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Abstract. We present a polynomial-time approximation algorithm for
legally coloring as many edges of a given simple graph as possible using
two colors. It achieves an approximation ratio of 24

29
= 0.827586 . . .. This

improves on the previous best ratio of 468
575

= 0.813913 . . ..

1 Introduction

Given a graph G and a natural number t, the maximum edge t-coloring problem
(called Max Edge t-Coloring for short) is to find a maximum set F of edges
in G such that F can be partitioned into at most t matchings of G. Motivated
by call admittance issues in satellite based telecommunication networks, Feige et
al. [2] introduced the problem and proved its APX-hardness. They also observed
that Max Edge t-Coloring is obviously a special case of the well-known
maximum coverage problem (see [4]). Since the maximum coverage problem
can be approximated by a greedy algorithm within a ratio of 1− (1− 1

t )
t [4], so

can Max Edge t-Coloring. In particular, the greedy algorithm achieves an
approximation ratio of 3

4 for Max Edge 2-Coloring which is the special case
of Max Edge t-Coloring where the input number t is fixed to 2. Feige et al.
[2] has improved the trivial ratio 3

4 = 0.75 to 10
13 ≈ 0.769 by an LP approach.

The APX-hardness proof for Max Edge t-Coloring given by Feige et al. [2]
indeed shows that the problem remains APX-hard even if we restrict the input
graph to a simple graph and fix the input integer t to 2. We call this restriction
(special case) of the problem Max Simple Edge 2-Coloring. Feige et al. [2]
also pointed out that for Max Simple Edge 2-Coloring, an approximation
ratio of 4

5 can be achieved by the following simple algorithm: Given a simple
graph G, first compute a maximum subgraph H of G such that the degree of
each vertex in H is at most 2 and there is no 3-cycle in H, and then remove one
arbitrary edge from each odd cycle of H.

In [1], the authors have improved the ratio to 468
575 . Essentially, the algorithm

in [1] differs from the simple algorithm only in the handling of 5-cycles where
instead of removing one arbitrary edge from each 5-cycle of H, we remove a
random edge from each 5-cycle of H. The intuition behind the algorithm is as
follows: If we delete a random edge from each 5-cycle of H, then for each edge
{u, v} in the optimal solution such that u and v belong to different 5-cycles, both
u and v become of degree 1 in H (after handling the 5-cycles) with a probability
of 4

25 and so can be added into H without losing the edge 2-colorability of H.



In this paper, we further improve the ratio to 24
29 . The basic idea behind

our algorithm is as follows: Instead of removing a random edge from each 5-
cycle of H and removing an arbitrary edge from each other odd cycle of H, we
remove one edge from each odd cycle of H with more care in the hope that
after the removal, a lot of edges {u, v} (in the optimal solution) with u and v
belonging to different odd cycles of H can be added to H. More specifically, we
define a number of operations that modify each odd cycle of H together with its
neighborhood carefully without decreasing the number of edges in H by two or
more; our algorithm just performs these operations on H until none of them is
applicable. The nonapplicability of these operations guarantees that H is edge
2-colorable and its number of edges is close to optimal; the analysis is quite
challenging.

Kosowski et al. [7] also considered Max Simple Edge 2-Coloring. They
presented an approximation algorithm that achieves a ratio of 28∆−12

35∆−21 , where ∆
is the maximum degree of a vertex in the input simple graph. This ratio can be
arbitrarily close to the trivial ratio 4

5 because ∆ can be very large. In particular,
this ratio is smaller than 24

29 when ∆ ≥ 6.
Kosowski et al. [7] showed that approximation algorithms for Max Simple

Edge 2-Coloring can be used to obtain approximation algorithms for cer-
tain packing problems and fault-tolerant guarding problems. Combining their
reductions and our improved approximation algorithm for Max Simple Edge
2-Coloring, we can obtain improved approximation algorithms for their pack-
ing problems and fault-tolerant guarding problems immediately.

2 Basic Definitions

A graph always means a simple undirected graph. A graph G has a vertex set
V (G) and an edge set E(G). For each v ∈ V (G), NG(v) denotes the set of all
vertices adjacent to v in G and dG(v) = |NG(v)| is the degree of v in G. If
dG(v) = 0, then v is an isolated vertex of G. For each U ⊆ V (G), G[U ] denotes
the subgraph of G induced by U .

