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Abstract

A graph G is 1-planar if it can be embedded in the plane in such a way that each edge
crosses at most one other edge. Borodin showed that 1-planar graphs are 6-colorable, but his
proof does not lead to an efficient algorithm. This paper presents a linear-time algorithm for
7-coloring 1-planar graphs. The main difficulty in the design of our algorithm comes from the
fact that the class of 1-planar graphs is not closed under the operation of edge contraction. This
difficulty is overcome by a structure lemma that may find useful in other problems on 1-planar
graphs. This paper also shows that it is NP-complete to decide whether a given 1-planar graph
is 4-colorable. The complexity of the problem of deciding whether a given 1-planar graph is
5-colorable is still unknown.
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1 Introduction

The problem of coloring the vertices of a graph using few colors has been a central problem in
graph theory. It has also been intensively studied in algorithm theory due to its applications in
many practical fields such as scheduling, resource allocation, and VLSI design. Of special interest
is the case where the graph is planar. Appel and Haken [1, 2] showed that every planar graph
is 4-colorable, but their proof does not lead to an efficient algorithm. Since then, a number of
linear-time algorithms for 5-coloring planar graphs have appeared [9, 14, 11, 19, 10].

An interesting generalization of planar graphs is the class of 1-planar graphs. The problem of
coloring the vertices of a 1-planar graph using few colors has also attracted very much attention
[16, 15, 3, 4, 5]. Indeed, the problem has been formulated in another different way: It is equivalent
to the problem of coloring the vertices of a plane graph so that the boundary vertices of every
face of size at most 4 receive different colors [15]. Ringel [16] proved that every 1-planar graph is
7-colorable and conjectured that every 1-planar graph is 6-colorable. Ringel [16] and Archdeacon [3]
confirmed the conjecture for two special cases. Borodin [4] settled the conjecture in the affirmative
with a lengthy proof. He [5] later came up with a relatively shorter proof. However, his proof does
not lead to an efficient algorithm for 6-coloring 1-planar graphs.

Chen, Grigni, and Papadimitriou [7] studied a modified notion of planarity, in which two nations
of a (political) map are considered adjacent when they share any point of their boundaries (not
necessarily an edge, as planarity requires). Such adjacencies define a map graph (see [8] for a
comprehensive survey of known results on map graphs). The map graph is called a k-map graph if
no more than k nations on the map meet at a point. As observed in [7], the adjacency graph of the
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United States is nonplanar but is a 4-map graph (see Figure 1). Obviously, every 4-map graph is
1-planar. In Section 4, we will observe that every 1-planar graph can be modified to a 4-map graph
by adding some edges (see Corollary 4.3 below). By these facts, the problem of coloring 1-planar
graphs is essentially equivalent to the problem of coloring 4-map graphs.

Figure 1: The USA map graph.

Recall that in the case of planar graphs, an efficient 4-coloring algorithm seems to be difficult
to design and hence it is of interest to look for an efficient 5-coloring algorithm. Similarly, in the
case of 1-planar graphs, an efficient 6-coloring algorithm seems to be difficult to design and hence it
is of interest to look for an efficient 7-coloring algorithm. In this paper, we present the first linear-
time algorithm for 7-coloring 1-planar graphs. Our algorithm is much more complicated than all
5-coloring algorithms for planar graphs. The main reason is that unlike planar graphs, the class
of 1-planar graphs is not closed under the operation of edge contraction (recall that contracting an
edge {u, v} in a graph G is made by replacing u and v by a single new vertex z and adding an
edge between z and each original neighbor of u and/or v). Figure 2 shows a 1-planar graph G;
a simple inspection convinces us that contracting the edge {2, 4} of G results in a graph that is
not 1-planar. It is worth noting that many coloring algorithms (e.g., those for planar graphs) are
crucially based on the property that the class of their input graphs is closed under the operation
of edge contraction. In the case of 1-planar graphs, this property is not available and it becomes
difficult to find suitable vertices to merge so that the resulting graph is still 1-planar. We overcome
this difficulty with a structure lemma which essentially says that every 1-planar graph either has
a constant fraction of vertices of degree at most 7, or has a constant fraction of vertices each of
which is of degree 8 and has at least 5 neighbors of degree at most 8. We believe that this lemma
will find useful in the design of algorithms for other problems on 1-planar graphs.
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Figure 2: A 1-planar graph.

Since planar graphs are special 1-planar graphs and it is NP-complete to decide whether a given
planar graph is 3-colorable [12], it is also NP-complete to decide whether a given 1-planar graph is
3-colorable. This paper shows that it is NP-complete to decide whether a given 1-planar graph is
4-colorable. The problem of deciding whether a given 1-planar graph is 5-colorable remains open.
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The remainder of this paper is organized as follows. Section 2 describes several basic definitions
and proves several elementary facts. Section 4 describes the linear-time algorithm. Section 5
details a proof for a key theorem needed for the algorithm. Section 6 proves the NP-hardness of
the problem of deciding whether a given 1-planar graph is 4-colorable.

2 Preliminaries

Throughout this paper, a graph is always simple (i.e., has neither multiple edges nor self-loops)
unless stated explicitly otherwise.

Let G = (V,E) be a graph. The neighborhood of a vertex v in G, denoted NG(v), is the
set of vertices in G adjacent to v; dG(v) = |NG(v)| is the degree of v in G. For U ⊆ V , let
NG(U) = ∪u∈UNG(u). For U ⊆ V , the subgraph of G induced by U is the graph (U,F ) with
F = {{u, v} ∈ E : u, v ∈ U} and is denoted by G[U ]. For U ⊆ V , we denote by G−U the subgraph
induced by V −U . If u ∈ V , we write G− u instead of G− {u}. A cut set of G is a subset U of V
such that G− U is disconnected. A k-cut set is a cut set consisting of k vertices. G is k-connected
if it has at least k vertices but has no i-cut set with i ≤ k − 1. An independent set in G is a set
of pairwise nonadjacent vertices in G. A maximal independent set in G is an independent set in G
that is not a proper subset of another independent set in G.

A 1-plane embedding of G is an embedding of G in the plane in such a way that each edge
crosses at most one other edge. G has a 1-plane embedding only when G is a 1-planar graph. An
edge-crossing list of G is a list L of disjoint (unordered) pairs of edges of G such that G has a
1-plane embedding in which the two edges in each pair in L cross while no two other edges of G
cross.

For a sequence 〈u1, . . . , uk〉 of two or more distinct pairwise nonadjacent vertices in G, merging
〈u1, . . . , uk〉 is the operation of modifying G by adding an edge between uk and every vertex in
∪1≤i≤k−1NG(ui) − NG(uk) and further removing vertices u1, . . . , uk−1. Note that the sequence is
ordered and uk is the last vertex in the sequence.

Let k be a natural number. A k-coloring of G is a coloring of the vertices of G with at most
k colors such that no two adjacent vertices get the same color. The color classes of a coloring C
of the vertices of G are the sets V1, V2, ..., Vk, where k is the number of colors used by C and Vi,
1 ≤ i ≤ k, is the set of all vertices with the ith color.

3 Simple Reductions

In this section, we show how to reduce the problem to its 3-connected case. Throughout this
section, G denotes the input 1-planar graph.

Since it is still unknown whether 1-planar graphs can be recognized in polynomial time, we
assume that G is given by its adjacency list together with an edge-crossing list L of G. We may
further assume that for each pair (e, e′) ∈ L, e and e′ share no endpoint (otherwise, the pair (e, e′)
can be removed from L, and L remains an edge-crossing list of G after the removal).

In the initialization step of the algorithm, we augment G as follows: For each pair (e, e′) ∈ L,
each endpoint u of e, and each endpoint v of e′, if (u, v) is not an edge of G, then add a new edge
between u and v in G. Obviously, this augmentation can be done in linear time. Moreover, after
the augmentation, it is clear that (1) G remains 1-planar and (2) for each pair (e, e′) ∈ L, the
endpoints of e and e′ induce a clique of size 4 in G.

We may assume that G is connected, since otherwise the problem of 7-coloring G is easily
reduced to the problems of 7-coloring the connected components of G. A block of G is a maximal
2-connected subgraph of G. The following fact is widely known.

Fact 3.1 Suppose that G is connected but not 2-connected. Let B be the set of all blocks of G.
Let C be the class of all 1-cut sets of G. Consider the bipartite graph T = (B ∪ C,ET ) where ET
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consists of all edges {b, c} such that b ∈ B, c ∈ C, and the vertex in c is a vertex in B. Then, T is
a tree.

Corollary 3.2 Suppose that G is 1-planar and connected but not 2-connected. Then, given the
blocks of G and a 7-coloring of each block of G, we can compute a 7-coloring of G in linear time.

Proof. Let T be the tree constructed from G as in Fact 3.1. T can be constructed in linear
time. Root T at an arbitrary leaf r. Note that r must be a block of G. To obtain a 7-coloring of
G, we process the vertices of T that are 1-cut sets of G, in post-order. Consider the processing of a
vertex c of T that is a 1-cut set of G. Let b1, . . . , bk be the children of c in T , and f be the parent
of c in T . Suppose that for each 1 ≤ i ≤ k, we have obtained a 7-coloring Ci of the subgraph of G
induced by the set of all vertices v such that v is contained in block bi or a descendant of bi in T .
For each 1 ≤ i ≤ k, let Vi,1, . . . , Vi,7 be the color classes of Ci. Let V0,1, . . . , V0,7 be the color classes
of the given 7-coloring of block f . By re-ordering if necessary, we can assume that c ⊆ Vi,1 for all
0 ≤ i ≤ k. Now, the sets ∪k

i=0Vi,1, . . . ,∪k
i=0Vi,7 form a 7-coloring of the subgraph of G induced by

the set of all vertices v such that v is contained in block f or a descendant of f in T . Thus, after
the unique child of the root r is processed, we will obtain a 7-coloring of G. 2

Since the blocks of a graph can be computed in linear time [17], Corollary 3.2 implies a linear-
time reduction from the problem of 7-coloring G to the problems of 7-coloring the blocks of G.

Next, suppose that G is 2-connected but not 3-connected. Let U be a 2-cut set of G, and V1,
..., Vp be the vertex sets of the connected components of G − U . For 1 ≤ i ≤ p, let Gi be the
graph G[Vi ∪U ] if the two vertices in U are adjacent in G, while let Gi be the graph obtained from
G[Vi ∪ U ] by adding an edge between the two vertices in U otherwise. The graphs G1, G2, ..., Gp

are called the augmented components of G induced by U . Obviously, all the augmented components
of G induced by U are also 2-connected.

Lemma 3.3 Suppose that G is 1-planar. Then, each augmented component of G induced by a
2-cut set U is also 1-planar. Moreover, for each augmented component Gi of G, we can obtain an
edge-crossing list of Gi from L by removing all pairs (e, e′) such that e or e′ is not an edge of Gi.

Proof. Let U = (u, v). The lemma is clear if u and v are adjacent in G. So, assume that they
are not adjacent in G. Consider a 1-plane embedding E of G in which exactly the pairs of edges in
L cross. Let Gi be an augmented component of G induced by U . G must have a path P between
u and v such that no vertex of P other than u and v is in Gi.

We claim that no edge of P is crossed by an edge of Gi in E . Towards a contradiction, assume
that some edge e = (x, y) of P is crossed by an edge e′ = (x′, y′) of Gi in E . Let z be a vertex in
{x, y} − {u, v}. Similarly, let z′ be a vertex in {x′, y′} − {u, v}. Since (u, v) is not an edge of G, z
and z′ exist. Note that no augmented component of G contains both z and z′. So, (z, z′) can not
be an edge of G. However, since (e, e′) ∈ L, {x, y, x′, y′} induces a clique of G and (z, z′) has to be
an edge of G, a contradiction. Thus, the claim holds.

Now, suppose that we modify E as follows.

1. Delete all vertices and edges that are not contained in Gi or P .

2. Replace P by a single new edge between u and v. (Comment: By the above claim, the new
edge between u and v is crossed by no edge of Gi.)

The modification yields a 1-plane embedding of Gi. Thus, the first assertion in the lemma holds.
The second assertion is clear from the proof. 2

Replacing G by the augmented components induced by a 2-cut set is called splitting G. Suppose
G is split, the augmented components are split, and so on, until no more splits are possible. The
graphs constructed in this way are 3-connected and the set of the graphs are called a 2-decomposition
of G. (See Figure 3 for an example.) Each element of a 2-decomposition of G is called a split
component of G. It is possible for G to have two or more 2-decompositions. A split component of
G must be either a triangle or a 3-connected graph with at least four vertices.
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Figure 3: (1) A graph G (2) A 2-decomposition D of G

The following fact is widely known [18].

Fact 3.4 Suppose that G is 2-connected but not 3-connected. Let D be a 2-decomposition of G.
Let C be the family of all 2-cut sets of G used to split G into the split components in D. Consider
the bipartite graph T = (D ∪ C,ET ) where ET consists of all edges {d, c} such that d ∈ D, c ∈ C,
and the two vertices in c are vertices in d. Then, T is a tree.

