
BIOINFORMATICS Vol. 00 no. 00 2005
Pages 1–5

Supplementary Material for “Exact algorithms for
haplotype assembly from whole-genome sequence data”
Zhi-Zhong Chen 1,∗, Fei Deng 2 and Lusheng Wang 2∗
1Division of Information System Design, Tokyo Denki University, Hatoyama, Saitama 350-0394,
Japan.
2Department of Computer Science, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon,
Hong Kong.
Received on XXXXX; revised on XXXXX; accepted on XXXXX

Associate Editor: XXXXXXX

1 EXAMPLE
Table 1 shows an example matrix X and a solution of X . Reads r1

through r8 are gapless, r9 is a multi-gapped read, r10 is a paired-end
read, and the lengths of th reads are 2, 2, 3, 2, 2, 2, 2, 2, 8, and 7,
respectively. Moreover, the MEC score of the solution (h, h′) for X
is 2. Furthermore, the monotone columns are the 1st, 6th, 7th, 9th,
and 10th columns.

Table 1. An example read matrix X consisting of 10 reads spanning 12
positions, and a solution (h, h′) for X .

reads 1 2 3 4 5 6 7 8 9 10 11 12
r1 1 1 − − − − − − − − − −
r2 − 0 0 − − − − − − − − −
r3 − 1 0 0 − − − − − − − −
r4 − 1 1 − − − − − − − − −
r5 − − − 0 1 − − − − − − −
r6 − − − 1 0 − − − − − − −
r7 − − − − − − − − − − 0 0
r8 − − − − − − − − − − 1 1
r9 − − − − 0 − − 1 0 1 − 1
r10 − − − − − 1 0 0 0 − 1 1

h 1 0 0 0 1 1 0 0 0 1 1 1
h′ 1 1 1 1 0 1 0 1 0 1 0 1

In order for the matrix X in Table 1 to satisfy Assumptions A2
and A3 in the main text, we can flip 1’s and 0’s in the 2nd, 11th,
and 12th columns and further delete the 1st, 6th, 7th, 9th, and 10th
columns of X . The resulting matrix is shown in Table 2.

For the example matrix in Table 2, the 1st column contributes 1
to the MEC score of (h, h′) and so does the 7th column, while the
other columns contribute 0. Note that the MEC score of (h, h′) is
the total contribution of the columns of X .

The matrix X in Table 2 is a block itself and its splittable columns
are the 1st, 3rd, and 4th columns. Moreover, the 1st row of X is
singular. Furthermore, X has three reduced blocks.

∗to whom correspondence should be addressed

Table 2. The resulting matrix obtained by modifying the matrix X in
Table 1 so that it satisfies Assumptions A2 and A3 in the main text, where
the three submatrices consisting of consecutive bold letters are the reduced
blocks and are also unsplittable blocks.

reads 1 2 3 4 5 6 7
r1 0 − − − − − −
r2 1 0 − − − − −
r3 0 0 0 − − − −
r4 0 1 − − − − −
r5 − − 0 1 − − −
r6 − − 1 0 − − −
r7 − − − − − 1 1
r8 − − − − − 0 0
r9 − − − 0 1 − 0
r10 − − − − 0 0 0
h 1 0 0 1 0 0 0
h′ 0 1 1 0 1 1 0

For the matrix X in Table 2, η1,0 = η7,0 = s̄7,0 = 3, η2,0 =
η3,0 = η4,0 = η6,0 = s̄1,0 = s̄2,0 = s̄3,0 = s̄4,0 = s̄6,0 = 2,
and η5,0 = η1,1 = η2,1 = η3,1 = η4,1 = η5,1 = η6,1 = η7,1 =
s̄5,0 = s̄1,1 = s̄2,1 = s̄3,1 = s̄4,1 = s̄5,1 = s̄6,1 = s̄7,1 = 1. So,
Lemma 1 in the main text ensures that the first 6 columns of X are
intrinsically heterozygous.

2 FALSE-HETEROZYGOUS SITES AND THE
GENERAL CASE MODEL

First, let us clarify the terminologies. Recall that a diploid organism
has two alleles at each position. A SNP site is homozygous if the
two alleles at this site are identical; otherwise, it is heterozygous.
Here, the terms “homozygous” and “heterozygous” are used when
two copies of a chromosome are considered. When considering the
input read matrix X , we say that a column is monotone if 0 or 1
does not appear in the column; otherwise, it is non-monotone.