A path in G is a connected subgraph of G in which exactly two vertices are of
degree 1 and the others are of degree 2. Each path has two endpoints and zero
or more inner vertices. An edge {u, v} of a path P is an inner edge of P if both
u and v are inner vertices of P . The length of a cycle or path C is the number
of edges in C. A cycle of odd (respectively, even) length is an odd (respectively,
even) cycle. A k-cycle is a cycle of length k. Similarly, a k+-cycle is a cycle
of length at least k. A path component (respectively, cycle component) of G is
a connected component of G that is a path (respectively, cycle). A path-cycle
cover of G is a subgraph H of G such that V (H) = V (G) and dH(v) ≤ 2 for
every v ∈ V (H). A cycle cover of G is a path-cycle cover of G in which each
connected component is a cycle. A path-cycle cover C of G is triangle-free if C
does not contain a 3-cycle.

G is edge-2-colorable if each connected component of G is an isolated vertex,
a path, or an even cycle. Note that Max Simple Edge 2-Coloring is the
problem of finding a maximum edge-2-colorable subgraph in a given graph.



3 The Algorithm

Throughout this section, fix a graph G and a maximum edge-2-colorable sub-
graph Opt of G. For convenience, for each path-cycle cover K of G, we define
two numbers as follows:

– n0(K) is the number of isolated vertices in K.
– p(K) is the number of path components in K.

Like the simple algorithm described in Section 1, our algorithm starts by
performing the following step:

1. Compute a maximum triangle-free path-cycle cover H of G.

Since |E(H)| ≥ |E(Opt)|, it suffices to modify H into an edge-2-colorable
subgraph of G without significantly decreasing the number of edges in H. The
simple algorithm achieves an approximation ratio of 4

5 because it simply removes
an arbitrary edge from each odd cycle in H. In order to improve this ratio,
we have to treat 5-cycles (and other short odd cycles) in H more carefully. In
more details, when removing edges from odd cycles in H, we also want to add
some edges of E(G)−E(H) to H. For this purpose, we will define a number of
operations onH that always decrease the number of cycles inH but may decrease
the number of edges in H or not. To tighten the analysis of the approximation
ratio achieved by our algorithm, we set up a charging scheme that charges the
net loss of edges from H (due to the operations) to some edges still remaining
in H. Whenever we do this, we will always maintain the following invariants:

I1. Every edge of H is charged a real number smaller than or equal to 1
9 .

I2. The total charge on the edges of H equals the total number of operations
performed on H that decrease the number of edges in H.

I3. No cycle component of H contains a charged edge.
I4. If a path component P of H contains a charged edge, then the length of P

is at least 6.

Initially, every edge of H is charged nothing. However, as we modify H by
performing operations (to be defined below), some edges of H will be charged.

We first define those operations on H that decrease the number of odd cycles
in H but do not decrease the number of edges in H. In order to do this, the
following three concepts are necessary:

A quadruple (x, y, P, u, v) is a 5-opener for an odd cycle C ofH if the following
hold:

– dH(x) ≤ 1 and y ∈ V (C).
– P is a path component of H, both u and v are inner vertices of P , and x is

not a vertex of P .
– Both {u, x} and {v, y} are contained in E(G)− E(H).

A sextuple (x, y,Q, P, u, v) is a 6-opener for an odd cycle C of H if the
following hold:



– x ∈ V (C) and y ∈ V (C). Moreover, if x = y, then Q is a cycle cover of
G[V (C)− {x}] in which each connected component is an even cycle; other-
wise, Q is a path-cycle cover of G[V (C)] in which one connected component
is a path from x to y and each other connected component is an even cycle.

– P is a path component of H and both u and v are inner vertices of P .
– Both {u, x} and {v, y} are contained in E(G)− E(H).

An operation (to be performed) on H is robust if the following holds:
– If G has no edge {u, v} before the operation such that u is an isolated vertex

in H and either v is an isolated vertex in H or v appears in a cycle component
of H, then neither does it after the operation.