Corollary 3.5 Suppose that G is 1-planar and connected but not 2-connected. Then, given a 2-
decomposition D and a 7-coloring of each split component in D, we can compute a 7-coloring of G
in linear time.

Proof. The proof is similar to that of Corollary 3.5. Let T be the tree constructed from G as in
Fact 3.4. T can be constructed in linear time. Root T at an arbitrary leaf r. Note that r must be a
split component in D. To obtain a 7-coloring of G, we process the vertices of T that are 2-cut sets
in C, in post-order. Consider the processing of a vertex c ∈ C of T . Let d1, . . . , dk be the children
of c in T , and f be the parent of c in T . Suppose that for each 1 ≤ i ≤ k, we have obtained a
7-coloring Ci of the subgraph of G induced by the set of all vertices v such that v is contained in
split component di or a descendant of di in T . For each 1 ≤ i ≤ k, let Vi,1, . . . , Vi,7 be the color
classes of Ci. Let V0,1, . . . , V0,7 be the color classes of the given 7-coloring of split component f .
The crucial point is that for each 0 ≤ i ≤ k, the two vertices in c belong to different color classes
among Vi,1, . . . , Vi,7 because they are adjacent in each of the split components f, d1, . . . , dk. So, by
re-ordering if necessary, we can assume that one vertex in c belongs to Vi,1 for all 0 ≤ i ≤ k, and
the other belongs to Vi,2 for all 0 ≤ i ≤ k. Now, the sets ∪k

i=0Vi,1, . . . ,∪k
i=0Vi,7 form a 7-coloring of

the subgraph of G induced by the set of all vertices v such that v is contained in split component
f or a descendant of f in T . Thus, after the unique child of the root r is processed, we will obtain
a 7-coloring of G. 2

Since a 2-decomposition of a graph can be computed in linear time [13], Lemma 3.3 and Corol-
lary 3.5 together imply a linear-time reduction from the problem of 7-coloring G to the problems
of 7-coloring the split components in a 2-decomposition of G.

4 The Algorithm for the 3-Connected Case

Throughout this section, G denotes the input 3-connected 1-planar graph and L denotes the
input edge-crossing list of G. By our discussion in Section 3, we may assume that for each pair
(e, e′) ∈ L, (1) e and e′ share no endpoint, (2) the endpoints of e and e′ induce a clique C of size 4
in G, and (3) no edge of C other than e and e′ is contained in a pair in L.

Given G and L, we first construct a graph H as follows. H contains all vertices of G and all
those edges of G that are contained in no pair in L. Moreover, for each (unordered) pair {e, e′} ∈ L,
H contains a new vertex ve,e′ , and contains an edge between ve,e′ and each endpoint of e and/or
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e′. H does not contain other vertices or edges. Since L is an edge-crossing list of G, H is a planar
graph. We then compute a plane embedding of H in linear time. For convenience, we identify H
with its plane embedding. Hereafter, for a vertex v of H, we say that two neighbors u and w of v
in H are consecutive if u and w appear around ve,e′ consecutively (clockwise or counterclockwise)
in H.

Fact 4.1 Let ve,e′ be a vertex in H but not in G. Suppose that x and y are two consecutive neighbors
of ve,e′ in H (note that {x, y} is an edge in H by our assumptions on L). Then, the cycle C formed
by the three edges {ve,e′ , x}, {x, y}, and {y, ve,e′} together is the boundary of some face of H.

Proof. For a contradiction, assume that the fact does not hold. Let U (respectively, W ) be
the set of all vertices of G that appear in the interior (respectively, exterior) of C in H. By the
assumption, both U and W are nonempty. Moreover, U ∪ W ∪ {x, y} is the vertex set of G. By
planarity, it is easy to see that G has no edge {u, w} with u ∈ U and w ∈ W . Thus, G− {x, y} is
disconnected, contradicting the 3-connectivity of G. 2

Lemma 4.2 We can modify H in linear time so that H satisfies the following conditions:

1. H has the same vertices as G, and contains all edges of G.

2. For each vertex v of H and for every two consecutive neighbors u and w of v in H, {u, w} is
an edge in H and crosses no edge in H.

3. For each pair of edges of H that cross in H, the endpoints of the two edges induce a clique of
size 4 in H.

Proof. We modify H in linear time as follows:

1. For each face f of H whose boundary contains at least four vertices (all vertices on the
boundary of f must be vertices of G by Fact 4.1), triangulate f by adding enough edges to
H in such a way that H remains to be a simple graph. [Comment: Since G is 3-connected
and H is planar during this step, no two vertices on the boundary of f that do not appear
consecutively on the boundary can be adjacent in H. So, it is easy to triangulate f . Moreover,
after this step, every face of H is a triangle and hence Condition 2 is satisfied.]

2. For each vertex ve,e′ in H but not in G, delete ve,e′ and the four edges adjacent to it from H,
and further add the two edges e and e′ of G to H in such a way that e and e′ cross in the
plane at the point where ve,e′ was located. (Comment: By planarity, it is easy to see that at
most one of e and e′ was already in H before this step. Also note that for every two vertices
v and u in H, at most one edge between v and u can be added during this step, because the
pairs in L are pairwise disjoint. Thus, after this step, for every two vertices v and u in H,
there are at most two edges between v and u in H. Moreover, after this step, Condition 2
remains satisfied (as can be seen from Figure 4(1)), and Condition 3 becomes satisfied.]

3. For each vertex v in H and for each neighbor u of v in H, if there are two edges e1 and e2

between v and u in H, then delete the edge ei ∈ {e1, e2} from H such that ei was added to
H in Step 2. [Comment: The time needed for v in this step is O(dH(v)). Moreover, by the
first sentence in the comment on Step 2, Condition 2 remains satisfied after this step (as can
be seen from Figure 4(2)).]

After the above steps, H satisfies the conditions in the lemma. 2

Corollary 4.3 Every 1-planar graph has a supergraph that is a 4-map graph.
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(1)

ve,e'
u

v

(2)

u

v

Figure 4: (1) Removing a vertex ve,e′ . (2) Removing a duplicated edge.

Proof. By the definition of a 4-map graph, it is easy to see that a graph K is a 4-map graph if
it has a 1-plane embedding E such that whenever two edges of K cross in E , their endpoints induce
a clique of size 4 in K. Now, the corollary follows from Lemma 4.2 immediately. 2

Hereafter, without loss of generality (by Lemma 4.2), we make the following assumption:

Assumption 4.4 H satisfies the conditions in Lemma 4.2.

Now, by Condition 1 in Lemma 4.2, it suffices to 7-color H in order to 7-color G. Hereafter, we
will work on H instead of G.

Corollary 4.5 The following two statements hold:

1. Let v be a vertex in H. Suppose that u is a neighbor of v in H such that edge {v, u} crosses
another edge {x, y} in H. Then, {x, y} ⊆ NH(v), and x, u, y appear around v consecutively
in H in this order (clockwise or counterclockwise).

2. Let u and w be two consecutive neighbors of v in H. Then, at least one of edges {v, u} and
{v, w} crosses no edge in H.

Proof. We first prove Statement 1. By Condition 3 in Lemma 4.2, {x, y} ⊆ NH(v). For a
contradiction, assume that x and u are not consecutive neighbors of v in H. Then, there is a
w ∈ NH(v) such that u and w are consecutive neighbors of v in H and u, w, x appear around v in
H in this order clockwise or counterclockwise (see Figure 5(1)). Note that w and x may be not
consecutive neighbors of v in H. By Condition 2 in Lemma 4.2, {u, w} is an edge in H and it
crosses no edge in H. However, this is impossible (as can be seen from Figure 5(1)).

We next prove Statement 2. Suppose that {v, u} crosses an edge e in H. Then, by Statement 1,
e = {w, x} where x is the vertex in NH(v)− {w} such that u and x are consecutive neighbors of v
in H. Figure 5(2) illustrates the sub-embedding of H induced by {v, u, w, x}. Note that {w, u} and
{u, x} are edges in H by Condition 2 in Lemma 4.2. If edge {v, w} also crossed an edge e′ in H,
then by Figure 5(2) and Condition 3 in Lemma 4.2, there would be a vertex y ∈ NH(v)−{u, w, x}
such that w, y, u appear around v consecutively in H in this order clockwise, contradicting that u
and w are consecutive neighbors of v in H. 2

(1)

u

v

(2)

x

y

w

u

v

x

w

Figure 5: (1) Vertex v and some of its neighbors in H. (2) The sub-embedding of H induced by
{v, u, w, x}.
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4.1 A Structure Lemma

Fix two constants α and K with 1 < α < 2 and K > 7 + 9/(α− 1). Let v be a vertex of H. If
|dH(v)| ≤ K, we say that v is small; otherwise, we say that v is large. We say that v is reducible if
one of the following holds:

1. dH(v) ≤ 6.

2. dH(v) = 7 and NH(v) contains at most one large vertex.

3. dH(v) = 8, NH(v) contains no large vertex, and one of the following holds:

(a) There are at most two vertices u ∈ NH(v) with dH(u) ≥ 9.
(b) There are exactly three vertices u ∈ NH(v) with dH(u) ≥ 9 and there are distinct

vertices u1, u2, u3 in NH(v) such that dH(u1) ≥ 9, dH(u2) ≥ 9, dH(u3) ≤ 8, and {v, u2}
and {u1, u3} are edges of H and they cross in H. (See Figure 6.)

v

u1u3

u2

Figure 6: A reducible vertex v and its neighbors, when dH(v) = 8 and v has exactly three vertices
of degree ≥ 9. In this figure, dH(u2) ≥ 9, dH(u3) ≥ 9, and dH(u1) ≤ 8.

Lemma 4.6 Let R be the set of reducible vertices in H. Then, R contains a constant fraction of
vertices of H.

Proof. Since H is 3-connected, each vertex of H is of degree at least 3. For each j ≥ 3, let nj be
the number of vertices v in H with dH(v) = j. Let n̂7 (respectively, n̂8) be the number of reducible
vertices v of H with dH(v) = 7 (respectively, dH(v) = 8). Let n̄8 be the number of vertices v of H
such that dH(v) = 8 and NH(v) contains no large vertex.

Let n be the number of vertices in H. Since H is a 4-map graph, it has at most 4n−8 edges [6].
Thus,

∑n−1
j=3 jnj ≤ 8n − 16. Isolating the terms containing n7, we have n7 >

∑6
j=3(j − 8)nj +∑n−1

j=8 (j − 8)nj . In turn,

n7 >
n−1∑
j=8

(j − 8)nj − 5
6∑

j=3

nj . (1)

Let m′ be the number of edges {u, v} in H such that at least one of u and v is large. By the
definitions of n̂7 and n̄8, m′ ≥ 2(n7 − n̂7) + (n8 − n̄8). On the other hand, m′ ≤

∑n−1
j=K+1 jnj .

Therefore, 2(n7 − n̂7) + (n8 − n̄8) ≤
∑n−1

j=K+1 jnj , or equivalently,

2n̂7 + n̄8 ≥ 2n7 + n8 −
n−1∑

j=K+1

jnj . (2)

Now, adding α times Inequality (1) to Inequality (2), we have

2n̂7 + n̄8 > (2− α)n7 + n8 −
n−1∑

j=K+1

jnj + α
n−1∑
j=8

(j − 8)nj − 5α
6∑

j=3

nj .
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In turn, since α > 1, we have

5α
6∑

j=3

nj + 2n̂7 + n̄8 > (2− α)n7 + n8 + α
K∑

j=9

nj +
n−1∑

j=K+1

((α− 1)(K + 1)− 8α)nj . (3)

Let X be the set of all vertices v in H such that dH(v) = 8, NH(v) contains no large vertex,
and NH(v) contains at least four vertices u with dH(u) ≥ 9. Let Y be the set of all vertices v
in H such that dH(v) = 8, NH(v) contains no large vertex, NH(v) contains exactly three vertices
u with dH(u) ≥ 9, and NH(v) does not contain distinct vertices u1, u2, u3 such that dH(u1) ≥ 9,
dH(u2) ≥ 9, dH(u3) ≤ 8, and {v, u2} and {u1, u3} are edges of H and they cross in H. Then,

|X|+ |Y | = n̄8 − n̂8. (4)

Consider the bipartite graph B = (X ∪ Y ∪ Z,EB), where Z is the set of all vertices u in H
such that dH(u) ≥ 9 and NH(u) ∩ (X ∪ Y ) 6= ∅, and EB consists of all edges {v, u} in H such that
v ∈ X ∪ Y and u ∈ Z. We want to bound |EB| from above. To this end, first note that B inherits
a 1-plane embedding B from H. Let P be the set of all unordered pairs of edges of B that cross in
B. A crucial point is that if we modify B by deleting exactly one edge in each pair in P , then we
get a bipartite planar graph. By this and the well-known fact that a bipartite planar graph with
|X|+ |Y |+ |Z| vertices can have at most 2(|X|+ |Y |+ |Z|)− 4 edges, we have

|EB| ≤ 2(|X|+ |Y |+ |Z|)− 4 + |P |. (5)

