,∆]-factor k-packing {F1, . . . , Fk} of G is |F1|+ · · ·+ |Fk|. The problem of
deciding whether a given graph has a [1,∆]-factor k-packing was considered in [5,
6]. In [7], Kosowski et al. defined the minimum [1,∆]-factor k-packing problem
(Min-k-FP) as follows: Given a graph G, find a [1,∆]-factor k-packing of G of
minimum size or decide that G has no [1,∆]-factor k-packing at all.

According to [7], Min-2-FP is of special interest because it can be used to
solve a fault tolerant variant of the guards problem in grids (which is one of the
art gallery problems [8, 9]). Min-2-FP is NP-hard [7].

Lemma 7. [7] If Max Simple Edge 2-Coloring admits an approximation
algorithm A achieving a ratio of α, then Min-2-FP admits an approximation
algorithm B achieving a ratio of 2−α. Moreover, if the time complexity of A is
T (n), then the time complexity of B is O(T (n)).

Theorem 2. There is an O(n2m2)-time approximation algorithm for Min-2-
FP achieving a ratio of 34

29 , where n (respectively, m) is the number of vertices
(respectively, edges) in the input graph.

Theorem 2 follows from Theorem 1 and Lemma 7 immediately. Previously,
the best ratio achieved by a polynomial-time approximation algorithm for Min-
2-FP was 682

575 [1], although Min-2-FP admits a polynomial-time approximation
algorithm achieving a ratio of 42∆−30

35∆−21 , where ∆ is the maximum degree of a
vertex in the input graph [7].

References
1. Z.-Z. Chen, R. Tanahashi, and L. Wang. An Improved Approximation Algorithm

for Maximum Edge 2-Coloring in Simple Graphs. To appear in Journal of Discrete
Algorithms.

2. U. Feige, E. Ofek, and U. Wieder. Approximating Maximum Edge Coloring in
Multigraphs. Proceedings of the 10th International Conference on Integer Pro-
gramming and Combinatorial Optimization (IPCO), Lecture Notes in Computer
Science, 2462 (2002) 108-121.

3. D. Hartvigsen. Extensions of Matching Theory. Ph.D. Thesis, Carnegie-Mellon
University, 1984.

4. D. Hochbaum. Approximation Algorithms for NP-Hard Problems. PWS Publishing
Company, Boston, 1997.

5. D.P. Jacobs and R.E. Jamison. Complexity of Recognizing Equal Unions in Fam-
ilies of Sets. Journal of Algorithms, 37 (2000) 495-504.

6. K. Kawarabayashi, H. Matsuda, Y. Oda, and K. Ota. Path Factors in Cubic
Graphs. Journal of Graph Theory, 39 (2002) 188-193.

7. A. Kosowski, M. Malafiejski, and P. Zylinski. Packing Edge Covers in Graphs of
Small Degree. Manuscript, 2006.

8. J. O’Rourke. Art Gallery Theorems and Algorithms. Oxford University Press, 1987.
9. J. Urrutia. Art Gallery and Illumination Problems. Handbook on Computational

Geometry, Elsevier Science, Amsterdam, 2000.