Next, let us recall how to obtain the input matrix X . Given a
set of reads sequenced from the two copies of a chromosome of an

c© Oxford University Press 2005. 1



Chen et al

individual, we can obtain a matrix, say M , by aligning all the reads
to the reference sequence.

Due to possible errors in reads, some monotone columns in the
error-free case may become non-monotone in practice. Therefore,
people use various SNP/variant calling methods (Li et al., 2008;
DePristo et al., 2011; Li et al., 2009) to remove all identified
homozygous sites to obtain the resulting (filtered) matrix X . As the
result, X only contains those (putative) heterozygous sites found
by the SNP/variant calling methods and all the columns in X are
non-monotone. This filtered matrix X will be used as the input
matrix to the haplotype assembly problem. Most of the columns
in the filtered input matrix X correspond to true-heterozygous SNP
sites. However, it is still possible that a small number of columns in
X should actually correspond to homozygous sites. Such a column
in X is referred to as false-heterozygous.

Now, let us look at an example. Table 3 gives an example
read matrix consisting of 6 reads and 8 SNP sites. The two real
haplotypes h and h′ are also given in the same table, where we
can see that sites 1 and 5 are homozygous and the others are
heterozygous. The first three reads are from haplotype h, while
the remaining three are from haplotype h′. Since there is no error
in the reads, we can see that columns 1 and 5 are monotone and
can be ignored in the filtered input matrix X . However, when
errors occur in reads, it is possible that all the eight columns in the
matrix are non-monotone. Table 4 gives a new read matrix obtained
from the one shown in Table 3 by inserting two errors (marked in
red). All the eight columns are now non-monotone and would be
included in the filtered input matrix X , where columns 1 and 5
should actually correspond to homozygous sites. In this case, if the
all-heterozygous model is used, one can get an erroneous solution
(h, h′) = (10001000, 01110111), just as shown in Table 5. As the
result, the MEC score under the all-heterozygous model becomes
3, where the first entry in both reads r1 and r3 and the fifth entry
in read r6 should be corrected. In contrast, if we use the general-
case model, we can still obtain the two real haplotypes (in Tables 3
and 4) as a solution to the same input as shown in Table 5, where the
associated MEC score is 2. This is the reason why the general case
can be more useful in practice.

Table 3. A read matrix containing no errors, and the two real haplotypes h
and h′.

reads 1 2 3 4 5 6 7 8
r1 0 0 0 0 1 0 0 0
r2 0 0 − − 1 0 0 0
r3 0 − 0 0 − − − −
r4 0 1 1 1 − − − −
r5 0 − − 1 1 1 1 1
r6 0 1 − − 1 1 1 1

h 0 0 0 0 1 0 0 0
h′ 0 1 1 1 1 1 1 1

Table 4. A read matrix containing 2 errors (marked in red), and the two real
haplotypes h and h′.

reads 1 2 3 4 5 6 7 8
r1 0 0 0 0 1 0 0 0
r2 1 0 − − 1 0 0 0
r3 0 − 0 0 − − − −
r4 0 1 1 1 − − − −
r5 0 − − 1 0 1 1 1
r6 0 1 − − 1 1 1 1

h 0 0 0 0 1 0 0 0
h′ 0 1 1 1 1 1 1 1

Table 5. A read matrix containing 2 errors (marked in red), and the two
constructed haplotypes h and h′ under the all-heterozygous model.

reads 1 2 3 4 5 6 7 8
r1 0 0 0 0 1 0 0 0
r2 1 0 − − 1 0 0 0
r3 0 − 0 0 − − − −
r4 0 1 1 1 − − − −
r5 0 − − 1 0 1 1 1
r6 0 1 − − 1 1 1 1

h 1 0 0 0 1 0 0 0
h′ 0 1 1 1 0 1 1 1

3 ILP FORMULATION FOR THE
ALL-HETEROZYGOUS CASE

Minimize
p∑

i=1

wi

∑
j∈Ji,0

cj (1− xj − yi + 2ti,j)

+

p∑
i=1

wi

∑
j∈Ji,1

cj (yi + xj − 2ti,j)

Subject to ∀1≤i≤p yi ∈ {0, 1}
∀1≤j≤q xj ∈ {0, 1}
∀1≤i≤p∀1≤j≤q ti,j ∈ {0, 1}

ti,j ≤ yi

ti,j ≤ xj

ti,j ≥ yi + xj − 1

4 ILP FORMULATION FOR THE GENERAL CASE
Suppose that we want to compute an optimal pair (h, h′) of
haplotypes for D. Let p (respectively, q) be the number of rows
(respectively, columns) of D. For each integer j with 1 ≤ j ≤ q,
let cj be the multiplicity of D[j]. Similarly, for each integer i with
1 ≤ i ≤ p, let wi be the multiplicity of the ith row of D, Ji,0