We next bound |P | from above. Consider the graph BP constructed from B as follows. The
endpoints of the edges in the pairs in P are vertices of BP . Moreover, for each (unordered) pair
{e, e′} ∈ P , BP contains a new vertex ve,e′ , and contains an edge between ve,e′ and each endpoint
of e and/or e′. BP does not contain other vertices or edges. Obviously, BP is a bipartite planar
graph and has exactly 4|P | edges. On the other hand, no vertex in Y can be a vertex of BP by the
definition of Y and Condition 3 in Lemma 4.2; hence BP has at most |X|+ |Z|+ |P | vertices, and
in turn has at most 2(|X|+ |Z|+ |P |)− 4 edges. Therefore,

4|P | ≤ 2(|X|+ |Z|+ |P |)− 4. (6)

Combining Inequalities (5) and (6), we get

|EB| ≤ 3(|X|+ |Z|) + 2|Y | − 6. (7)

On the other hand, |EB| ≥ 4|X|+3|Y | by the construction of graph B. By this and Inequality (7),
we have

|X|+ |Y | ≤ 3|Z| − 6. (8)

By the definition of Z, |Z| ≤
∑n−1

j=9 nj . So, Inequalities (4) and (8) imply n̄8−n̂8 ≤ 3
∑n−1

j=9 nj−6,
or equivalently

n̂8 ≥ n̄8 − 3
n−1∑
j=9

nj + 6. (9)

Now, adding 1/3 times Inequality (9) to Inequality (3) and further rearranging, we have

5α
6∑

j=3

nj + 2n̂7 +
1
3
n̂8

> (2− α)n7 + (n8 −
2
3
n̄8) + (α− 1)

K∑
j=9

nj +
n−1∑

j=K+1

((α− 1)(K + 1)− 8α− 1)nj

≥ (2− α)n7 +
1
3
n8 + (α− 1)

K∑
j=9

nj +
n−1∑

j=K+1

((α− 1)(K + 1)− 8α− 1)nj .
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Now, we choose α = 5/3 and K = 21. Then,

25
3

6∑
j=3

nj + 2n̂7 +
1
3
n̂8 >

1
3
n7 +

1
3
n8 +

2
3

K∑
j=9

nj +
1
3

n−1∑
j=K+1

nj .

Consequently,
6∑

j=3

nj + n̂7 + n̂8 >
1
26

n−1∑
j=3

nj .

This completes the proof of the lemma. 2

Corollary 4.7 We can compute a set I of reducible vertices of H in linear time such that the
following conditions are satisfied:

1. I contains a constant fraction of vertices of H.

2. For every two vertices u and v in I, there is no path P between u and v in H such that P
has at most three edges and has no large vertex.

Proof. Consider a graph HR = (R,ER) as follows. R is as in Lemma 4.6. For every two vertices
u and v in R such that there is a path P between u and v in H such that P has at most three edges
and has no large vertex, there is an edge between u and v in HR. HR contains no other edges.
We set I to be a maximal independent set of HR. Obviously, HR and I can be computed in linear
time.

Consider a vertex v ∈ R. If dH(v) ≤ 6, then dHR
(v) ≤ 6× 20× 20 = 2400. If dH(v) = 7, then

dHR
(v) ≤ 7× 20× 20 = 2800. If dH(v) = 8, then dHR

(v) ≤ 8× 20× 20 = 3200. So, HR is a graph
with maximum degree 3200. In turn, since I is a maximal independent set of HR, |I| ≥ |R|/3201.
Therefore, by Lemma 4.6, I contains a constant fraction of vertices in H. 2

4.2 Outline of the Algorithm

We first give an outline of the algorithm. It first computes a set I of reducible vertices of H
satisfying the conditions in Corollary 4.7. It then uses I and H to construct a new 1-planar graph
G′ in linear time such that the number of vertices in G′ is a constant fraction of the number of
vertices in H and a 7-coloring of H can be constructed in linear time from an arbitrarily given
7-coloring of G′. It further recurses on G′ to obtain a 7-coloring of G′ which is then used to obtain
a 7-coloring of H in linear time. Since each recursion takes linear time and reduces the size of
the graph by a constant fraction, the overall time is linear. The core of the algorithm is in the
construction of G′.

4.3 Constructing Graph G′ for Recursion

To construct G′, we may simply remove all v ∈ I with dH(v) ≤ 6 from H because each 7-
coloring of H−v extends to a 7-coloring of H. Similarly, for each v ∈ I such that NH(v) contains a
vertex u with dH(u) ≤ 6, we may remove u from H. However, these are not enough because I may
contain very few such vertices v. So, we need to do something about those vertices v ∈ I such that
7 ≤ dH(v) ≤ 8 and NH(v) contains no vertex u with dH(u) ≤ 6. We call such vertices v critical
vertices. The idea is to explore the neighborhood structure of critical vertices. First, we need the
following definitions:

Definition 4.1 A vertex x in H is dangerous for a critical vertex v if one of the following holds:

• dH(v) = 7 and x is a large neighbor of v in H.

10



• dH(v) = 8, x 6∈ NH(v) ∪ {v}, and x is adjacent to some vertex u ∈ NH(v) in H.

Note that a vertex x may be dangerous for more than one critical vertex.

Definition 4.2 Let v be a critical vertex with dH(v) = 7. A mergable pair for v is a pair (u, w)
of two nonadjacent neighbors of v in H such that u is small and the graph G1 obtained from H − v
by merging 〈u, w〉 is a 1-planar graph.

In Definition 4.2, w may be dangerous for v. Moreover, no matter whether w is dangerous for
v, w remains in G1. The intuition behind Definition 4.2 is that we can extend a given 7-coloring
of G1 to a 7-coloring of H as follows: Let u have the color of w, and then let v have a color that is
assigned to no vertex in NH(v).

Definition 4.3 Let v be a critical vertex with dH(v) = 8.

1. A mergable triple for v is a set {u1, u2, u3} of three pairwise nonadjacent neighbors of v in
H such that the graph G2 obtained from H − v by merging 〈u1, u2, u3〉 is a 1-planar graph.

2. Two simultaneously mergable pairs for v are two pairs (u1, u2) and (w1, w2) such that u1, u2,
w1, and w2 are distinct neighbors of v in H, neither {u1, u2} nor {w1, w2} is an edge of H,
and the graph G3 obtained from H−v by merging 〈u1, u2〉 and merging 〈w1, w2〉 is a 1-planar
graph.

3. A desired quadruple for v is an ordered list (u, w1, w2, w3) of four distinct neighbors in H
such that

• dH(u) ≤ 8,
• {w1, w2} ⊆ NH(u), and
• {w1, w2, w3} is an independent set in H, and the graph G4 obtained from H − {v, u} by

merging 〈w1, w2, w3〉 is a 1-planar graph.

4. A favorite quintuple for v is an ordered list (u, w1, w2, w3, w4) of five distinct neighbors of v
in H such that

• dH(u) ≤ 8,
• {w1, w2} ⊆ NH(u), and
• neither {w1, w2} nor {w3, w4} is an edge in H, and the graph G5 obtained from H−{v, u}

by merging 〈w1, w2〉 and merging 〈w3, w4〉 is a 1-planar graph.

5. A desired quintuple for v is an ordered list (u1, u2, w1, w2, w3) of five distinct neighbors of v
in H such that

• dH(u1) ≤ 8 and dH(u2) ≤ 8,
• {w1, w2} ⊆ NH(u1) and {w2, w3} ⊆ NH(u2), and
• {w1, w2, w3} is an independent set in H, and the graph G6 obtained from H−{v, u1, u2}

by merging 〈w1, w2, w3〉 is a 1-planar graph.

6. A desired sextuple for v is an ordered list (u1, u2, w1, w2, w3, w4) of six distinct neighbors of
v in H such that

• dH(u1) ≤ 8 and dH(u2) ≤ 8,
• {w1, w2} ⊆ NH(u1) and {w3, w4} ⊆ NH(u2), and
• neither {w1, w2} nor {w3, w4} is an edge in H, and the graph G7 obtained from H −
{v, u1, u2} by merging 〈w1, w2〉 and merging 〈w3, w4〉 is a 1-planar graph.
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7. A useful sextuple for v is an ordered list (u1, u2, w1, x1, w2, x2) of six distinct vertices in H
such that

• dH(u1) ≤ 8, dH(u2) ≤ 8, and {u1, u2} ⊆ {v} ∪NH(v),
• w1 ∈ {v} ∪NH(v) and w2 ∈ {v} ∪NH(v),
• {w1, x1, w2, x2} ⊆ NH(u1) and {u1, w1, x1} ⊆ NH(u2), and
• neither {w1, x1} nor {w2, x2} is an edge in H, and the graph G8 obtained from H −
{u1, u2} by merging 〈w1, x1〉 and merging 〈w2, x2〉 is a 1-planar graph.

8. A useful triple for v is an ordered list (u, w, x) of three distinct vertices in H such that

• dH(u) ≤ 7 and u ∈ NH(v),
• w ∈ NH(v) and {w, x} ⊆ NH(u), and
• {w, x} is not an edge in H and the graph G9 obtained from H − {u} by merging 〈w, x〉

is a 1-planar graph.

In Definition 4.3(7), x1 and x2 may be dangerous for v. Also, in Definition 4.3(8), x may be
dangerous for v.

The intuitions behind Definitions 4.3(1) and 4.3(2) are similar to that of Definition 4.2. The
intuition behind Definition 4.3(3) is that we can extend a given 7-coloring of the graph G4 to a
7-coloring of H as follows: let w1 and w2 have the color of w3, let u have a color assigned to no
vertex in NH(u)− {v}, and further let v have a color assigned to no vertex in NH(v) before.

The intuition behind Definition 4.3(4) is that we can extend a given 7-coloring of the graph G5

to a 7-coloring of H as follows: let w1 have the color of w2, let w3 have the color of w4, let u have
a color assigned to no vertex in NH(u)− {v}, and further let v have a color assigned to no vertex
in NH(v) before.

The intuition behind Definition 4.3(5) is that we can extend a given 7-coloring of the graph G6

to a 7-coloring of H as follows: let w1 and w2 have the color of w3, let u2 have a color assigned to
no vertex in NH(u2)− {v}, let u1 have a color assigned to no vertex in NH(u1)− {v}, and further
let v have a color assigned to no vertex in NH(v) before.

The intuition behind Definition 4.3(6) is that we can extend a given 7-coloring of the graph
G7 to a 7-coloring of H as follows: let w1 have the color of w2, let w3 have the color of w4, let u2

have a color assigned to no vertex in NH(u2) − {v}, let u1 have a color assigned to no vertex in
NH(u1)− {v}, and further let v have a color assigned to no vertex in NH(v) before.

The intuition behind Definition 4.3(7) is that we can extend a given 7-coloring of the graph G8

to a 7-coloring of H as follows: let w1 have the color of x1, let w2 have the color of x2, let u2 have
a color assigned to no vertex in NH(u2)− {u1} before, and further let u1 have a color assigned to
no vertex in NH(u1) before.

Finally, the intuition behind Definition 4.3(8) is that we can extend a given 7-coloring of the
graph G9 to a 7-coloring of H as follows: let w have the color of x, and then let u have a color
assigned to no vertex in NH(u) before.

The following theorem can be proved by a case-analysis. Since the proof is very tedious, we
postpone the proof to Section 5.

Theorem 4.8 For a critical vertex v, call an edge e in H a basic critical edge for v if at least one
endpoint of e is v or a small neighbor of v in H, Moreover, for a critical vertex v, call an edge e
in H a critical edge for v if e is a basic critical edge for v or e crosses a basic critical edge for v in
H. Then, for every critical vertex v, the following hold:

1. If dH(v) = 7, then we can use the sub-embedding of H induced by the set of critical edges for
v to find a mergable pair for v in O(1) time such that the graph G1 defined in Definition 4.2
has a 1-plane embedding H ′ satisfying the following three conditions:
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(C1) For every pair of edges e1 and e2 in H ′, e1 and e2 cross each other in embedding H ′ if
and only if they cross each other in embedding H.

(C2) For every vertex x in H ′ that is neither v nor a small neighbor of v in H, and for
every sequence 〈e1, . . . , ek〉 of edges in H that are incident to x but incident to neither
v nor a small neighbor of v, if edges e1, . . . , ek appear around x consecutively in this
order in embedding H, then edges e1, . . . , ek appear around x consecutively in this order
in embedding H ′.

(C3) Same as (C2) but with both occurrences of the word “consecutively” deleted.

2. If dH(v) = 8, then we can use the sub-embedding of H induced by the set of critical edges for
v to compute one of the following for v in O(1) time:

• A mergable triple such that the graph G2 defined in Definition 4.3(1) has a 1-plane
embedding H ′ satisfying the above conditions (C1) through (C3).

• Two simultaneously mergable pairs such that the graph G3 defined in Definition 4.3(2)
has a 1-plane embedding H ′ satisfying the above conditions (C1) through (C3).

• A desired quadruple such that the graph G4 defined in Definition 4.3(3) has a 1-plane
embedding H ′ satisfying the above conditions (C1) through (C3).

• A favorite quintuple such that the graph G5 defined in Definition 4.3(4) has a 1-plane
embedding H ′ satisfying the above conditions (C1) through (C3).