Based on the above concepts, we are now ready to define six robust operations
on H that decrease the number of odd cycles in H but do not decrease the
number of edges in H.

Type 1: Suppose that {u, v} is an edge in E(G)−E(H) such that dH(u) ≤ 1
and v is a vertex of some cycle C of H. Then, a Type-1 operation on H using
{u, v} modifies H by deleting one (arbitrary) edge of C incident to v and adding
edge {u, v}. Obviously, this operation is robust and does not change |E(H)|.
(Comment: If dH(u) = 0 before a Type-1 operation, then n0(H) decreases by 1
and p(H) increases by 1 after the operation. Similarly, if dH(u) = 1 before a
Type-1 operation, then neither n0(H) nor p(H) changes after the operation.)

Type 2: Suppose that some odd cycle C of H has a 5-opener (x, y, P, u, v)
with {u, v} ∈ E(H) (see Figure 1). Then, a Type-2 operation on H using
(x, y, P, u, v) modifies H by deleting edge {u, v}, deleting one (arbitrary) edge of
C incident to y, and adding edges {u, x} and {v, y}. Obviously, this operation is
robust and does not change the number of edges in H. However, edge {u, v} may
have been charged before this operation. If that is the case, we move its charge
to {u, x}. Moreover, if the path component Q of H containing edge {u, x} after
this operation is of length at most 5, then we move the charges on the edges of Q
to edge {v, y} and the edges of C still remaining in H. (Comment: A Type-2 op-
eration on H maintains Invariants I1 through I4. Moreover, if dH(x) = 0 before
a Type-2 operation, then n0(H) decreases by 1 and p(H) increases by 1 after
the operation. Similarly, if dH(x) = 1 before a Type-2 operation, then neither
n0(H) nor p(H) changes after the operation.)

u

C

v

x y

P u v P

C

x y

Fig. 1. A Type-2 operation, where bold edges are in H.

Type 3: Suppose that some odd cycle C of H has a 5-opener (x, y, P, u, v)
such that E(G)−E(H) contains the edge {w, s}, where w is the neighbor of v in
the subpath of P between u and v and s is the endpoint of P with distP (s, u) <
distP (s, v) (see Figure 2 in the appendix). Then, a Type-3 operation on H using
(x, y, P, u, v) modifies H by deleting edge {v, w}, deleting one (arbitrary) edge



eu of P incident to u, deleting one (arbitrary) edge of C incident to y, and
adding edges {u, x}, {v, y}, and {s, w}. Obviously, this operation is robust and
does not change the number of edges in H. Note that {v, w} or eu may have
been charged before this operation. If that is the case, we move their charges to
edges {u, x} and {s, w}, respectively. Moreover, if the path component Q of H
containing edge {u, x} after this operation is of length at most 5, then we move
the charges on the edges of Q to edge {v, y} and the edges of C still remaining
in H. (Comment: A Type-3 operation on H maintains Invariants I1 through I4.
Moreover, if dH(x) = 0 before a Type-3 operation, then n0(H) decreases by 1
and p(H) increases by 1 after the operation. Similarly, if dH(x) = 1 before a
Type-3 operation, then neither n0(H) nor p(H) changes after the operation.)
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Fig. 2. A Type-3 operation, where bold edges are in H.

Type 4: Suppose that there is a quadruple (x, P, u, v) satisfying the following
conditions (see Figure 3 in the appendix):

– x is a vertex of a cycle component C of H.
– P is a path component of H and {u, v} is an inner edge of P .
– E(G)−E(H) contains both {u, x} and {s, v}, where s is the endpoint of P

with distP (s, u) < distP (s, v).

Then, a Type-4 operation on H using (x, P, u, v) modifies H by deleting edge
{u, v}, deleting one (arbitrary) edge of C incident to x, and adding edges {u, x}
and {s, v}. Obviously, this operation is robust and does not change the number
of edges in H. However, {u, v} may have been charged before this operation. If
that is the case, we move its charge to {u, x}. (Comment: A Type-4 operation
on H maintains Invariants I1 through I4, and changes neither n0(H) nor p(H).)
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Fig. 3. A Type-4 operation, where bold edges are in H.