(respectively, Ji,1) be the set of integers j ∈ {1, 2, . . . , q} such that
D[j] is intrinsically heterozygous and the ith entry in D[j] is a 0
(respectively, 1), and Ji,0 (respectively, Ji,1) be the set of integers

2



short Title

j ∈ {1, 2, . . . , q} such that D[j] is not known to be intrinsically
heterozygous and the ith entry in D[j] is a 0 (respectively, 1).

As in the all-heterozygous case, we introduce a binary variable yi

for the ith row of D whose value is supposed to be 1 if and only if
the read corresponding to ri is aligned to h, where ri is the ith row
of D. Again as in the all-heterozygous case, for each intrinsically
heterozygous column D[j] of D, we introduce a binary variable xj

for D[j] whose value is supposed to be 1 if and only if the jth bit
of h is a 1 (and hence the jth bit of h′ is a 0). However, for each
column D[j] of D that is not known to be intrinsically heterozygous,
we need to introduce two binary variables xj and zj for D[j] such
that the value of xj (respectively, zj) is supposed to be 1 if and
only if the jth bit of h (respectively, h′) is a 1. Then, the problem
of finding an optimal pair (h, h′) of haplotypes for D becomes the
following integer programming problem:

Minimize
p∑

i=1

wi

∑
j∈Ji,0

cj (xjyi + (1− xj)(1− yi))

+

p∑
i=1

wi

∑
j∈Ji,1

cj ((1− xj)yi + xj(1− yi))

+

p∑
i=1

wi ·
∑

j∈Ji,0

cj (xjyi + zj(1− yi))

+

p∑
i=1

wi ·
∑

j∈Ji,1

cj ((1− xj)yi + (1− zj)(1− yi))

Subject to ∀1≤i≤p yi ∈ {0, 1}
∀1≤j≤q xj ∈ {0, 1}
∀j∈Ji,0∪Ji,1

zj ∈ {0, 1}

The above integer programming problem is not linear because it
contains quadratic terms such as yixj and yizj . So, for each pair
(i, j) with 1 ≤ i ≤ p and 1 ≤ j ≤ q, we introduce a binary variable
ti,j (for replacing yixj) and add the following three constraints to
ensure that ti,j = yixj :

ti,j ≤ yi ti,j ≤ xj ti,j ≥ yi + xj − 1

Moreover, for each pair (i, j) with 1 ≤ i ≤ p and j ∈ Ji,0 ∪ Ji,1,
we introduce a new binary variable ui,j (for replacing yizj) and add
the following three constraints to ensure that ui,j = yizj

ui,j ≤ yi ui,j ≤ zj ui,j ≥ yi + zj − 1

The resulting ILP formulation is as follows:

Minimize
p∑

i=1

wi

∑
j∈Ji,0

cj (1− xj − yi + 2ti,j)

+

p∑
i=1

wi

∑
j∈Ji,1

cj (yi + xj − 2ti,j)

+

p∑
i=1

wi ·
∑

j∈Ji,0

cj (zj + ti,j − ui,j)

+

p∑
i=1

wi ·
∑

j∈Ji,1

cj (1− zj − ti,j + ui,j)

Subject to ∀1≤i≤p yi ∈ {0, 1}
∀1≤j≤q xj ∈ {0, 1}
∀1≤i≤p∀1≤j≤q ti,j ∈ {0, 1}

ti,j ≤ yi

ti,j ≤ xj

ti,j ≥ yi + xj − 1

∀1≤i≤p∀j∈Ji,0∪Ji,1
ui,j ≤ yi

ui,j ≤ zj

ui,j ≥ yi + zj − 1

By Assumption A3, we can further add the following constraints:

∀j∈Ji,0∪Ji,1
xj + zj ≤ 1 (1)

By experiments, we have found that Constraints 1 may slow down
CPLEX when solving the problem for easy blocks, but can speed up
CPLEX when solving the problem for hard blocks.

5 LEMMA 1 AND ITS PROOF
Lemma 1: Suppose that j ∈ {1, 2, . . . , n} satisfies min{ηj,0, ηj,1} ≥
b s̄j,0 + s̄j,1

2
c. Then, X[j] is intrinsically heterozygous.