• A desired quintuple such that the graph G6 defined in Definition 4.3(5) has a 1-plane
embedding H ′ satisfying the above conditions (C1) through (C3).

• A desired sextuple such that the graph G7 defined in Definition 4.3(6) has a 1-plane
embedding H ′ satisfying the above conditions (C1) through (C3).

• A useful sextuple such that the graph G8 defined in Definition 4.3(7) has a 1-plane
embedding H ′ satisfying the above conditions (C1) through (C3).

• A useful triple such that the graph G9 defined in Definition 4.3(8) has a 1-plane embed-
ding H ′ satisfying the above conditions (C1) through (C3).

In the constructions of graphs G1 through G9 (cf. Definitions 4.2 and 4.3), we may merge a
dangerous vertex for v only with a small vertex in {v} ∪NH(v) (and the dangerous vertex remains
after the merging operation), may delete only v and/or some small vertices in NH(v), and may
touch only some critical edges for v. Note that the set of critical edges for a critical vertex is
disjoint from the set of critical edges for another critical vertex, because of the second condition in
Corollary 4.7. Thus, Conditions (C1) through (C3) together guarantee that for each critical vertex
v, we can find and use a mergable pair, a mergable triple, two simultaneously mergable pairs, a
desired quadruple, a favorite quintuple, a desired quintuple, a desired sextuple, a useful sextuple,
or a useful triple for v to modify H in such a way that after the modification, we can still find a
mergable pair, a mergable triple, two simultaneously mergable pairs, a desired quadruple, a favorite
quintuple, a desired quintuple, a desired sextuple, a useful sextuple, or a useful triple for each other
critical vertex.

Now, we are ready to explain how to construct G′. The construction of G′ from H is done as
follows.

1. For each critical vertex v with dH(v) = 7, find a mergable pair for v as guaranteed in
Theorem 4.8.

2. For each critical vertex v with dH(v) = 8, find a mergable triple, two simultaneously mergable
pairs, a desired quadruple, a favorite quintuple, a desired quintuple, a desired sextuple, a
useful sextuple, or a useful triple for v as guaranteed in Theorem 4.8.
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3. For each critical vertex v with dH(v) = 7 and the mergable pair (u, w) found for v in Step 1,
remove v from H and further merge 〈u, w〉.

4. For each critical vertex v with dH(v) = 8, perform the following:

(a) If a mergable triple {u1, u2, u3} was found for v in Step 2, then remove v from H and
further merge 〈u1, u2, u3〉.

(b) If two simultaneously mergable pairs (u1, u2) and (w1, w2) were found for v in Step 2,
then remove v from H, merge 〈u1, u2〉, and further merge 〈w1, w2〉.

(c) If a desired quadruple (u,w1, w2, w3) was found for v in Step 2, then remove v and u
from H, and further merge 〈w1, w2, w3〉.

(d) If a favorite quintuple (u, w1, w2, w3, w4) was found for v in Step 2, then remove v and
u from H, merge 〈w1, w2〉, and further merge 〈w3, w4〉.

(e) If a desired quintuple (u1, u2, w1, w2, w3) was found for v in Step 2, then remove v, u1,
and u2 from H, and further merge 〈w1, w2, w3〉.

(f) If a desired sextuple (u1, u2, w1, w2, w3, w4) was found for v in Step 2, then remove v,
u1, and u2 from H, merge 〈w1, w2〉, and further merge 〈w3, w4〉.

(g) If a useful sextuple (u1, u2, w1, x1, w2, x2) was found for v in Step 2, then remove u1 and
u2 from H, merge 〈w1, x1〉, and further merge 〈w2, x2〉.

(h) If a useful triple (u, w, x) was found for v in Step 2, then remove u from H and further
merge 〈w, x〉.

5. Remove all v ∈ I with dH(v) ≤ 6 from H.

6. For each v ∈ I such that NH(v) contains a vertex u with dH(u) ≤ 6, remove all such vertices
u from H.

By the discussion in the paragraph succeeding Theorem 4.8, the merging and removal operations
in Steps 3 through 6 do not interfere with each other. It is also easy to see that the construction
of G′ takes O(|I|) time (and hence linear time).

Recall that a vertex x may be dangerous for more than one critical vertex. So, during the
construction of G′, it is possible that after a dangerous vertex x for some critical vertex v is merged
with a small vertex in {v} ∪NH(v), x is merged with a small vertex in {v′} ∪NH(v′) later, where
v′ 6= v is a critical vertex for which x is dangerous too. Fortunately, the second condition in
Corollary 4.7 guarantees that during the construction of G′, adjacent vertices are never merged
together.

By Condition (C1), G′ has a 1-plane embedding H ′′ such that for every pair of edges e1 and e2

in G′, e1 and e2 cross each other in embedding H ′′ if and only if they cross each other in embedding
H. Thus, we can compute a list L′ of disjoint (unordered) pairs of edges of G′ in linear time such
that G′ has a 1-plane embedding in which the two edges in each pair in L′ cross while no two other
edges of G′ cross.

4.4 Detailed Discription of the Overall Algorithm

Let G be the given input graph and L be the given list of disjoint (unordered) pairs of edges of
G such that G has a 1-plane embedding in which the two edges in each pair in L cross while no
two other edges of G cross. The algorithm proceeds as follows.

1. If G is not connected, then recursively 7-color the vertices of each connected component of
G, and combine the colorings into a 7-coloring of G in a straightforward way.

2. If G is not 2-connected, then recursively 7-color the vertices of each block of G, and combine
the colorings into a 7-coloring of G as in Corollary 3.2.
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3. If G is not 3-connected, then compute a 2-decomposition D, recursively 7-color each split
component in D, and further combine the colorings into a 7-coloring of G as in Corollary 3.5.

4. If G is 3-connected, then perform the following:

(a) Use G and L to construct a 1-plane embedding H as in Lemma 4.2.
(b) Compute a set I of vertices in H as in Corollary 4.7.
(c) Use H and I to construct a 1-planar graph G′ and a list L′ of disjoint (unordered) pairs

of edges of G′ such that G′ has a 1-plane embedding in which the two edges in each pair
in L′ cross while no two other edges of G′ cross. (See Section 4.3 for details.)

(d) Recursively 7-color G′.
(e) For each critical vertex v ∈ I with dH(v) = 8, perform the following:

i. If a mergable triple {u1, u2, u3} was found for v in Step 4c, then (one of u1, u2, and
u3 remains in G′), let u1, u2, and u3 have the same color assigned to one of them in
Step 4d, and further let v have a color assigned to no vertex in NH(v) before.

ii. If two simultaneously mergable pairs (u1, u2) and (w1, w2) were found for v in
Step 4c, then (u2 and w2 remain in G′), let u1 have the color of u2, let w1 have
the color of w2, and further let v have a color assigned to no vertex in NH(v) before.

iii. If a desired quadruple (u, w1, w2, w3) was found for v in Step 4c, then (w3 remains
in G′), let w1 and w2 have the color of w3, let u have a color assigned to no vertex
in NH(u)−{v} before, and further let v have a color assigned to no vertex in NH(v)
before.

iv. If a favorite quintuple (u, w1, w2, w3, w4) was found for v in Step 4c, then (w2 and
w4 remain in G′), let w1 have the color of w2, let w3 have the color of w4, let u have
a color assigned to no vertex in NH(u)− {v} before, and further let v have a color
assigned to no vertex in NH(v) before.

v. If a desired quintuple (u1, u2, w1, w2, w3) was found for v in Step 4c, then (w3 remains
in G′), let w1 and w2 have the color of w3, let u2 have a color assigned to no vertex
in NH(u2) − {v} before, let u1 have a color assigned to no vertex in NH(u1) − {v}
before, and further let v have a color assigned to no vertex in NH(v) before.

vi. If a desired sextuple (u1, u2, w1, w2, w3, w4) was found for v in Step 4c, then (w2 and
w4 remain in G′), let w1 have the color of w2, let w3 have the color of w4, let u2 have
a color assigned to no vertex in NH(u2) − {v} before, let u1 have a color assigned
to no vertex in NH(u1) − {v} before, and further let v have a color assigned to no
vertex in NH(v) before.

vii. If a useful sextuple (u1, u2, w1, x1, w2, x2) was found for v in Step 4c, then (x1 and
x2 remain in G′), let w1 have the color of x1, let w2 have the color of x2, let u2 have
a color assigned to no vertex in NH(u2) − {u1} before, and further let u1 have a
color assigned to no vertex in NH(u1) before.

viii. If a useful triple (u, w, x) was found for v in Step 4c, then (x remains in G′), let w
have the color of x, and further let u have a color assigned to no vertex in NH(u)
before.

(f) For each critical vertex v ∈ I with dH(v) = 7 and for the mergable pair (u, w) found
for v in Step 4c, let u have the color of w, and further let v have a color assigned to no
vertex in NH(v) before.

(g) For each v ∈ I with dH(v) ≤ 6, let v have a color assigned to no vertex in NH(v) before.
(h) For each v ∈ I such that NH(v) contains a vertex u with dH(u) ≤ 6, color the vertices

in NH(v) − NG′(v) in an arbitrary order in such a way that each such vertex u gets a
color assigned to no vertex in NH(u) before.

5. Output the 7-coloring of H obtained.

The correctness of the algorithm is clear. It is also obvious that the algorithm takes linear time.
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5 Proof of Theorem 4.8

Throughout this section, fix a critical vertex v ∈ I, and let EH be the set of edges in H. Let
v1, . . . , vk be the vertices in NH(v), and assume that they appear around v in H in this order
clockwise.

We define two functions fs : NH(v) → NH(v) and fp : NH(v) → NH(v) as follows. For each
vertex vi ∈ NH(v), fs(vi) = vi+1 if 1 ≤ i ≤ k − 1, while fs(vi) = v1 if i = k. Similarly, for each
vertex vi ∈ NH(v), fp(vi) = vi−1 if 2 ≤ i ≤ k, while fp(vi) = vk if i = 1. As usual, for each function
f among fs and fp and for each integer h ≥ 1, we define the function fh : NH(v) → NH(v)
inductively as follows. For each vi ∈ NH(v), fh(vi) = f(vi) if h = 1, while fh(vi) = f(fh−1(vi))
otherwise.

By Condition 2 in Lemma 4.2, {{vi, fs(vi)} | vi ∈ NH(v)} is a subset of EH and the edges in
this subset altogether form a cycle Cv in H. Either the interior or the exterior of Cv in H contains
v. We assume that the interior of Cv in H contains v; the other case is similar (it might be helpful
to imagine that H is embedded in the sphere instead of the plane). We say that an edge e of H is
Cv-inner if e is embedded in the interior of Cv in H and both endpoints of e are neighbors of v in
H. By Statement 1 in Corollary 4.5, each Cv-inner edge must be of the form {vi, f

2
s (vi)} for some

vi ∈ NH(v). Thus, it is obvious that there are at most bdH(v)
2 c Cv-inner edges in H. Let Sin

v be the
set of Cv-inner edges.

To simplify our explanation, we need several definitions. We say that an edge {vi, f
2
s (vi)} ∈ EH

is duplicatable, if none of edges {v, vi}, {v, fs(vi)}, and {v, f2
s (vi)} crosses an edge in H. Ob-

viously, each duplicatable edge is not a Cv-inner edge. Moreover, for each duplicatable edge
e = {vi, f

2
s (vi)} ∈ EH , H remains to be a 1-plane embedding (of a 1-planar multigraph) even

if we modify H by making a copy ec of e and embedding ec in H in such a way that ec crosses only
edge {v, fs(vi)} in H. We say that two duplicatable edges {vi, f

2
s (vi)} and {vj , f

2
s (vj)} conflict if

vj = fs(vi) or vi = fs(vj). Intuitively, if two duplicatable edges e = {vi, f
2
s (vi)} and e′ = {vj , f

2
s (vj)}

conflict, then after we use e to modify H as above, e′ will be no longer duplicatable in the modified
H. On the other hand, if S is a set of duplicatable edges in which no two conflict, then H remains
to be a 1-plane embedding even if we use the edges in S one after another to modify H as above.

Throughout the rest of this section, fix a maximal set Sdu
v of duplicatable edges in which no

two edges conflict. Obviously, Sdu
v can be computed in O(1) time.

Fact 5.1 Suppose that we obtain a 1-plane embedding Kv (of a 1-planar multigraph) by modifying
H as follows: For each edge e = {vi, f

2
s (vi)} ∈ Sdu

v , make a copy ec of e and embed ec in H in such
a way that ec crosses only edge {v, fs(vi)} in H. Then, |Sin

v | + |Sdu
v | is also the number of edges

{v, vj} with 1 ≤ j ≤ k such that edge {v, vj} crosses another edge in Kv.

Proof. Let #v be the number of edges {v, vj} with 1 ≤ j ≤ k such that edge {v, vj} crosses
another edge in Kv. Obviously, |Sin

v |+ |Sdu
v | bounds #v from below. By Condition 3 in Lemma 4.2,

|Sin
v |+ |Sdu

v | bounds #v from above. Thus, |Sin
v |+ |Sdu

v | = #v. 2

Since Kv is a 1-plane embedding, it is easy to see that |Sin
v | + |Sdu

v | ≤ 3 if dH(v) = 7, while
|Sin

v |+ |Sdu
v | ≤ 4 if dH(v) = 8.