Type 5: Suppose that there is a quintuple (x, P, u, v, w) satisfying the fol-
lowing conditions (see Figure 4 in the appendix):

– x is a vertex of a cycle component C of H.
– P is a path component of H, u is an inner vertex of P , {v, w} is an inner

edge of P , and distP (u, v) < distP (u,w).
– E(G)−E(H) contains {u, x}, {s, w}, and {t, v}, where s is the endpoint of
P with distP (s, u) < distP (s, v) and t is the other endpoint of P .



Then, a Type-5 operation on H using (x, P, u, v, w) modifies H by deleting edge
{v, w}, deleting one (arbitrary) edge eu of P incident to u, deleting one (arbi-
trary) edge of C incident to x, and adding {s, w}, {t, v}, and {u, x}. Obviously,
this operation is robust and does not change the number of edges in H. However,
{v, w} and eu may have been charged before this operation. If that is the case,
we move their charges to {u, x} and {s, w}, respectively. (Comment: A Type-5
operation on H maintains Invariants I1 through I4, and changes neither n0(H)
nor p(H).)
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Fig. 4. A Type-5 operation, where bold edges are in H.

Type 6: Suppose that some odd cycle C of H with length at most 9 has a 6-
opener (x, y,Q, P, u, v) such that {u, v} ∈ E(H) (see Figure 5 in the appendix).
Then, a Type-6 operation on H using (x, y,Q, P, u, v) modifies H by deleting
edge {u, v}, deleting all edges of C, adding edges {u, x} and {v, y}, and adding
all edges of Q. Obviously, this operation does not change the number of edges in
H, and is robust because (1) it does not create a new isolated vertex in H and
(2) if it creates one or more new cycles in H then V (C ′) ⊆ V (C) for each new
cycle C ′. However, {u, v} may have been charged before this operation. If that
is the case, we move its charge to {u, x}. (Comment: A Type-6 operation on H
maintains Invariants I1 through I4, and changes neither n0(H) nor p(H).)
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Fig. 5. A Type-6 operation, where bold edges are in H.

Using the above operations, our algorithm then proceeds to modifying H by
performing the following step:

2. Repeat performing a Type-i operation on H with 1 ≤ i ≤ 6, until
none is applicable.

Obviously, H remains a triangle-free path-cycle cover of G. Moreover, the
following fact holds:

Lemma 1. After Step 2, G has no edge {u, v} such that u is an isolated vertex
in H and either v is an isolated vertex in H or v appears in a cycle component
of H.

Unfortunately, H may still have odd cycles after Step 2. So, we need to
perform new types of operations on H that always decrease the number of odd
cycles in H but may also decrease the number of edges in H. Before defining



the new operations on H, we define two concepts as follows. Two cycles C1 and
C2 of H are pairable if at least one of them is odd and their total length is at
least 10. A quintuple (x, y, P, u, v) is an opener for two pairable cycles C1 and
C2 of H if the following hold:

– x is a vertex of C1 and y is a vertex of C2.
– P is either a path component of H or a 4-cycle of H other than C1 and C2.
– u and v are distinct vertices of P with dH(u) = dH(v) = 2.
– Both {u, x} and {v, y} are in E(G)− E(H).

Now, we are ready to define the new types of robust operations on H as
follows:

Type 7: Suppose that C is an odd cycle of H with length at least 11. Then,
a Type-7 operation on H using C modifies H by deleting one (arbitrary) edge
from C. Clearly, the net loss in the number of edges in H is 1. We charge this
loss evenly to the edges of C still remaining in H. In more details, if C was a
k-cycle before the operation, then a charge of 1

k−1 is charged to each edge of
C still remaining in H after the operation. Since k ≥ 11, the charge assigned
to one edge here is at most 1

10 . Obviously, this operation is robust. (Comment:
A Type-7 operation on H maintains Invariants I1 through I4, does not change
n0(H), and increases p(H) by 1.)