Proof: Suppose that (h, h′) is an optimal solution of X such that
the jth bit of h is the same as that of h′. Then, since (h, h′) is
optimal, the contribution of X[j] to the MEC score of (h, h′) is
min{ηj,0, ηj,1} and in turn is ηj,1 by Assumption A3 in the main
text. Thus, we may assume that the jth bits of h and h′ are both a 0,
because otherwise we have ηj,1 = ηj,0 and we may exchange 0 and
1 in the remainder of this proof.

Let nh,0 (respectively, nh,1) be the number of nonsingular rows
ri in X such that d(ri, h) ≤ d(ri, h

′) and the jth entry in ri is
a 0 (respectively, 1). Similarly, let nh′,0 (respectively, nh′,1) be the
number of nonsingular rows ri in X such that d(ri, h

′) < d(ri, h)
and the jth entry in ri is a 0 (respectively, 1). If nh,0 + nh′,1 ≤
nh,1+nh′,0, then we flip the jth bit of h and in turn the contribution
of X[j] to the MEC score of (h, h′) becomes at most nh,0 + nh′,1
because singular rows contributes nothing to heterozygous columns.
On the other hand, if nh,0 + nh′,1 > nh,1 + nh′,0, then we flip the
jth bit of h′ and in turn the contribution of X[j] to the MEC score
of (h, h′) becomes nh,1 + nh′,0. So, in either case, the contribution

3



Chen et al

of X[j] to the MEC score of (h, h′) becomes min{nh,0 +
nh′,1, nh,1 + nh′,0}. Note that min{nh,0 + nh′,1, nh,1 +

nh′,0} ≤ nh,0 + nh′,1 + nh,1 + nh′,0

2
=

s̄j,0 + s̄j,1

2
, and

in turn min{nh,0 + nh′,1, nh,1 + nh′,0} ≤ b s̄j,0 + s̄j,1

2
c

because min{nh,0 + nh′,1, nh,1 + nh′,0} is integral. Now, since

min{ηj,0, ηj,1} ≥ b s̄j,0 + s̄j,1

2
c, we know that in either case, the

flipping does not increase the contribution of X[j] to the MEC score
of (h, h′) and hence (h, h′) remains to be optimal. This finishes the
proof. ¤

Using Lemma 1, we can find the intrinsically heterozygous
columns in X in time linear in the total length of reads in X .

6 SPECIFICS OF USING CPLEX
To solve the all-heterozygous (respectively, general) case of the
problem for a chromosome, we first cut the chromosome into as
many reduced-blocks as possible (cf. Section 2.2 (respectively,
Section 2.3) of the main text), next use CPLEX to solve the reduced-
blocks on the PC, and finally assemble the solutions of the blocks
into a solution of the whole chromosome.

When we use CPLEX to find optimal solutions for hard reduced-
blocks, we first use our heuristics to find heuristic solutions and
then use them as the starting solutions to search for optimal
solutions. Since CPLEX uses branch-and-cut search and our
heuristic solutions are often close to optimal, the starting solutions
enable CPLEX to cut off many branches of the search tree.
Consequently, CPLEX can find optimal solutions for the blocks
much faster than searching from scratch.

When we use CPLEX to find optimal solutions for very hard
blocks, we need to set the parameter CPX PARAM MIPEMPHASIS
to be CPX MIPEMPHASIS BESTBOUND. Our experiments show
that this use of CPX PARAM MIPEMPHASIS enables CPLEX to
find an optimal solution for a very hard block of the HuRef dataset
without using much memory (namely, within 6.6GiB).

7 EXPERIMENTAL RESULTS FOR THE HUREF
DATASET

7.1 The Number of Nonsingular Blocks
For the all-heterozygous (respectively, general) case, Table 6
(respectively, Table 7) summarizes the numbers of nonsingular
blocks of the 22 chromosomes in the HuRef dataset obtained
by block reduction only and by both block reduction and block
decomposition, respectively. As can be seen from the tables, block
decomposition enables us to cut the nonsingular blocks (obtained
by block reduction only) of a chromosome into many more smaller
blocks.