Note that our algorithm does not actually construct Kv; we rather use Kv here only to simplify
our explanation.

5.1 The Case Where dH(v) = 7

Recall that |Sin
v | + |Sdu

v | ≤ 3 for dH(v) = 7. First, assume that |Sin
v | + |Sdu

v | ≤ 2. Then, by
Fact 5.1, it is easy to see that there is some vi ∈ NH(v) such that none of the three edges {v, fp(vi)},
{v, vi}, and {v, fs(vi)} crosses an edge in Kv. Thus, by the maximality of Sdu

v , {fp(vi), fs(vi)} 6∈
EH . In turn, it is obvious that (fp(vi), fs(vi)) is a mergable pair for v if fp(vi) is small, while
(fs(vi), fp(vi)) is a mergable pair for v otherwise.
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Next, assume that |Sin
v | + |Sdu

v | = 3. Then, by a simple inspection, there is a vi ∈ NH(v) such
that Sin

v ∪ Sdu
v = {{vi, f

2
s (vi)}, {f2

s (vi), f4
s (vi)}, {f4

s (vi), f6
s (vi)}}. By a relabeling if necessary, we

can assume that vi = v5 (see Figure 7(1)).

v1

v2

v3

v4v5

v6

v7

v

v1

v3v6

v

v2v7

v5 v4

(1) (2)

Figure 7: (1) Vertex v and its neighbors in Kv when |Sin
v |+ |Sdu

v | = 3. (2) Modifying Kv as follows:
If {v2, v4} 6∈ Sin

v , then delete the copy (in the interior of Cv) of edge {v2, v4}; otherwise, move edge
{v2, v4} ∈ Sin

v to the exterior of Cv in such a way that edge {v2, v4} ∈ Sin
v is drawn as close to edges

{v5, v2} and {v7, v4} as possible so that it crosses no edge.

If {v5, v2} 6∈ EH , then obviously (v5, v2) (respectively, (v2, v5)) is a mergable pair for v when v5

(respectively, v2) is small. Similarly, if {v7, v4} 6∈ EH , then obviously (v7, v4) (respectively, (v4, v7))
is a mergable pair for v when v7 (respectively, v4) is small. On the other hand, if both {v5, v2} ∈ EH

and {v7, v4} ∈ EH , then no matter whether edge {v2, v4} ∈ Sin
v or not, we can modify Kv so that

Kv remains to be a 1-plane embedding and edge {v, v3} crosses no edge in Kv (see Figure 7(2)).
As can be seen from Figure 7(2), the original embedding witnesses that {v5, v3} 6∈ EH , and the
modified embedding witnesses that (v3, v5) (respectively, (v5, v3)) is a mergable pair for v when v3

(respectively, v5) is small.

5.2 The Case Where dH(v) = 8 and |Sin
v |+ |Sdu

v | ≤ 2

First, assume that |Sin
v | + |Sdu

v | ≤ 1. Then, by Fact 5.1, it is easy to see that there are
two distinct vertices vi and vj in NH(v) such that the six edges {v, fp(vi)}, {v, vi}, {v, fs(vi)},
{v, fp(vj)}, {v, vj}, and {v, fs(vj)} are distinct and none of them crosses an edge in Kv. Thus, by
the maximality of Sdu

v , {fp(vi), fs(vi)} 6∈ EH and {fp(vj), fs(vj)} 6∈ EH . In turn, it is obvious that
(fp(vi), fs(vi)) and (fp(vj), fs(vj)) are two simultaneously mergable pairs for v.

Next, assume that |Sin
v |+ |Sdu

v | = 2. Then, one of the following three cases occurs.
Case 1: There is a vertex vi ∈ NH(v) such that Sin

v ∪ Sdu
v = {{vi, f

2
s (vi)}, {f4

s (vi), f6
s (vi)}}.

Then, since |Sin
v | + |Sdu

v | = 2, none of the six edges {v, vh} with vh ∈ NH(v) − {fs(vi), f5
s (vi)}

crosses an edge in Kv. Thus, by the maximality of Sdu
v , neither {f2

s (vi), f4
s (vi)} nor {f6

s (vi), vi} is
an edge of H, and (f2

s (vi), f4
s (vi)) and (f6

s (vi), vi) are two simultaneously mergable pairs for v.
Case 2: There is a vertex vi ∈ NH(v) such that Sin

v ∪ Sdu
v = {{vi, f

2
s (vi)}, {f3

s (vi), f5
s (vi)}}. By

a relabeling if necessary, we can assume that vi = v6 (see Figure 8(1)).

Since |Sin
v | + |Sdu

v | = 2, none of the six edges {v, vh} with vh ∈ NH(v) − {v7, v2} crosses an
edge in H. Thus, by the maximality of Sdu

v , {v3, v5} 6∈ EH and {v4, v6} 6∈ EH . Consequently, if
{v6, v1} 6∈ EH , then as can be seen from Figure 8(1), (v3, v5) and (v6, v1) are two simultaneously
mergable pairs for v. Similarly, if {v8, v3} 6∈ EH , then as can be seen from Figure 8(1), (v4, v6) and
(v8, v3) are two simultaneously mergable pairs for v. On the other hand, if both {v6, v1} ∈ EH and
{v8, v3} ∈ EH , then as can be seen from Figure 8(2), neither {v8, v5} nor {v1, v4} can be an edge
of H, and (v8, v5) and (v1, v4) are two simultaneously mergable pairs for v.

Case 3: There is a vertex vi ∈ NH(v) such that Sin
v ∪ Sdu

v = {{vi, f
2
s (vi)}, {f2

s (vi), f4
s (vi)}}. By

a relabeling if necessary, we can assume that vi = v7 (see Figure 9(1)).
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v7

v8
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(1) (2)

Figure 8: (1) Vertex v and its neighbors in Kv when Sin
v ∪ Sdu

v = {{v8, v6}, {v1, v3}}. (2) Same
as (1), but in addition {v6, v1} ∈ EH and {v8, v3} ∈ EH .

(1) (2)

v1
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v4

v5

v6
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v5

v6

v7

v8

v

Figure 9: (1) Vertex v and its neighbors in Kv when Sin
v ∪Sdu

v = {{v1, v7}, {v1, v3}}. (2) Modifying
Kv as follows: If {v1, v3} 6∈ Sin

v , then delete the copy (in the interior of Cc) of edge {v1, v3};
otherwise, move edge {v1, v3} ∈ Sin

v to the exterior of Cv in such a way that edge {v1, v3} ∈ Sin
v is

drawn as close to edges {v7, v3} and {v1, v4} as possible so that it crosses no edge.

Since |Sin
v | + |Sdu

v | = 2, none of the six edges {v, vh} with vh ∈ NH(v) − {v8, v2} crosses an
edge in H. Thus, by the maximality of Sdu

v , {v3, v5} 6∈ EH and {v5, v7} 6∈ EH . Consequently,
if {v7, v3} 6∈ EH , then as can be seen from Figure 9(1), {v7, v3, v5} is a mergable triple for v.
Similarly, if {v1, v4} 6∈ EH , then as can be seen from Figure 9(1), (v5, v7) and (v1, v4) are two
simultaneously mergable pairs for v. On the other hand, if both {v7, v3} ∈ EH and {v1, v4} ∈ EH ,
then no matter whether edge {v1, v3} ∈ Sin

v or not, we can modify Kv so that Kv remains to be a
1-plane embedding and edge {v, v2} crosses no edge in Kv (see Figure 9(2)). As can be seen from
Figure 9(2), {v2, v5, v7} must be an independent set of H and the modified embedding witnesses
that {v2, v5, v7} is a mergable triple for v.

5.3 The Case Where dH(v) = 8 and |Sin
v |+ |Sdu

v | = 3

This case is very complicated. Since |Sin
v | + |Sdu

v | = 3, Fact 5.1 guarantees that one of the
following cases occurs:

1. There is a vertex vi ∈ NH(v) with Sin
v ∪Sdu

v = {{vi, f
2
s (vi)}, {f2

s (vi), f4
s (vi)}, {f5

s (vi), f7
s (vi)}}.

By a relabeling if necessary, we can assume that vi = v7 (see Figure 10(1)).

2. There is a vertex vi ∈ NH(v) with Sin
v ∪Sdu

v = {{vi, f
2
s (vi)}, {f2

s (vi), f4
s (vi)}, {f4

s (vi), f6
s (vi)}}.

By a relabeling if necessary, we can assume that vi = v6 (see Figure 10(2)).

Case 1: Sin
v ∪ Sdu

v = {{vi, f
2
s (vi)}, {f2

s (vi), f4
s (vi)}, {f5

s (vi), f7
s (vi)}} for some vi ∈ NH(v). We

may assume that vi = v7 (see Figure 10(1)). Consider the following four possible edges: e1 =
{v1, v4}, e2 = {v3, v6}, e3 = {v4, v7}, and e4 = {v1, v6}. Each of these edges may or may not be an
edge of H. So, we illustrate them by broken edges in Figure 11.
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(1) (2)
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Figure 10: (1) Vertex v and its neighbors in Kv when Sin
v ∪ Sdu

v = {{v7, v1}, {v1, v3}, {v4, v6}}.
(2) Vertex v and its neighbors in Kv when Sin

v ∪ Sdu
v = {{v6, v8}, {v8, v2}, {v2, v4}}.

v1

e1

v2

e2

v3

e3

e4

v4

v5

v6

v7

v8

v

Figure 11: The four possible edges e1, . . . , e4 when Sin
v ∪ Sdu

v = {{v7, v1}, {v1, v3}, {v4, v6}}.

If both e1 ∈ EH and e2 ∈ EH , then no matter whether edge {v1, v3} ∈ Sin
v or not, we can

modify Kv so that Kv remains to be a 1-plane embedding and edge {v, v2} crosses no edge in Kv

(see Figure 12). As can be seen from Figure 12, the original embedding witnesses that {v2, v4, v7}
is an independent set of H, and the modified embedding witnesses that {v2, v4, v7} is a mergable
triple for v. Similarly (by symmetry), if both e3 ∈ EH and e4 ∈ EH , then {v3, v6, v8} is a mergable
triple for v.

v1

e1

e2

v2

v3

v4

v5

v6

v7

v8

v

Figure 12: Vertex v and its neighbors in Kv when Sin
v ∪ Sdu

v = {{v7, v1}, {v1, v3}, {v4, v6}} and
{e1, e2} ⊆ EH . In this case, we modify Kv as follows: If {v1, v3} 6∈ Sin

v , then delete the copy (in the
interior of Cv) of edge {v1, v3}; otherwise, move edge {v1, v3} ∈ Sin

v to the exterior of Cv in such a
way that edge {v1, v3} ∈ Sin

v is drawn as close to edges e1 and e2 as possible so that it crosses no
edge.

Thus, it remains to consider those cases where |{e1, e2} ∩ EH | ≤ 1 and |{e3, e4} ∩ EH | ≤ 1. To
this end, we further distinguish five cases (one of them must occur) as follows.

Case 1.1: {e1, . . . , e4} ∩ EH = {e2, e3}. Then, no matter whether edge {v4, v6} ∈ Sin
v or not,

we can modify Kv so that Kv remains to be a 1-plane embedding and edge {v, v5} crosses no
edge in Kv (see Figure 13). As can be seen from Figure 13, the original embedding witnesses that
{v1, v6} 6∈ EH and {v3, v5} 6∈ EH , and the modified embedding witnesses that (v1, v6) and (v3, v5)
are two simultaneously mergable pairs for v.
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v1
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v3

e3

v4

v5

v6

v7

v8

v

Figure 13: Vertex v and its neighbors in Kv when Sin
v ∪ Sdu

v = {{v7, v1}, {v1, v3}, {v4, v6}} and
{e1, . . . , e4} ∩ EH = {e2, e3}. In this case, we modify Kv as follows: If {v4, v6} 6∈ Sin

v , then delete
the copy (in the interior of Cv) of edge {v4, v6}; otherwise, move edge {v4, v6} ∈ Sin

v to the exterior
of Cv in such a way that edge {v4, v6} ∈ Sin

v is drawn as close to edges e2 and e3 as possible so that
it crosses no edge.

Case 1.2: {e1, . . . , e4} ∩ EH = {e1, e4}. If dH(v1) ≤ 8, then as can be seen from Figure 14(1),
{v2, v8} 6∈ EH , {v3, v7} 6∈ EH , and (v1, v2, v8, v3, v7) is a favorite quintuple for v. So, assume
that dH(v1) ≥ 9. Then, by Figure 10(1) and Condition 3 in the definition of reducibility of v
in Section 4.1, at least one of v4 and v6 has degree ≤ 8 in H. By symmetry, we assume that
dH(v4) ≤ 8 (see Figure 14(2)). By Figure 14(2), {v3, v5} 6∈ EH or else dH(v4) would have been 5 by
the 3-connectivity of H, contradicting the criticality of v. Similarly (by symmetry), {v5, v7} 6∈ EH .
Thus, {v3, v5, v7} is an independent set of H and (v4, v3, v5, v7) is a desired quadruple for v.