Type 8: Suppose that C1 and C2 are two pairable cycles of H such that
there is an edge {u, v} ∈ E(G) with u ∈ V (C1) and v ∈ V (C2). Then, a Type-8
operation on H using {u, v} modifies H by deleting one (arbitrary) edge of C1

incident to u, deleting one (arbitrary) edge of C2 incident to v, and adding edge
{u, v}. Note that this operation decreases the number of edges in H by 1. So,
the net loss in the number of edges in H is 1. We charge this loss evenly to edge
{u, v} and the edges of C1 and C2 still remaining in H. In more details, if C1

was a k-cycle and C2 was an `-cycle in H before the operation, then a charge of
1

k+`−1 is assigned to {u, v} and each edge of C1 and C2 still remaining in H after
the operation. Since k ≥ 5 and ` ≥ 5, the charge assigned to one edge here is
at most 1

9 . Obviously, this operation is robust. (Comment: A Type-8 operation
on H maintains Invariants I1 through I4, does not change n0(H), and increases
p(H) by 1.)

Type 9: Suppose that two odd cycles C1 and C2 of H have an opener
(x, y, P, u, v) with {u, v} ∈ E(H) (see Figure 6 in the appendix). Then, a Type-9
operation on H using (x, y, P, u, v) modifies H by deleting edge {u, v}, deleting
one (arbitrary) edge of C1 incident to x, deleting one (arbitrary) edge of C2

incident to y, and adding edges {u, x} and {v, y}. Note that edge {u, v} may
have been charged before this operation. If that is the case, we move its charge
to edge {u, x}. Moreover, the operation decreases the number of edges in H by 1.
So, the net loss in the number of edges in H is 1. We charge this loss evenly
to edge {v, y} and the edges of C1 and C2 still remaining in H. Obviously, the
charge assigned to one edge here is at most 1

9 . It is also clear that this operation is
robust. (Comment: A Type-9 operation on H maintains Invariants I1 through I4,
does not change n0(H), and increases p(H) by 1.)
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Fig. 6. A Type-9 operation, where bold edges are in H.

Type 10: Suppose that two odd cycles C1 and C2 of H have an opener
(x, y, P, u, v) such that E(G) − E(H) contains the edge {w, s}, where w is the
neighbor of v in the subpath of P between u and v and s is the endpoint of P
with distP (s, u) < distP (s, v) (see Figure 7 in the appendix). Then, a Type-10
operation on H using (x, y, P, u, v) modifies H by deleting edge {v, w}, deleting
one (arbitrary) edge eu of P incident to u, deleting one (arbitrary) edge of C1

incident to x, deleting one (arbitrary) edge of C2 incident to y, and adding
edges {u, x}, {v, y}, and {s, w}. Note that {v, w} or eu may have been charged
before this operation. If that is the case, we move their charges to edges {u, x}
and {v, y}, respectively. Moreover, the operation decreases the number of edges
in H by 1. So, the net loss in the number of edges in H is 1. We charge this
loss evenly to edge {s, w} and the edges of C1 and C2 still remaining in H.
Obviously, the charge assigned to one edge here is at most 1

9 . It is also clear
that this operation is robust. (Comment: A Type-10 operation on H maintains
Invariants I1 through I4, does not change n0(H), and increases p(H) by 1.)
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Fig. 7. A Type-10 operation, where bold edges are in H.

After Step 2, no matter how many times we perform Type-i operations on H
with 1 ≤ i ≤ 10, G cannot have an edge {u, v} such that u is an isolated vertex
in H and either v is an isolated vertex in H or v appears in a cycle component
of H. This follows from Lemma 1 and the fact that every Type-i operation on
H with 1 ≤ i ≤ 10 is robust. However, after performing a Type-i operation on
H with 7 ≤ i ≤ 10, the following new type of robust operations on H may be
applicable:

Type 11: Suppose that {u, v} is an edge in E(G)−E(H) such that dH(u) =
1, dH(v) ≤ 1, and no connected component of H contains both u and v. Then,
a Type-11 operation on H using {u, v} modifies H by adding edge {u, v}. Ob-
viously, this operation is robust and increases the number of edges in H by 1.
(Comment: If dH(v) = 0 before a Type-11 operation, then p(H) does not change
and n0(H) decreases by 1 after the operation. Similarly, if dH(v) = 1 before a
Type-11 operation, then n0(H) does not change and p(H) decreases by 1 after
the operation.)