7.2 Heuristic Results for The Hard Blocks
The 3 (respectively, 7) hard blocks for the all-heterozygous
(respectively, general) case are shown in the first (respectively,
second) part of Table 8. Since they are hard, we use the (first)
heuristic detailed in Section 2.2 of the main text to find heuristic
solutions for them. The results are summarized in the same table,

Table 6. The numbers of nonsingular blocks of the 22 chromosomes
of the HuRef dataset in the all-heterozygous case, where column “chr”
shows the index number of a chromosome, column “#r blocks” shows the
number of nonsingular blocks obtained by block reduction only, and column
“#rd blocks” shows the number of nonsingular blocks obtained by both
block reduction and block decomposition.

chr #r blocks #rd blocks chr #r blocks #rd blocks

1 1524 1981 12 911 1156
2 1735 2327 13 578 743
3 1262 1615 14 609 770
4 1239 1607 15 540 700
5 1206 1518 16 654 815
6 1088 1417 17 551 666
7 1103 1395 18 495 623
8 910 1157 19 392 520
9 848 1070 20 433 534

10 803 992 21 232 298
11 790 1022 22 246 321

Table 7. The numbers of blocks of the 22 chromosomes of the HuRef
dataset in the general case, where the columns mean the same as in Table 6.

chr #r blocks #rd blocks chr #r blocks #rd blocks

1 1524 1956 12 911 1144
2 1735 2184 13 578 735
3 1262 1602 14 609 764
4 1239 1582 15 540 687
5 1206 1503 16 654 811
6 1088 1400 17 551 659
7 1103 1375 18 495 616
8 910 1146 19 392 510
9 848 1053 20 433 530

10 803 985 21 232 296
11 790 1012 22 246 319

where the optimal MEC scores for the hard blocks are found by
CPLEX.

8 SWITCH ERROR RATES
In this section, we examine the switch error rates of our program for
a portion of the simulated datasets of Geraci (2010). Since we also
consider the general case, we need to first generalize the definition
of switch error rate. For this purpose, let H = (h1, h2) be a pair
of real haplotypes and H ′ = (h′1, h2′) be a pair of haplotypes
computed by a program, where h1, h2, h′1, and h′2 have the same
length n.

For convenience, we use h[i] to denote the ith bit of a haplotype h.
For each 1 ≤ i ≤ n with h1[i] 6= h2[i] and h′1[i] 6= h′2[i], we define
a bijection mi from {1, 2} to itself as follows. If h1[i] = h′1[i], then
mi[1] = 1 and mi[2] = 2; otherwise, mi[1] = 2 and mi[2] = 1.

We next define the switch error ei ∈ {0, 1} at each position i ∈
{1, 2, . . . , n} as follows.

4



short Title

Table 8. Heuristic results for the hard reduced-blocks of the HuRef dataset
in the all-heterozygous and the general cases, where column “chr” shows the
index number of a chromosome, column “pos” shows the starting position of
a reduced block in the chromosome, column “#SNPs” shows the number of
SNP sites in the block, column “score” shows the MEC score of an optimal
or heuristic solution for the block, column “lb” shows the lower bound on
the MEC score of an optimal solution for the block found by our heuristic,
and column “time” shows the running time (in minutes) for the block.

optimal heuristic
chr pos #SNPs score time score lb time

The all-heterozygous case
1 77502 1015 1963 52 1963 1961 7
15 783 1165 2339 1566 2340 2312 254
22 1 398 1518 68 1519 1514 16

The general case
1 11500 461 789 2011 790 763 6
1 77502 1015 1642 829 1642 1639 260
8 14931 1073 570 49 570 570 49
15 1 779 684 658 684 682 56
15 782 1166 ? ? 2036 2015 2121
21 76 354 536 35 536 525 2
22 1 398 1310 11942 1310 1307 920

• If exactly one of h1[i] = h2[i] and h′1[i] = h′2[i] holds, then
ei = 1.

• If both h1[i] = h2[i] and h′1[i] = h′2[i] hold but h1[i] 6= h′1[i],
then ei = 1.

• If both h1[i] 6= h2[i] and h′1[i] 6= h′2[i] hold and the largest
integer j ∈ {1, 2, . . . , i − 1} with h1[j] 6= h2[j] and h′1[j] 6=
h2[j] satisfies that mi[1] 6= mj [1] (and hence mi[2] 6= mj [2]),
then ei = 1.

• If none of the above three cases occurs, ei = 0.

The switch error rate between H and H ′ is
∑n

i=1 ei/n.
Table 9 shows an example pair of H and H ′, where e1 = e2 =

e4 = e6 = e7 = 1 and e3 = e5 = e8 = 0. So, the switch error rate
between the example H and H ′ is 0.625.