(1) (2)

e1
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v3

v4
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v7
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v2
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v4
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v5

v6

v7

v8

Figure 14: (1) Vertex v and its neighbors in Kv when Sin
v ∪ Sdu

v = {{v7, v1}, {v1, v3}, {v4, v6}},
{e1, . . . , e4}∩EH = {e1, e4}, and dH(v1) ≤ 8. (2) Vertex v and its neighbors in Kv when Sin

v ∪Sdu
v =

{{v7, v1}, {v1, v3}, {v4, v6}}, {e1, . . . , e4} ∩ EH = {e1, e4}, dH(v1) ≥ 9, and dH(v4) ≤ 8.

Case 1.3: Either {e1, e2, e4}∩EH = {e1} or {e4, e1, e3}∩EH = {e4}. By symmetry, we assume
that {e1, e2, e4} ∩ EH = {e1}. Note that e3 may be an edge of H or may be not.

If dH(v1) ≤ 8, then as can be seen from Figure 15(1), {v2, v8} 6∈ EH (or else dH(v1) would have
been 6 by the 3-connectivity of H, contradicting the criticality of v), and in turn (v1, v2, v8, v3, v6)
is a favorite quintuple for v. So, assume that dH(v1) ≥ 9. If dH(v4) ≤ 8, then as can be seen
from Figure 15(2), {v3, v5} 6∈ EH (or else dH(v4) would have been 5 by the 3-connectivity of H,
contradicting the criticality of v), and in turn (v4, v3, v5, v1, v6) is a favorite quintuple for v. So,
further assume that dH(v4) ≥ 9. Then, by Figure 10(1) and Condition 3 in the definition of
reducibility of v in Section 4.1, each of v3, v6, and v7 has degree ≤ 8 in H (see Figure 16(1)). If
{v2, v4} 6∈ EH , then as can be seen from Figure 16(1), (v3, v2, v4, v6, v1) is a favorite quintuple for v.
So, yet further assume that {v2, v4} ∈ EH . If in addition {v6, v8} 6∈ EH , then as can be seen from
Figure 16(2), {v3, v6, v8} must be an independent set of H and in turn (v7, v6, v8, v3) is a desired
quadruple for v. On the other hand, if {v6, v8} ∈ EH , then as can be seen from Figure 16(3),
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Figure 15: (1) Vertex v and its neighbors in Kv when Sin
v ∪ Sdu

v = {{v7, v1}, {v1, v3}, {v4, v6}},
{e1, e2, e4} ∩ EH = {e1}, and dH(v1) ≤ 8. (2) Vertex v and its neighbors in Kv when Sin

v ∪ Sdu
v =

{{v7, v1}, {v1, v3}, {v4, v6}}, {e1, e2, e4} ∩ EH = {e1}, dH(v1) ≥ 9, and dH(v4) ≤ 8.

{v5, v7} 6∈ EH (or else dH(v6) would have been 5 by the 3-connectivity of H, contradicting the
criticality of v), and in turn {v3, v5, v7} is an independent set of H and (v6, v5, v7, v3) is a desired
quadruple for v.
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Figure 16: (1) Vertex v and its neighbors in Kv when Sin
v ∪ Sdu

v = {{v7, v1}, {v1, v3}, {v4, v6}},
{e1, e2, e4} ∩ EH = {e1}, dH(v1) ≥ 9, and dH(v4) ≥ 9. (2) Same as (1), but in addition {v2, v4} ∈
EH . (3) Same as (2), but in addition {v6, v8} ∈ EH .

Case 1.4: Either {e1, . . . , e4} ∩ EH = {e2} or {e1, . . . , e4} ∩ EH = {e3}. By symmetry, we
assume that {e1, . . . , e4} ∩ EH = {e2}.
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v

v1
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v4
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v7
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v v3

Figure 17: (1) Vertex v and its neighbors in Kv when Sin
v ∪ Sdu

v = {{v7, v1}, {v1, v3}, {v4, v6}},
{e1, . . . , e4} ∩EH = {e2}, and dH(v3) ≤ 8. (2) Vertex v and its neighbors in Kv when Sin

v ∪ Sdu
v =

{{v7, v1}, {v1, v3}, {v4, v6}}, {e1, . . . , e4} ∩ EH = {e2}, dH(v3) ≥ 9, and dH(v6) ≤ 8.

If dH(v3) ≤ 8, then as can be seen from Figure 17(1), {v2, v4} 6∈ EH (or else dH(v3) would have
been 5 by the 3-connectivity of H, contradicting the criticality of v), and in turn (v3, v2, v4, v6, v1)
is a favorite quintuple for v. So, assume that dH(v3) ≥ 9. If dH(v6) ≤ 8, then as can be seen
from Figure 17(2), {v5, v7} 6∈ EH (or else dH(v6) would have been 5 by the 3-connectivity of H,
contradicting the criticality of v), and in turn (v6, v5, v7, v1, v4) is a favorite quintuple for v. So,
further assume that dH(v6) ≥ 9. Then, by Figure 10(1) and Condition 3 in the definition of
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reducibility of v in Section 4.1, each of v1, v4, v7, and v8 has degree ≤ 8 in H. If {v8, v3} 6∈ EH ,
then as can be seen from Figure 10(1), (v1, v8, v3, v4, v7) is a favorite quintuple for v. So, yet further
assume that {v8, v3} ∈ EH (see Figure 18(1)). If in addition {v2, v7} 6∈ EH , then as can be seen from
Figure 18(1), {v2, v4, v7} must be an independent set of H and in turn (v1, v2, v7, v4) is a desired
quadruple for v. On the other hand, if {v2, v7} ∈ EH , then as can be seen from Figure 18(2),
{v6, v8} 6∈ EH and in turn (v7, v6, v8, v1, v4) is a favorite quintuple for v.
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Figure 18: (1) Vertex v and its neighbors in Kv when Sin
v ∪ Sdu

v = {{v7, v1}, {v1, v3}, {v4, v6}},
{e1, . . . , e4} ∩ EH = {e2}, dH(v3) ≥ 9, dH(v6) ≥ 9, and {v3, v8} ∈ EH . (2) Same as (1), but in
addition {v2, v7} ∈ EH .

Case 1.5: {e1, . . . , e4} ∩ EH = ∅. We yet further distinguish two cases as follows.
Case 1.5.1: dH(v1) ≤ 8. If {v2, v7} 6∈ EH , then as can be seen from Figure 10(1), (v1, v2, v7, v3, v6)

is a favorite quintuple for v. Similarly, if {v3, v8} 6∈ EH , then (v1, v3, v8, v4, v7) is a favorite quintuple
for v. So, assume that both {v2, v7} ∈ EH and {v3, v8} ∈ EH (see Figure 19(1)). Note that both
{v2, v8} ∈ EH and {v3, v7} ∈ EH by Condition 3 in Lemma 4.2.
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v
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Figure 19: (1) Vertex v and its neighbors in Kv when Sin
v ∪ Sdu

v = {{v7, v1}, {v1, v3}, {v4, v6}},
{e1, . . . , e4}∩EH = ∅, dH(v1) ≤ 8, {v3, v8} ∈ EH , and {v2, v7} ∈ EH . (2) Same as (1), but in addi-
tion dH(v2) ≤ 8. (3) Vertex v and its neighbors in Kv when Sin

v ∪Sdu
v = {{v7, v1}, {v1, v3}, {v4, v6}},

{e1, . . . , e4} ∩ EH = ∅, dH(v1) ≤ 8, dH(v2) ≥ 9, dH(v8) ≥ 9, dH(v3) ≤ 8, {v3, v8} ∈ EH , and
{v2, v7} ∈ EH .

First, suppose that dH(v2) ≤ 8 or dH(v8) ≤ 8. By symmetry in Figure 19(1), we assume
that dH(v2) ≤ 8. Then (see Figure 19(2)), since dH(v2) ≥ 7 by the criticality of v, we can find the
vertices x ∈ NH(v2) and y ∈ NH(v2) such that v1 and x appear around v2 consecutively in H in this
order clockwise, and v8 and y appear around v2 consecutively in H in this order counterclockwise.
Note that both {v1, x} ∈ EH and {v8, y} ∈ EH by Condition 2 in Lemma 4.2. If dH(v2) = 7, then
x and y are consecutive neighbors of v2 in H and hence at least one of edges {v2, x} and {v2, y}
crosses no edge in H by Statement 2 in Corollary 4.5. Moreover, if dH(v2) = 7 and edge {v2, x}
crosses no edge in H, then as can be seen from Figure 19(2), (v2, v3, x) is a useful triple for v.
Similarly, if dH(v2) = 7 and edge {v2, y} crosses no edge in H, then (v2, v3, y) is a useful triple
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for v. So, we are done when dH(v2) = 7. Thus, assume that dH(v2) = 8. Let z be the vertex
in NH(v2) − {x, v1, v, v3, v7, v8, y}. By the 3-connectivity of H and our choice of x and y, vertices
x, z, y appear around v2 consecutively in H in this order clockwise. In turn, by Statement 2 in
Corollary 4.5, at least one of edges {v2, y} and {v2, z} crosses no edge in H. If {v2, y} crosses no
edge in H, then as can be seen from Figure 19(2), H remains to be a 1-plane embedding even if we
delete v1 and v2, merge x and v along the two original edges {x, v1} and {v1, v}, and merge y and
v3 along the two original edges {y, v2} and {v2, v3}; so, (v2, v1, v, x, v3, y) is a useful sextuple for v.
Similarly, if {v2, z} crosses no edge in H, then (v2, v1, v, x, v3, z) is a useful sextuple for v.

Next, suppose that both dH(v2) ≥ 9 and dH(v8) ≥ 9. Then as can be seen from Figure 10(1),
Condition 3 in the definition of the reducibility of v guarantees that dH(v3) ≤ 8 or dH(v7) ≤ 8.
If dH(v3) ≤ 8, then as can be seen Figure 19(3), (v3, v2, v4, v1, v6) is a favorite quintuple for v.
Similarly, if dH(v7) ≤ 8, then (v7, v6, v8, v1, v4) is a favorite quintuple for v.

Case 1.5.2: dH(v1) ≥ 9. Then, as can be seen from Figure 10(1), Condition 3 in the definition
of the reducibility of v guarantees that dH(v3) ≤ 8 or dH(v7) ≤ 8. By symmetry in Figure 10(1), we
assume that dH(v3) ≤ 8. If {v2, v4} 6∈ EH , then as can be seen from Figure 10(1), (v3, v2, v4, v1, v6)
is a favorite quintuple for v. So, further assume that {v2, v4} ∈ EH . If dH(v4) ≤ 8, then as can be
seen from Figure 20(1), {v3, v5} 6∈ EH (or else dH(v4) would have been 5 by the 3-connectivity of
H, contradicting the criticality of v), and in turn (v4, v3, v5, v1, v6) is a favorite quintuple for v. So,
yet further assume that dH(v4) ≥ 9. Then, as can be seen from Figure 10(1), Condition 3 in the
definition of the reducibility of v guarantees that dH(v6) ≤ 8 and dH(v7) ≤ 8 (see Figure 20(2)). If
{v6, v8} 6∈ EH , then as can be seen from Figure 20(2), (v7, v6, v8, v1, v4) is a favorite quintuple for
v. Otherwise, as can be seen from Figure 20(3), {v5, v7} 6∈ EH (or else dH(v6) would have been
5 by the 3-connectivity of H, contradicting the criticality of v), and in turn (v6, v5, v7, v1, v4) is a
favorite quintuple for v.
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v
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Figure 20: (1) Vertex v and its neighbors in Kv when Sin
v ∪ Sdu

v = {{v7, v1}, {v1, v3}, {v4, v6}},
{e1, . . . , e4}∩EH = ∅, dH(v1) ≥ 9, dH(v3) ≤ 8, dH(v4) ≤ 8, and {v2, v4} ∈ EH . (2) Vertex v and its
neighbors in Kv when Sin

v ∪ Sdu
v = {{v7, v1}, {v1, v3}, {v4, v6}}, {e1, . . . , e4} ∩ EH = ∅, dH(v1) ≥ 9,

dH(v3) ≤ 8, dH(v4) ≥ 9, and {v2, v4} ∈ EH . (3) Same as (2), but in addition {v6, v8} ∈ EH .

Case 2: Sin
v ∪ Sdu

v = {{vi, f
2
s (vi)}, {f2

s (vi), f4
s (vi)}, {f4

s (vi), f6
s (vi)}} for some vi ∈ NH(v). We

may assume that vi = v6 (see Figure 10(2)). Consider the following two possible edges: e1 = {v2, v6}
and e2 = {v4, v8}. Either edge may or may not be an edge of H. So, we illustrate them by broken
edges in Figure 21.

e2e1

v1

v2

v3

v4

v5

v6

v7

v8

v

Figure 21: The two possible edges e1 and e2 when Sin
v ∪ Sdu

v = {{v6, v8}, {v8, v2}, {v2, v4}}.
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We further distinguish five cases (one of them must occur) as follows.
Case 2.1: Both e1 ∈ EH and e2 ∈ EH . Then, no matter whether edge {v2, v8} ∈ Sin

v or not,
we can modify Kv so that Kv remains to be a 1-plane embedding and edge {v, v1} crosses no edge
in Kv (see Figure 22(1)). Similar modifications can be done for the other two edges {v2, v4} and
{v6, v8} in Sin

v ∪ Sdu
v . As can be seen from Figure 22(1), the original embedding witnesses that

{v1, v3, v7} is an independent set of H, and the modified embedding witnesses that {v1, v3, v7} is a
mergable triple for v.