Using the above operations, our algorithm then proceeds to modifying H by
performing the following steps:



3. Repeat using a Type-i operation to modify H with 1 ≤ i ≤ 11, until
none is applicable.

4. For each odd cycle C of H, remove one (arbitrary) edge from C.
(Comment: Each odd cycle modified in this step is a 5-, 7-, or 9-
cycle.)

5. Output H.

4 Performance Analysis

For 1 ≤ i ≤ 4, let Hi be the triangle-free path-cycle cover H of G immedi-
ately after Step i of our algorithm. In order to analyze the approximation ratio
achieved by our algorithm, we need to define several notations as follows:

– Let n, m, nis, and npc be the numbers of vertices, edges, isolated vertices,
and path components in H2, respectively. (Comment: m ≥ |E(Opt)|.)

– Let m− be the number of Type-i operations with 7 ≤ i ≤ 10 performed in
Step 3.

– Let m+,−1 be the number of Type-11 operations performed Step 3 that
decrease the number of isolated vertices in H by 1.

– Let m+,0 be the number of Type-11 operations performed Step 3 that do
not change the number of isolated vertices in H.

– Let n0,−1 be the number of Type-i operations with 1 ≤ i ≤ 3 performed in
Step 3 that decrease the number of isolated vertices in H by 1.

– For each i ∈ {5, 7, 9}, let ci be the number of i-cycles in H3.
– Let mc and muc be the numbers of charged edges and uncharged edges in
H3, respectively.)

Lemma 2. The following statements hold:

1. m− ≤ 1
10 (m+m+,0 +m+,−1 −muc).

2. |E(H4)| = m−m− +m+,0 +m+,−1 − c5 − c7 − c9.
3. |E(H4)| ≥ 9

10 (m+m+,0 +m+,−1)− ( 1
2c5 + 3

10c7 + 1
10c9).

Proof. By the algorithm, |E(H3)| = m−m−+m+,0+m+,−1. On the other hand,
|E(H3)| = mc+muc by definition. So, mc = m−m−+m+,0 +m+,−1−muc. We
also have m− ≤ 1

9mc by Invariant I2. Thus, m− ≤ 1
10 (m+m+,0 +m+,−1−muc).

By Step 3, |E(H4)| = |E(H3)| − c5 − c7 − c9. So, by the first equality in the
last paragraph, |E(H4)| = m−m− +m+,0 +m+,−1 − c5 − c7 − c9.

By Statements 1 and 2, |E(H4)| ≥ 9
10 (m+m+,0+m+,−1)+ 1

10muc−c5−c7−c9.
We also have muc ≥ 5c5 + 7c7 + 9c9, because each edge in a cycle component of
H3 is uncharged according to Invariant I3. Combining these two inequalities, we
have Statement 3. 2

Lemma 3. The following statements hold:

1. n− n0(H3)− 2p(H3) = m− npc − 2m− + 2m+,0 +m+,−1 − n0,−1.
2. p(H3) = npc +m− −m+,0 + n0,−1.



Proof. Immediately before Step 3, n−n0(H)−2p(H) = m−npc because p(H) =
npc and the number of vertices on a path is 1 plus the number of edges on the
path. Now, to prove the lemma, it suffices to see how the values of n− n0(H)−
2p(H) and p(H) change when performing an operation in Step 3. The comment
on the definition of each type of operations helps. 2

In order to analyze the algorithm, we need more definitions:
– For i ∈ {0, 1}, let Ti be the set of all vertices v in H3 with dH3(v) = i.
– Let T2 be the set of all vertices v in H3 such that v appears in an odd cycle

of H3.
– Let T = T0 ∪ T1 ∪ T2.
– For i ∈ {0, 1, 2}, let Ti be the set of vertices u ∈ V (G) − T such that

the number of edges {u, v} ∈ E(Opt) with v ∈ T is exactly i. (Comment:
V (G)− T = T0 ∪ T1 ∪ T2.)

– Let ETopt be the set of all edges {u, v} in Opt such that both u and v are
vertices of T .

– Let C−2 be the set of all odd cycles in H3 such that Opt contains at most
|V (C)| − 2 edges {u, v} with {u, v} ⊆ V (C).