Table 9. An example pair of H = (h1, h2) and H′ = (h′1, h′2) with 5
switch errors occurring at positions 1, 2, 4, 6, and 7.

haplotype 1 2 3 4 5 6 7 8
h1 0 0 0 0 0 0 0 0
h2 0 1 1 1 1 0 1 1

h′1 0 1 0 1 1 0 0 0
h′2 1 1 1 0 0 1 1 1

The average switch error rates for a portion of the simulated
datasets of Geraci (2010) are shown in Table 10. From the table,
we can see that the average switch error rates in the general case are
significantly smaller than those in the all-heterozygous case.

Table 10. Average switch error rates of our exact program for those
simulated datasets of Geraci (2010) corresponding to those combinations
(`, c, e) with ` ∈ {100, 350}, c ∈ {3, 5, 8, 10}, and e = 10%.

l = 100 l = 350
c general case all-hete. case general case all-hete. case
3 0.0735 0.1395 0.0684 0.137
5 0.0203 0.159 0.0235 0.1716
8 0.0059 0.1987 0.0057 0.2202
10 0.0015 0.2156 0.0022

9 EXPERIMENTAL RESULTS FOR THE NA12878
DATASET

Our experimental results for the NA12878 dataset of Duitama et al.
(2012) are summarized in Table 11 from which one can see that our
approach is much faster than those of He et al. (2010) and Bansal
& Bafna (2008). Since the MaxSAT solver (namely, Clone) used
by He et al. (2010) can only run on a 32-bit Linux machine, the
running times of our program and Clone in Table 11 are measured
on a 32-bit Linux desktop PC with i7-975 CPU and 5.9GiB RAM.
On the other hand, since HapCUT of Bansal & Bafna (2008) cannot
run on a 32-bit Linux machine, the running times of HapCUT in
Table 11 are measured on a (more powerful) 64-bit Linux desktop
PC with i7-3960X CPU and 31.4GiB RAM. For each chromosome
in the NA12878 dataset, we ran HapCUT 10 times, where each run
was given the default maximum number (namely, 100) of iterations.
Consequently, for each chromosome in the NA12878 dataset, the
running time of HapCUT in Table 11 is the total time of the 10 runs
while the score of HapCUT in the table is the best score among the
10 runs.

REFERENCES
DePristo, M.A., Banks, E., Poplin, R., et al. (2011) A framework for variation discovery

and genotyping using nextgeneration DNA sequencing data. Nature Genetics, 43,
491-498.

Li, H., Ruan, J. and Durbin, R. (2008) Mapping short DNA sequencing reads and
calling variants using mapping quality scores. Genome Res.,, 18, 1851.

Li, H. et al. (2009) The Sequence Alignment/Map format and SAMtools.
Bioinformatics, 25, 2078-2079.

5



Chen et al

Table 11. Comparing our approach with the MaxSAT approach of He et al.
(2010) and HapCUT of Bansal and Bafna (2008) using the NA12878 dataset,
where the columns mean the same as in Table 8.

all-heterozygous case general case
optimal heuristic optimal
our MaxSAT HapCUT

chr score time time score time score time
1 7120 2.0 15.7 7124 250 6889 2.7
2 6926 2.2 16.5 6936 281 6700 2.8
3 5295 1.9 24.1 5299 213 5122 2.4
4 4184 1.5 12.6 4186 220 4072 1.9
5 4736 1.7 12.6 4743 217 4637 2.0
6 5448 2.0 13.0 5464 425 5248 2.5
7 4311 1.6 11 4311 214 4174 2.0
8 4434 1.8 10.8 4439 237 4301 2.3
9 4102 2.6 8.7 4104 194 3974 1.7

10 4653 1.6 10.3 4658 213 4508 2.0
11 4013 1.5 9.9 4018 192 3903 1.9
12 4041 1.6 10.1 4042 145 3907 2.0
13 2772 1.1 6.6 2778 113 2669 1.4
14 2908 1.3 6.5 2909 119 2814 1.8
15 3000 1.1 5.9 3001 119 2903 1.4
16 3976 1.9 9.0 3983 246 3844 2.5
17 3606 1.5 8.3 3612 115 3448 1.9
18 2414 1.2 6.1 2417 100 2337 1.2
19 2838 1.0 4.5 2840 94 2707 1.3
20 2888 1.1 5.3 2892 115 2783 1.5
21 1416 0.5 2.8 1416 58 1367 0.6
22 2549 1.4 8.7 2550 111 2422 2.2

6