(1) (2)

e2e1

v1

v2

v3

v4

v5

v6

v7

v8

v

v1

e1
v3

v4

v5

v7

v8 v2

v

v6

Figure 22: (1) Vertex v and its neighbors in Kv when Sin
v ∪ Sdu

v = {{v6, v8}, {v8, v2}, {v2, v4}} and
{e1, e2} ⊆ EH . In this case, we modify Kv as follows: For each edge e ∈ Sin

v ∪ Sdu
v , if e 6∈ Sin

v ,
then delete the copy (in the interior of Cv) of e; otherwise, move edge e ∈ Sin

v to the exterior of
Cv in such a way that edge e is drawn as close to edges e1 and e2 as possible so that it crosses
no edge. (2) Vertex v and its neighbors in Kv when Sin

v ∪ Sdu
v = {{v6, v8}, {v8, v2}, {v2, v4}},

{e1, e2} ∩ EH = {e1}, and dH(v6) ≤ 8.

Case 2.2: Either {e1, e2} ∩ EH = {e1} or {e1, e2} ∩ EH = {e2}. By symmetry in Figure 21, we
assume that {e1, e2}∩EH = {e1}. Depending on whether dH(v2) ≤ 8 or dH(v6) ≤ 8, we yet further
distinguish two cases as follows.

Case 2.2.1: dH(v2) ≤ 8 or dH(v6) ≤ 8. If dH(v6) ≤ 8, then as can be seen from Figure 22(2),
{v5, v7} 6∈ EH (or else dH(v6) would have been 5 by the 3-connectivity of H, contradicting the
criticality of v), and in turn (v6, v5, v7, v4, v8) is a favorite quintuple for v. Similarly, if dH(v2) ≤ 8,
then (v2, v1, v3, v4, v8) is a favorite quintuple for v.

Case 2.2.2: dH(v2) ≥ 9 and dH(v6) ≥ 9. Then, as can be seen from Figure 10(2), Condition 3
in the definition of the reducibility of v guarantees that dH(v4) ≤ 8, dH(v5) ≤ 8, and dH(v8) ≤ 8.
Moreover, {v4, v6} 6∈ EH by the maximality of Sdu

v . Thus, if {v2, v7} 6∈ EH , then as can be
seen from Figure 10(2), (v8, v2, v7, v4, v6) is a favorite quintuple for v. So, further assume that
{v2, v7} ∈ EH . If {v1, v6} 6∈ EH , then as can be seen from Figure 23(1), {v1, v4, v6} must be an
independent set of H, and in turn (v8, v1, v6, v4) is a desired quadruple for v. So, yet further assume
that {v1, v6} ∈ EH (see Figure 23(2)). Note that {v1, v7} ∈ EH by Condition 3 in Lemma 4.2.
Moreover, by Condition 3 in the definition of reducibility of v, dH(v1) ≤ 8 or dH(v7) ≤ 8. We
assume that dH(v1) ≤ 8; the case where dH(v7) ≤ 8 is similar. Then (see Figure 23(3)), since
dH(v1) ≥ 7 by the criticality of v, we can find the vertices x ∈ NH(v1) and y ∈ NH(v1) such that v8

and x appear around v1 consecutively in H in this order clockwise, and v7 and y appear around v1

consecutively in H in this order counterclockwise. Note that both {v8, x} ∈ EH and {v7, y} ∈ EH

by Condition 2 in Lemma 4.2.
If dH(v1) = 7, then x and y are consecutive neighbors of v1 in H and hence at least one of edges

{v1, x} and {v1, y} crosses no edge in H by Statement 2 in Corollary 4.5. Moreover, if dH(v1) = 7
and edge {v1, x} crosses no edge in H, then as can be seen from Figure 23(3), (v1, v2, x) is a useful
triple for v. Similarly, if dH(v1) = 7 and edge {v1, y} crosses no edge in H, then (v1, v2, y) is a
useful triple for v. So, we are done when dH(v1) = 7. Thus, assume that dH(v1) = 8. Let z be the
vertex in NH(v1) − {x, v8, v, v2, v6, v7, y}. By the 3-connectivity of H and our choice of x and y,
vertices x, z, y appear around v1 consecutively in H in this order clockwise. In turn, by Statement 2
in Corollary 4.5, at least one of edges {v1, y} and {v1, z} crosses no edge in H. If {v1, y} crosses
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no edge in H, then as can be seen from Figure 23(3), H remains to be a 1-plane embedding even
if we delete v1 and v8, merge x and v along the two original edges {x, v8} and {v8, v}, and merge
y and v2 along the two original edges {y, v1} and {v1, v2}; so, (v1, v8, v, x, v2, y) is a useful sextuple
for v. Similarly, if {v1, z} crosses no edge in H, then (v1, v8, v, x, v2, z) is a useful sextuple for v.
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Figure 23: (1) Vertex v and its neighbors in Kv when Sin
v ∪ Sdu

v = {{v6, v8}, {v8, v2}, {v2, v4}},
{e1, e2} ∩EH = {e1}, dH(v2) ≥ 9, dH(v6) ≥ 9, and {v2, v7} ∈ EH . (2) Same as (1), but in addition
{v1, v6} ∈ EH . (3) Same as (2), but in addition dH(v1) ≤ 8.

Case 2.3: {e1, e2}∩EH = ∅ and dH(v8) ≤ 8. Note that {v4, v6} 6∈ EH by the maximality of Sdu
v .

If {v2, v7} 6∈ EH , then as can be seen from Figure 10(2), (v8, v2, v7, v4, v6) is a favorite quintuple for
v. So, assume that {v2, v7} ∈ EH (see Figure 24(1)). By Figure 24(1), if {v1, v6} is an edge of H,
then it has to cross edge {v2, v7} and in turn e1 = {v2, v6} has to be an edge of H by Condition 3 in
Lemma 4.2, contradicting {e1, e2} ∩EH = ∅. Thus, {v1, v6} 6∈ EH . Consequently, if {v1, v4} 6∈ EH ,
then as can be seen from Figure 24(1), {v1, v4, v6} is an independent set of H and (v8, v1, v6, v4)
is a desired quadruple for v. On the other hand, if {v1, v4} ∈ EH , then no matter whether edge
{v2, v4} ∈ Sin

v or not, we can modify Kv so that Kv remains to be a 1-plane embedding and edge
{v, v3} crosses no edge in Kv (see Figure 24(2)). As can be seen from Figure 24(2), the original
embedding witnesses that {v3, v5} 6∈ EH , and the modified embedding witnesses that (v3, v5) and
(v2, v6) are two simultaneously mergable pairs for v.
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Figure 24: (1) Vertex v and its neighbors in Kv when Sin
v ∪ Sdu

v = {{v6, v8}, {v8, v2}, {v2, v4}},
{e1, e2} ∩EH = ∅, dH(v8) ≤ 8, and {v2, v7} ∈ EH . (2) Same as (1), but in addition {v1, v4} ∈ EH .
In this case, we modify Kv as follows: If {v2, v4} 6∈ Sin

v , then delete the copy (in the interior of Cv)
of edge {v2, v4}; otherwise, move edge {v2, v4} ∈ Sin

v to the exterior of Cv in such a way that edge
{v2, v4} is drawn as close to edges {v7, v2} and {v1, v4} as possible so that it crosses no edge.

Case 2.4: {e1, e2}∩EH = ∅ and dH(v2) ≤ 8. Similar to Case 2.3 (by symmetry in Figure 10(2)).
Case 2.5: {e1, e2} ∩ EH = ∅, dH(v8) ≥ 9, and dH(v2) ≥ 9. Then, as can be seen from

Figure 10(2), Condition 3 in the definition of reducibility of v guarantees that dH(v1) ≤ 8, dH(v4) ≤
8, dH(v5) ≤ 8, and dH(v6) ≤ 8. In turn, if {v3, v5} 6∈ EH , then as can be seen from Figure 10(2),
(v4, v3, v5, v2, v6) is a favorite quintuple for v. Similarly (by symmetry in Figure 10(2)), if {v7, v5} 6∈
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EH , then (v6, v7, v5, v4, v8) is a favorite quintuple for v. So, we assume that both {v3, v5} ∈ EH

and {v7, v5} ∈ EH (see Figure 25(1)).
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Figure 25: (1) Vertex v and its neighbors in Kv when Sin
v ∪ Sdu

v = {{v6, v8}, {v8, v2}, {v2, v4}},
{e1, e2}∩EH = ∅, dH(v8) ≥ 9, dH(v2) ≥ 9, {v3, v5} ∈ EH , and {v7, v5} ∈ EH . (2) Same as (1), but
in addition edge {v3, v5} crosses another edge e in H such that v4 is an endpoint of e. (3) Same as
(1), but in addition edges {v3, v5} and {v7, v5} cross edges {x1, x2} and {y1, y2} in H respectively
such that v4 6∈ {x1, x2} and v6 6∈ {y1, y2}. Note that x2 and y2 are missing.

If edge {v3, v5} crosses no edge in H, then as can be seen from Figure 25(1), H remains to
be a 1-plane embedding even if we delete v and v5, merge v4 and v8 along the two original edges
{v4, v} and {v, v8}, and merge v3 and v6 along the two original edges {v3, v5} and {v5, v6}; hence,
(v5, v3, v6, v4, v8) is a favorite quintuple for v. Similarly (by symmetry in Figure 25(1)), if edge
{v7, v5} crosses no edge in H, then (v5, v7, v4, v2, v6) is a favorite quintuple for v. Thus, we assume
that edge {v3, v5} crosses another edge {x1, x2} in H and edge {v7, v5} crosses another edge {y1, y2}
in H. Then, v4 6∈ {x1, x2}; otherwise, as can be seen from Figure 25(2), dH(v4) would have been 5
by the 3-connectivity of H, contradicting the criticality of v. Similarly, v6 6∈ {y1, y2}. Figure 25(3)
illustrates these facts. Vertices x2 and y2 are missing in Figure 25(3), because they may be the
same or may be not, and they may be in NH(v) or may be not. No matter whether x2 = y2 and
no matter whether {x2, y2} ∩NH(v) = ∅, the following statements hold:

1. Both {v5, x2} ∈ EH and {v5, y2} ∈ EH . This follows from Condition 3 in Lemma 4.2.

2. Vertices v, v4, x1, v3, v7, y1, and v6 are 7 distinct neighbors of v5 in H. This can be seen
from Figure 25(3) immediately.

Depending on whether x2 = y2 and whether {x2, y2} ∩ NH(v) = ∅, we yet further distinguish
three cases (one of them must occur) as follows.

Case 2.5.1: x2 6= y2. Then, by Statements 1 and 2 above and the fact that dH(v5) ≤ 8, we have
{x2, y2}∩{x1, y1, v, v3, v4, v6, v7} 6= ∅. On the other hand, by Figure 25(3), x2 6∈ {x1, y1, v, v3, v4, v6}
and y2 6∈ {x1, y1, v, v4, v6, v7}. Thus, x2 = v7 or y2 = v3. Indeed, by Figure 25(3) and the 1-planarity
of H, at most one of x2 = v7 and y2 = v3 can happen. By symmetry in Figure 25(3), we assume
that y2 = v3 (see Figure 26(1)). Note that both {x1, v4} and {y1, v6} are edges of H. To see this,
first recall that dH(v5) ≤ 8. So, v5 has no other neighbors than those shown in Figure 26(1). Hence,
v4 and x1 are consecutive neighbors of v5 in H, and so are v6 and y1. In turn, by Condition 2 in
Lemma 4.2, both {x1, v4} ∈ EH and {y1, v6} ∈ EH .

Now, edge {v4, x1} crosses no edge in H by Condition 2 in Lemma 4.2. Also, edge {v5, x2}
crosses no edge in H by Statement 2 in Corollary 4.5. Thus, as can be seen from Figure 26(1),
H remains to be a 1-plane embedding even if we delete v5 and v4, merge v and x1 along the two
original edges {v, v4} and {v4, x1}, and merge v6 and x2 along the two original edges {v6, v5} and
{v5, x2}; hence, (v5, v4, v, x1, v6, x2) is a useful sextuple for v.

Case 2.5.2: x2 = y2 and x2 6∈ NH(v) (see Figure 26(2)). As in Case 2.5.1, we can show that
both {x1, v4} ∈ EH and {y1, v6} ∈ EH , and that (v5, v4, v, x1, v6, x2) is a useful sextuple for v.
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Figure 26: (1) Vertex v and its neighbors in Kv when Sin
v ∪ Sdu

v = {{v6, v8}, {v8, v2}, {v2, v4}},
{e1, e2} ∩ EH = ∅, dH(v8) ≥ 9, dH(v2) ≥ 9, {v3, v5} ∈ EH , {v7, v5} ∈ EH , and edges {v3, v5} and
{v7, v5} cross edges {x1, x2} and {y1, y2} in H respectively such that y2 = v3. (2) Same as (1)
except x2 = y2 6∈ NH(v).