Lemma 4. |ETopt| ≤ p(H3)+4c5 +6c7 +8c9−|C−2| ≤ npc+m−−m+,0 +n0,−1 +
4c5 + 6c7 + 8c9 − |C−2|.

Proof. First, we claim that each vertex u ∈ T0 is an isolated vertex in G[T ]. To
see this, consider an arbitrary u ∈ T0. Because of Lemma 1 and the fact that
all Type-i operations with 1 ≤ i ≤ 11 are robust, there is no vertex v ∈ T0 ∪ T2

with {u, v} ∈ E(G). Moreover, since no Type-11 operation can be applied to
H3, there is no vertex v ∈ T1 with {u, v} ∈ E(G). So, the claim holds.

Next, we claim that there is no edge {u, v} ∈ E(G) with u ∈ T1 and v ∈ T2.
This follows from the fact that no Type-1 operation can be applied to H3.

By the above two claims, each edge in ETopt is either in G[T1] or in G[T2].
Since no Type-11 operation can be applied to H3, there is no edge {u, v} ∈ E(G)
with {u, v} ⊆ T1 such that u and v belong to different connected components
of H3. So, there are at most p(H3) edges in G[T1]. Consequently, to show the
first inequality in the lemma, it remains to show that ETopt contains at most
4c5 + 6c7 + 8c9 − |C−2| edges {u, v} with {u, v} ⊆ T2.

Suppose that {u, v} is an edge in ETopt with {u, v} ⊆ T2. Since no Type-8
operation can be applied to H3, x and y belong to the same cycle component of
H3[T2]. On the other hand, since each cycle C in H3[T2] is an odd cycle, ETopt
can contain at most |E(C)| − 1 edges {u, v} with {u, v} ⊆ V (C). In particular,
for each cycle C ∈ C−2, ETopt can contain at most |E(C)| − 2 edges {u, v} with
{u, v} ⊆ V (C). Hence, ETopt contains at most 4c5 + 6c7 + 8c9−|C−2| edges {u, v}
with {u, v} ⊆ T2. This completes the proof of the first inequality in the lemma.
The second follows from the first and Statement 2 in Lemma 3. 2

Lemma 5. |ETopt| ≥ |E(Opt)| − 2m+ 2npc + 4m−− 4m+,0− 2m+,−1 + 2n0,−1 +
10c5 + 14c7 + 18c9 + |T0|+ 1

2 |T1|.



Proof. The idea behind the proof is to obtain an upper bound on |E(Opt)−ETopt|.
A trivial upper bound is 2(n−|T |), because each edge in E(Opt)−ETopt must be
incident to a vertex in V (G)− T and each vertex in V (G)− T can be adjacent
to at most two edges in Opt. This bound is not good enough because each edge
{u, v} ∈ E(Opt) with {u, v} ⊆ V (G)− T is counted twice.

To get a better bound, we set up a savings account for each vertex in V (G)−
T . Initially, we deposit two credits to the account of each vertex. The total
credits amount to 2(n − |T |) (namely, the trivial upper bound). Next, for each
edge {u, v} ∈ E(Opt) with {u, v} ⊆ V (G) − T , we pay a half credit from the
account of u and another half credit from the account of v. After this, for each
edge {u, v} ∈ E(Opt) with u ∈ V (G)−T and v ∈ T , we pay one credit from the
account of u. Obviously, we paid a total of |E(Opt)−ETopt| credits. We want to
estimate the number of credits that are still left in the accounts of the vertices
in V (G)− T . First, for each vertex u ∈ T0, we paid at most one credit, because
u is incident to at most two edges in E(Opt)−ETopt and each of them has both
of its endpoints in V (G) − T . So, the total number of credits still left in the
accounts of the vertices in T0 is at least |T0|. Second, for each vertex u ∈ T1,
we paid at most one and a half credits, because u is incident to at most two
edges in E(Opt) − ETopt and one of them has an endpoint in T . Thus, the total
number of credits still left in the accounts of the vertices in T1 is at least 1

2 |T1|.
In summary, we have shown that |E(Opt)− ETopt| ≤ 2(n− |T |)− |T0| − 1

2 |T1|.
Obviously, |T | = n0(H3) + 2p(H3) + 5c5 + 7c7 + 9c9. So, by Statement 1 in