Case 2.5.3: x2 = y2 and x2 ∈ NH(v). Then, as can be seen from Figure 25(3), x2 ∈ {v1, v2, v8}.
If x2 = v1, then as can be seen from Figure 27(1), dH(v1) = 8 and edge {v1, v7} crosses no edge
in H by Statement 2 in Corollary 4.5, and in turn H remains to be a 1-plane embedding even if
we delete v and v1, merge v2 and v7 along the two original edges {v2, v1} and {v1, v7}, and merge
v4 and x8 along the two original edges {v4, v} and {v, v8}; hence, (v1, v2, v7, v4, v8) is a favorite
quintuple for v. Otherwise, x2 = v2 or x2 = v8. By symmetry in Figure 25(3), we assume that
x2 = v2 (see Figure 27(2)). As can be seen from Figure 27(2), dH(v5) = 8 and edge {v5, y1} crosses
no edge in H by Statement 2 in Corollary 4.5, and in turn H remains to be a 1-plane embedding
even if we delete v5 and v, merge v2 and v6 along the two original edges {v2, v} and {v, v6}, and
merge v4 and y1 along the two original edges {v4, v5} and {v5, y1}; hence, (v5, v, v2, v6, v4, y1) is a
useful sextuple for v.
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Figure 27: (1) Vertex v and its neighbors in Kv when Sin
v ∪ Sdu

v = {{v6, v8}, {v8, v2}, {v2, v4}},
{e1, e2} ∩ EH = ∅, dH(v8) ≥ 9, dH(v2) ≥ 9, {v3, v5} ∈ EH , {v7, v5} ∈ EH , and edges {v3, v5} and
{v7, v5} cross edges {x1, x2} and {y1, y2} in H respectively such that x2 = y2 = v1. (2) Same as (1)
except x2 = y2 = v2.

5.4 The Case Where dH(v) = 8 and |Sin
v |+ |Sdu

v | = 4

This case is complicated but not as much as the case in Section 5.3. Since |Sin
v | + |Sdu

v | = 4,
Fact 5.1 guarantees that there is a vi ∈ NH(v) such that Sin

v ∪ Sdu
v consists of edges {vi, f

2
s (vi)},

{f2
s (vi), f4

s (vi)}, {f4
s (vi), f6

s (vi)}, and {f6
s (vi), vi}. By a relabeling if necessary, we can assume that

vi = v2 (see Figure 28).

We distinguish three cases as follows.

27



v1

v2

v3

v4

v5

v6

v7

v8

v

Figure 28: Vertex v and its neighbors in Kv when Sin
v ∪Sdu

v = {{v2, v4}, {v4, v6}, {v6, v8}, {v8, v2}}.

Case 1: Both dH(v4) ≤ 8 and dH(v8) ≤ 8. Consider the following four possible edges: e1 =
{v2, v5}, e2 = {v3, v6}, e3 = {v6, v1}, and e4 = {v7, v2}. Each of these edges may or may not be an
edge of H. So, we illustrate them by broken edges in Figure 29.
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Figure 29: The four possible edges e1, . . . , e4 when Sin
v ∪Sdu

v = {{v2, v4}, {v4, v6}, {v6, v8}, {v8, v2}}.

We further distinguish three cases (one of them must occur) as follows.
Case 1.1: {e1, e3} ∩ EH = ∅ or {e2, e4} ∩ EH = ∅. By symmetry in Figure 29, we assume that

{e1, e3} ∩ EH = ∅. Then, as can be seen from Figure 29, (v4, v8, v2, v5, v1, v6) is a desired sextuple
for v.

Case 1.2: {e1, e2} ⊆ EH or {e3, e4} ⊆ EH . By symmetry in Figure 29, we assume that
{e1, e2} ⊆ EH . Then, since e1 and e2 have to cross each other in H (see Figure 29), Condition 3
in Lemma 4.2 guarantees that both {v2, v6} ∈ EH and {v3, v5} ∈ EH (see Figure 30(1)). We yet
further distinguish two cases as follows.

(1) (2)
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Figure 30: (1) Vertex v and its neighbors in Kv when Sin
v ∪ Sdu

v =
{{v2, v4}, {v4, v6}, {v6, v8}, {v8, v2}} and {e1, e2} ⊆ EH . (2) Same as (1), but in addition
dH(v3) ≤ 8.

Case 1.2.1: dH(v3) ≤ 8 or dH(v5) ≤ 8. By symmetry in Figure 30(1), we assume that dH(v3) ≤
8. Then (see Figure 30(2)), since dH(v3) ≥ 7 by the criticality of v, we can find the vertices
x ∈ NH(v3) and y ∈ NH(v3) such that v5 and x appear around v3 consecutively in H in this order
clockwise, and v4 and y appear around v3 consecutively in H in this order counterclockwise. Note
that both {v5, x} ∈ EH and {v4, y} ∈ EH by Condition 2 in Lemma 4.2. If dH(v3) = 7, then
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x and y are consecutive neighbors of v3 in H and hence at least one of edges {v3, x} and {v3, y}
crosses no edge in H by Statement 2 in Corollary 4.5. Moreover, if dH(v3) = 7 and edge {v3, x}
crosses no edge in H, then as can be seen from Figure 30(2), (v3, v2, x) is a useful triple for v.
Similarly, if dH(v3) = 7 and edge {v3, y} crosses no edge in H, then (v3, v2, y) is a useful triple
for v. So, we are done when dH(v3) = 7. Thus, assume that dH(v3) = 8. Let z be the vertex
in NH(v3) − {y, v4, v, v2, v6, v5, x}. By the 3-connectivity of H and our choice of x and y, vertices
x, z, y appear around v3 consecutively in H in this order clockwise. In turn, by Statement 2 in
Corollary 4.5, at least one of edges {v3, x} and {v3, z} crosses no edge in H. If {v3, x} crosses no
edge in H, then as can be seen from Figure 30(2), H remains to be a 1-plane embedding even if we
delete v3 and v4, merge y and v along the two original edges {y, v4} and {v4, v}, and merge x and
v2 along the two original edges {x, v3} and {v3, v2}. Thus, (v3, v4, v, y, v2, x) is a useful sextuple for
v. Similarly, if {v3, z} crosses no edge in H, then (v3, v4, v, y, v2, z) is a useful sextuple for v.

Case 1.2.2: Both dH(v3) ≥ 9 and dH(v5) ≥ 9. Then, as can be seen from Figure 28, Condition 3
in the definition of reducibility of v guarantees that dH(v2) ≤ 8 or dH(v6) ≤ 8. If dH(v2) ≤ 8,
then as can be seen from Figure 30(1), (v2, v1, v3, v4, v8) is a favorite quintuple for v. Similarly, if
dH(v6) ≤ 8, then (v6, v5, v7, v4, v8) is a favorite quintuple for v.

Case 1.3: {e1, . . . , e4}∩EH = {e1, e4} or {e1, . . . , e4}∩EH = {e2, e3}. By symmetry in Figure 29,
we assume that {e1, . . . , e4}∩EH = {e1, e4}. Then, as can be seen from Figure 31, (v4, v8, v3, v6, v1)
is a desired quintuple for v.
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v6

v7 v

v8

v4

e1

e4

Figure 31: Vertex v and its neighbors in Kv when Sin
v ∪ Sdu

v = {{v2, v4}, {v4, v6}, {v6, v8}, {v8, v2}}
and {e1, . . . , e4} ∩ EH = {e1, e4}.

Case 2: Both dH(v2) ≤ 8 and dH(v6) ≤ 8. Similar to Case 1 (by symmetry in Figure 28).
Case 3: At least one of v4 and v8 has degree ≥ 9 in H, and at least one of v2 and v6 has degree

≥ 9 in H. By symmetry in Figure 28, we assume that dH(v8) ≥ 9 and dH(v2) ≥ 9. Then, as can be
seen from Figure 28, Condition 3 in the definition of reducibility of v guarantees that dH(v1) ≤ 8,
dH(v4) ≤ 8, dH(v5) ≤ 8, and dH(v6) ≤ 8 (see Figure 32(1)). As in Case 2 in Section 5.3, consider
the following two possible edges: e1 = {v2, v6} and e2 = {v4, v8}. Either edge may or may not be
an edge of H. So, we illustrate them by broken edges in Figure 30.
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Figure 32: (1) Vertex v and its neighbors in Kv when Sin
v ∪ Sdu

v =
{{v2, v4}, {v4, v6}, {v6, v8}, {v8, v2}}, dH(v8) ≥ 9, and dH(v2) ≥ 9. (2) The two possible edges e1

and e2 when Sin
v ∪ Sdu

v = {{v2, v4}, {v4, v6}, {v6, v8}, {v8, v2}}, dH(v8) ≥ 9, and dH(v2) ≥ 9.
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If both e1 ∈ EH and e2 ∈ EH , then as in Case 2.1 in Section 5.3, we can show that {v1, v3, v7}
is a mergable triple for v.

If {e1, e2}∩EH = {e1}, then as in Case 2.2.1 in Section 5.3, we can show that (v6, v5, v7, v4, v8)
is a favorite quintuple for v. Similarly (by symmetry in Figure 32(2)), if {e1, e2} ∩ EH = {e2},
(v4, v3, v5, v2, v6) is a favorite quintuple for v.

If {e1, e2} ∩ EH = ∅, then the arguments in Case 2.5 in Section 5.3 apply here (without any
modification), because the arguments there remain valid even if {v4, v6} ∈ EH .

6 NP-Completeness of 4-Colorability

Since planar graphs are special 1-planar graphs and it is NP-complete to decide whether a given
planar graph is 3-colorable [12], it is also NP-complete to decide whether a given 1-planar graph is
3-colorable. We here show that it is also NP-complete to decide whether a given 1-planar graph is
4-colorable.

Theorem 6.1 It is NP-complete to decide whether a given 1-planar graph is 4-colorable.

Proof. By reduction from the problem of deciding whether a given planar graph is 3-colorable.
Let G = (V,E) be a planar graph. It takes linear time to embed G in the plane. Let G′ be
the graph obtained from G as follows. Add a new vertex vnew and put it in the outer face of G.
Further draw an edge from vnew to each original vertex of G, letting edges cross if necessary (but
each pair of edges may cross only once and there is no point at which three or more edges cross).
This completes the construction of G′. Obviously, G is 3-colorable if and only if G′ is 4-colorable.
However, G′ may not be 1-planar. To convert G′ to a 1-planar graph, we use the following gadget
H:

1

4

2

5 63

Figure 33: The gadget H.

We call vertices 1 through 4 of H the corners of H. Vertices 1 and 2 are opposite corners, and
so are vertices 3 and 4. H is a 1-planar graph with the following properties:

• In any 4-coloring of H, each pair of opposite corners are forced to have the same color, and
the two pairs of opposite corners have different colors.

• Any assignment of colors to vertices 1 through 4 such that each pair of opposite corners have
the same color and the two pairs of corners have different colors, extends to a 4-coloring of
all vertices of H.

We obtain a 1-planar graph G′′ from G′ as follows. For each point at which two edges e1 and
e2 of G′ cross, replace the point with a copy of H in such a way that a pair of opposite corners of
the copy appear on e1 and the other pair of opposite corners appear on e2. Here, the copies used
to replace the crossing points on each edge {u, w} of G′ must be located as shown in the following
figure (that is, certain corners of the copies should be identified):

Obviously, the above replacement results in a 1-planar graph G′′. It remains to show that G′ is
4-colorable if and only if G′′ is 4-colorable.
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wu HHHHwu

(1) (2)

Figure 34: (1) An edge {u, w} with four crossings. (2) After the replacement. Here, if vnew ∈
{u, w}, then u = vnew.

Suppose that G′ has a 4-coloring. We obtain a 4-coloring of G′′ as follows. Each vertex of G′′

that is also a vertex of G′ inherits its color from G′. The crucial point is that whenever two edges
cross in G′, one of them must be incident to vnew and hence both endpoints of the other edge have
colors different from that of vnew. Because of this crucial point and the second property of H above,
for each edge {u, w} of G′ with at least one crossing (see Figure 34(1)), we can propagate the color
of u to the corners of the copies of H that appear on the edge {u, w} of G′ (see Figure 34(2)). In
this way, the 4-coloring of G′ extends to a 4-coloring of G′′.

Conversely, suppose that G′′ has a 4-coloring. Consider an edge {u, w} of G′. If {u,w} crosses
no other edge of G′, then {u,w} is also an edge of G′′ and hence u and w have different colors.
Otherwise, by the first property of H above, u and w must have different colors. Thus, the 4-coloring
of G′′ restricted to those vertices of G′ is a 4-coloring of G′. 2

It is natural to consider the problem of deciding whether a given 1-planar graph is 5-colorable.
Unfortunately, we still do not know whether this problem is NP-complete. This is an open question.
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