Lemma 3, |T | = n−(m−npc−2m−+2m+,0+m+,−1−n0,−1)+5c5+7c7+9c9. In
other words, n−|T | = m−npc−2m−+2m+,0 +m+,−1−n0,−1−5c5−7c7−9c9.
Hence, by the last inequality in the last paragraph, |E(Opt) − ETopt| ≤ 2m −
2npc − 4m− + 4m+,0 + 2m+,−1 − 2n0,−1 − 10c5 − 14c7 − 18c9 − |T0| − 1

2 |T1|. So,
the lemma holds. 2

Lemma 6. |E(H4)| ≥ 37
45 |E(Opt)|.

Proof. Combining Lemmas 4 and 5, we have |E(Opt)| ≤ 2m − npc − 3m− +
3m+,0 + 2m+,−1 − n0,−1 − 6c5 − 8c7 − 10c9. So, by Statement 2 in Lemma 2,
3|E(H4)|−|E(Opt)| ≥ m+m+,−1+npc+n0,−1+3c5+5c7+7c9. Thus, 3c5+5c7+
7c9 ≤ 3|E(H4)|− |E(Opt)|−m. Hence, 1

2c5 + 3
10c7 + 1

10c9 ≤
1
6 (3c5 + 5c7 + 7c9) ≤

1
2 |E(H4)| − 1

6 |E(Opt)| − 1
6m. Therefore, by Statement 3 in Lemma 2, we have

|E(H4)| ≥ 9
10m−( 1

2 |E(H4)|− 1
6 |E(Opt)|− 1

6m). Rearranging this inequality and
using the fact that m ≥ |E(Opt)|, we finally obtain |E(H4)| ≥ 37

45 |E(Opt)|. 2

Note that 37
45 = 0.8222 . . . which is better than the previously best ratio. To

show that our algorithm indeed achieves an even better ratio, our idea is to show
that |C−2|+|T0|+ 1

2 |T1| is large. This holds basically because no Type-i operation
with i ∈ {1, . . . , 11} can be applied to H3. The proof is very complicated and will
appear in the full version of this paper. In summary, we have our main result:

Theorem 1. There is an O(n2m2)-time approximation algorithm for Max Sim-
ple Edge 2-Coloring achieving a ratio of 24

29 , where n (respectively, m) is the
number of vertices (respectively, edges) in the input graph.



5 An Application
Let G be a graph. An edge cover of G is a set F of edges of G such that each
vertex of G is incident to at least one edge of F . For a natural number k, a
[1,∆]-factor k-packing of G is a collection of k disjoint edge covers of G. The size
of a [1,∆]-factor k-packing {F1, . . . , Fk} of G is |F1|+ · · ·+ |Fk|. The problem of
deciding whether a given graph has a [1,∆]-factor k-packing was considered in [5,
6]. In [7], Kosowski et al. defined the minimum [1,∆]-factor k-packing problem
(Min-k-FP) as follows: Given a graph G, find a [1,∆]-factor k-packing of G of
minimum size or decide that G has no [1,∆]-factor k-packing at all.

According to [7], Min-2-FP is of special interest because it can be used to
solve a fault tolerant variant of the guards problem in grids (which is one of the
art gallery problems [8, 9]). Min-2-FP is NP-hard [7].

Lemma 7. [7] If Max Simple Edge 2-Coloring admits an approximation
algorithm A achieving a ratio of α, then Min-2-FP admits an approximation
algorithm B achieving a ratio of 2−α. Moreover, if the time complexity of A is
T (n), then the time complexity of B is O(T (n)).

Theorem 2. There is an O(n2m2)-time approximation algorithm for Min-2-
FP achieving a ratio of 34

29 , where n (respectively, m) is the number of vertices
(respectively, edges) in the input graph.

Theorem 2 follows from Theorem 1 and Lemma 7 immediately. Previously,
the best ratio achieved by a polynomial-time approximation algorithm for Min-
2-FP was 682

575 [1], although Min-2-FP admits a polynomial-time approximation
algorithm achieving a ratio of 42∆−30

35∆−21 , where ∆ is the maximum degree of a
vertex in the input graph [7].
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